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It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they
exist, are not in a closed form but in infinite series which converge slowly for high frequency waves.
In this paper, a fast numerical solution is presented for the scattering problem in which the boundary
integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral
method. It is shown that the special geometry considered here allows the implementation of the
spectral method to be simple and very efficient. The present method differs from previous
approaches in that the singularities of the integral kernels are removed and dealt with accurately. The
proposed method preserves the spectral accuracy and is shown to have an exponential rate of
convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary
integral equations of combined single- and double-layer representation are used in the present paper.
This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies.
Although a strongly singular kernel is encountered for the Neumann boundary conditions, it is
shown that the hypersingularity can be handled easily in the spectral method. Numerical examples

that demonstrate the validity of the method are also presented.

PACS numbers: 43.20.Fn

INTRODUCTION

The exact analytic solutions of wave scattering by a cir-
cular cylinder, obtainable for simple incident waves, are not
in a closed form but in infinite series of Bessel and Hankel
functions of increasing orders. Such solutions converge
slowly, especially for high frequency waves, which render
their numerical evaluation inefficient. This paper presents a
fast numerical solution of wave scattering that only requires
the computation of Bessel and Hankel functions of order
zero. Furthermore, the numerical solution is valid for any
form of the incident waves of all frequencies.

When developing numerical solutions, wave scattering
problems are often conveniently formulated in boundary in-
tegral equations (BIE).! The advantages of the boundary in-
tegral equation method (BIEM) include reducing the dimen-
sion of the problem and transforming an infinite domain to
finite boundaries in which the far-field radiation condition is
satisfied automatically. The Boundary Integral Equations are
commonly solved computationally by the boundary element
methods (BEM).? In this method, the boundary is divided
into finite elements and integrations over each boundary el-
ement are approximated by quadratures, e.g., the linear ele-
ments.

In this paper, we develop a spectral method of solving
the boundary integral equations, reformulated from the
Helmbholtz equation, for numerical solutions of wave scatter-
ing by a circular cylinder. Previously, for this special geom-
etry, a “fast numerical method” based on the Fourier ap-
proximations has been formulated by Bojarski,> who pointed
out that the boundary integral equation of wave scattering
can be solved easily and efficiently in the Fourier spectrum
domain of the solution. Due to the simplicity of the geom-
etry, an explicit relation between the Fourier coefficients of
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the solution and those of the boundary condition was found.
It was argued that the numerical approach was more efficient
than directly evaluating the infinite series of the exact solu-
tions. Indeed, the exact solutions contain Bessel and Hankel
functions of higher orders whose numerical evaluation is
more difficult and costly as the order increases. Recently, a
similar approach has been used and extended by Schuster*
for a wave transmission problem of concentric cylinders.

In the present paper, we point out that the numerical
formulations given previously are not achieving the optimal
accuracy of the Fourier spectral methods. It is known that,
although any periodic function can be approximated by a
truncated Fourier series, the rate of convergence of such an
approximation depends on its smoothness. Unfortunately, the
integral kernels for the Helmholtz equation are not smooth.
In particular, the 2D Green’s function of the Helmholtz equa-
tion, appearing in the integral equations, possesses a loga-
rithmic singularity. Furthermore, the normal derivative of the
Green’s function also contains a term involving the logarith-
mic function. The nonsmoothness of the integral kernels,
however, was not explicitly treated in the previous formula-
tions. It will be seen that it is critical to remove the non-
smoothness of the integral kernels in order to achieve fast
convergence in the Fourier spectral formulation. By a proper
treatment of the singularities, the present numerical formula-
tion yields accurate solutions with significantly fewer datum
points. Moreover, the boundary integral equations of com-
bined single- and double-layer representation are used in the
present paper. This ensures the uniqueness of the numerical
solution for the scattering problem at all frequencias.l’5 Al-
though a combined layer formulation results in a strongly
singular kernel for the Neumann boundary conditions, we
show that the hypersingularity is handled easily in the spec-
tral method.
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In the next section, the formulations of the boundary
integral equations for wave scattering problems are given.
Then, in Secs. II and III, the Fourier spectral methods for the
Dirichlet and Neumann boundary conditions are presented.
Numerical results are shown in Sec. IV. Section V contains
the conclusions. Some analytic results are also given in the
Appendix.

|. BOUNDARY INTEGRAL EQUATIONS

Let us consider wave scattering by a circular cylinder I'
of radius a. The wave equation for the scattered function ¢
with assumed time dependency of e ' is reduced to the
Helmholtz equation

Vip+k*p=0, D
where k=w/c (c is the wave speed) and V? is the 2D
Laplace operator V2= 9?/9x>+ 3°/dy*. The boundary condi-

tion considered in this paper will be one of the following
types

Dirichlet (soft): on I’

¢(r)=>b(r)

or
¢
Neumann (hard): ey (r)=b(r) on T.

The Helmbholtz equation (1) together with the boundary
condition can be reformulated into a boundary integral equa-
tion. This can be done in various ways."> For scattering
problems considered in the present paper, we use a combi-
nation of single- and double-layer formulation in which the
solution ¢ at any point r’ in the scattered field is represented
by an integral on the boundary as®

, oG
o= [ | So-inG | o, @
r\on
where 7 is any real number such that
7 Re(x)>0.

The use of a combined formulation ensures the uniqueness of
the numerical solution for exterior problems.' In (2), f(r) is
an unknown layer distribution function and the Green’s func-
tion G(r,r'), whose form will be given later, satisfies the
following equation

V3G +k*G=-8(r-r'). 3)

Here the normal derivative d/dn is assumed to be taken in the
direction outward from the cylinder.

The boundary integral equation associated with the layer
representation (2) is>

1 , +J G = ,

Ef("r) . a0 f(rp)dl =b(rp) (4a)
for Dirichlet boundary conditions and

7 el I A I'=b(rr) (4b

> flep)+ e an 7 o f(rr)dT'=b(rp) (4b)

for Neumann boundary conditions, respectively. In (4a) and
(4b), rr denotes the boundary points. After the layer distri-
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bution function f has been solved from the integral equation
(4a) or (4b), the solution of the Helmholtz equation ¢ is
found by the boundary integral (2).

Now for a circular cylinder of radius a, the boundary
contour can be expressed as

rp(6)=(a cos 6,a sin §), 0<6<2m. (5)

The normal vector to be used in (4a) and (4b) is
n=(cos @,sin ).

The Green’s function and its normal derivative are™®

G= ;—Hgl)(Klrr(0)—rr(0')|)

i o-¢'
= — (1) i
4H0 (2Ka sin — ‘], ©
and
oG ik (rr(6)—rr(6'))-m
o _ K - '
oa =~ 7 HE e (0) = (00D <=y,
iK 0—0'| 0_0’|
_ YK i i
4H1 (2Ka sin — |) s K @

in which we have used the fact that
[rr(6)—rp(6)|=2alsin (6—6')/2.

It is important to note here that G and dG/dn are func-
tions of 6—¢@. As will be seen later, this allows the imple-
mentation of the Fourier spectral method to take a simple
form.

Thus we express the boundary integral equation (4a) for
the Dirichlet boundary conditions as

1 27( 4G o ,
5f(0)+J0 (3—n(0—0)—17)G(0—8))f(0)a de

=b(6") (8a)
and Eq. (4b) for the Neumann boundary conditions as

in , 2| G . IG e
7f(0 )+JO (all’ an(ﬁ_a)_lﬂ 5]]’(0 0))

X f(8)a d6=b(6"). (8b)

For clarity, the dependencies on 6 and ¢ have been ex-
pressed explicitly in (8a) and (8b).

In the next two sections, we give the numerical formu-
lations of solving the integral equations (8a) and (8b) by a
Fourier spectral method. Since different types of singularities
are encountered, the two equations will be dealt with sepa-
rately.

Il. SPECTRAL METHOD FOR DIRICHLET BOUNDARY
CONDITIONS

A. Formulation

Let the layer distribution function f(6) and the bound-
ary condition b(6) be approximated by the truncated Fourier
series as
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N/2-1

(0= X fne"?, ©)
n=-N/2
N/2-1

b(O)= D b, (10)
n=-N/2

where b, are obtained by the FFT from the prescribed
boundary condition and f, are the unknown coefficients. In
(9) and (10), the particular form of truncated Fourier series
has been taken for the convenience of applying FFT pro-
grams.

Substituting (9) and (10) into the boundary integral
equation for the Dirichlet boundary conditions (8a), we get

N/2—-1 N/2-1
1 . 27 3G
5 2 S+ X fnf (H(a—o')
n=-N/2 n=-N/2 0
N/2—-1
—inG(o—o'))e"""a do|= 2> b, an
n=—N/2

For simplicity, let
x=6-4'.

By equating the coefficients of e”?', Eq. (11) is easily re-
duced to

1 2n( 3G : inx
E_f,,+f,,[0 (E(x)—n;G(x))e a dx=b,, (12)

for —N/2<n<N/2-1.

It is seen that the integrals appearing in (12) are related
to the Fourier coefficients of (¢G/n)(x) and G(x). From (6)
and (7), it is also clear that both are periodic functions of x,
with a period of 2. Thus, if we let G(x) and (9G/on)(x) be
approximated by truncated Fourier series as

N/2-1

Gx)= X g™, (13)
n=-N/2

G N/2-1 .

Ta = 2 he™, (14)
n=-N/2

then, the integral in (12) equals to 2ma(h,—ing,). It fol-
lows that

%fn+2ﬂafn(hn_i”gn)=bn- (15)

Therefore, the Fourier coefficients of the layer distribu-
tion function f( ) are obtained explicitly as

b,
fn=7 - .
5+27Ta(hn_l77gn)

(16)

The above equation shows that once the Fourier coeffi-
cients of G(x) and (dG/dm)(x) have been found, the layer
distribution function f( ) is known immediately.

Actually, the Fourier coefficients of G(x) and (4G/
on)(x) can be found in exact form using higher-order Bessel
and Hankel functions. They are derived in Appendix A.
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Nonetheless, the numerical evaluation of the exact expres-
sions becomes more ineffective and costly as the order of the
special functions increases. In what follows we give the nu-
merical method that computes the Fourier coefficients g, and
h, accurately and efficiently.

B. Computation of g,, and h,,

In general, the Fourier coefficients of a periodic function
can be obtained efficiently by using a fast Fourier transform
algorithm (FFT). However, the accuracy of the Fourier coef-
ficients computed by the FFT using a given number of datum
points depends on the smoothness of the function. Only
when the function is infinitely smooth (i.e., infinitely differ-
entiable), the error of Fourier coefficients computed by FFT
decays faster than any power of 1/N, where N is the number
of datum points. Such a convergence is often referred to as
an exponential convergence and the method is said to have
spectral accuracy.™® Our aim here is to compute g, and h,,
by the FFT with spectral accuracy even though the functions
G and dG/on are not smooth.

In the numerical approaches proposed previously,>* the
Fourier coefficients g, and 4, were computed directly as the
FFT of the G(x) and (9G/om)(x), respectively. However, the
Green’s function G(x) has a logarithmic singularity at x=0,
where §=§', due to the Hankel function of order zero in (6),
and its Fourier series converges at the rate of 1/N. Thus,
direct computation of g, from G(x) using FFT yields results
whose accuracy is only comparable to a first-order method.
Furthermore, the function (9G/m)(x) also has a nonsmooth
derivative at x=0, and its Fourier series converges at the rate
of 1/N>. Thus direct computation of k,, from (3G/on)(x) is
only comparable to a third order method. Alternatively, as
will be shown below, by properly treating the nonsmoothness
of G(x) and (éG/om)(x), g,, and A, are computed with
spectral accuracy.

To examine the singularity of G(x), we note that

)
ol

_lgw ;
G(x)_ZHO 2ka sin 5
- x .
smf SlIlE

E

)+iY0(2Ka

i
=7 J 0( 2ka
in which J and Y, are the zeroth order Bessel functions of
the first and second kind, respectively. Using the asymptotic
series for small arguments, we have’

2 L4

JO(Z)=1“Z+6—4—“‘,

2 [z 2y 22
YO(Z)= ;ln 5 JO(Z)+ 7‘]0(2)4—%_‘”'

It follows that, for |x| small

__1, A P P A 2
G(x)——z—; n{ ka|sin 5 Jol 2ka sinsl =5 %7
+0(x%), (17)

in which O(x?) represents a power series in x2, and 1y is the
Euler’s constant, y=0.577 215.... To compute the Fourier
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coefficients of G(x) efficiently and accurately, we note that
the Fourier series of the logarithmic periodic function
In(kalsin x/2|) in (17) is®

x Ka >, cos(nx)
)=1n(7)—2 — (18)

sin —
n=1

2

ln( Ka

Thus, we can “subtract out” the singularity in G(x) by form-
ing
L x
sin 5

x
= )JO(ZKa

2

- i
G(x)= ZH},”(zxa

.1
SIn

sin
2

+11
o 10| Ka

) (19)

and then writing the Green’s function as

1
Sin

2

G(x)=G(x)— 21—” ln( Ka

x
)10(21«1 sin > )
(19a)

It is easy to see that G(x) is finite for all values of x.
Furthermore, both G(x) and J, (2kalsin x/2|) in (19a) are
periodic and infinitely differentiable. Thus, their Fourier co-
efficients can be computed with spectral accuracy using FFT.
The Fourier coefficients of the Green’s function G(x), g,,,
will be computed according to (19a) where the term involv-
ing the logarithmic function is computed by using convolu-
tion sums.

We now study the nonsmoothness of the normal deriva-
tive of the Green’s function (#G/m)(x). The asymptotic se-
ries of the Bessel functions of first order for small argument

ar 69

3

J z_z —+-
1(2)= 2 16
2 2 z 27—1
Yl(z)———+ ln Ji(z)+ Zz—
Then
G _ ik H(l) ) x X
on (x)= 7 Ka|sin 5 ](s1n 5
_ ik 7l2 X
== 7 /1| 2xa|sin 5
. . x . x
+iY;| 2ka sin 71 | ||sin 5
_ 1 + K ) L ox 5 X
=~ Zma 2, 10| Kasinz Ji| 2xa sin 5
X
X |sin 3 +0(x?). (20)

Thus although dG/on is a finite function, due to the
logarithmic function appearing in the second term shown in
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(20), it does not have a smooth second derivative at x=0..
For this reason, its Fourier approximation will converge only
at the rate of 1/N°.

The Fourier coefficients of dG/on, however, can be
found easily using the relation to g, given in the Appendix.
In particular, we have

4 K2

a
_z;(gn+1_gn—l)’ n:/:O’_E ,5_1’

2

K°a 1

T (8280~ 7 81, n=0,
h"=* Ka N

_Hg—N/2+17 n=—5,

K2a

—_— _ =——1,
\ 4n 8Ni2-2, I 2

(1)

Thus, it is only necessary to compute g, , the Fourier coeffi-
cients of G(x).

C. Fast Fourier transforms

The numerical implementation of computing g, by (19a)
is given in this subsection. Let us introduce Fourier colloca-
tion points

2@j .
Xj=—= j=0,1,2,...,.N—1.
For convenience of discussion, denote the following Fourier

series approximations

Ni2-1
Gx)= 2 Zne ™, (222)
n=-—N/2
N/2-1
J0(2Ka smi > pae” " (22b)
n=-—N/2

The coefficients of these expansions are computed by FFT
(backward in the usual sense) as follows

1 N1

2 G(x])e‘"x (22a")
N-1 x;

2 JO(ZKa sin = > ) e, (22b")
] 0

in which G (x;) is computed by (19). For the value of G(x)
at x=0, the followmg limit, obtained from (17), can be used

G(0)=—3= +4—

In addition, we denote (18) as

ln( Ka|sin = ) 2 a,e”"™, (22¢)
n=—ow
where ay,=In(xa/2) and a,=—1/2|n| for n#0.
Fang Q. Hu: Scattering by a cylinder 3696



Then, by (19a), the Fourier coefficients of G(x) are
computed as -

1
gn—gn_ﬁun » (23)

where u,, is the convolution sum
N/2-1

U= > Pmln-m- (24)
m=—N/2

We note that the convolution sums in (24) require N
multiplications for each u,, . Thus, the total operations for the
convolution sums are of order O(N?). This cost can be re-
duced considerably to O(N log, N) by the use of a pseu-
dospectral  transformation method with dealiasing
techniques.”® For completeness, evaluation of (24) with a
“padding” dealiasing technique is given in the Appendix.

lll. SPECTRAL METHOD FOR NEUMANN BOUNDARY
CONDITIONS

We now discuss the Fourier spectral method for the
boundary integral equation (8b) of the Neumann boundary
conditions. Upon substituting the truncated Fourier series of
the layer distribution function f( ) into (8b), we get

. N2-1 Ni2-1 5
in ing’ , J’2’ﬂ G G
—_— + 1 —_ —_—
2 n=§w2 fre n=§wz I o \dn’ on ™Y
N/2—1
X ei"fq d0]= > bt (25)
n=-—N/2

where b, are the Fourier coefficients of the specified Neu-
mann boundary condition.

Again, the integral appearing in Eq. (25) is directly re-
lated to the Fourier coefficients of 8*G/on’ on and 9G/on’. Tt
is easy to find that the Fourier coefficients of dG/on’ are the
same as those of dG/dn, already given in the previous sec-
tion as h,. The apparent difficulty here is with the second
normal derivative of the Green’s function 3°G/dn’ én. It can
be shown that this function is strongly singular at x=0 and,
indeed, is not integrable in the ordinary sense. Fortunately, it
can also be shown that the integral with the second normal
derivative can be transformed into one involving tangential
derivatives with reduced singularity. In particular, we have'?

2 PG . . 27
in =
Jo m on® °90 .[0

+ «%n’ -nGe"""]a de, (26)

1 9¢"% 1 4G

a 90 a 3o’

where (1/a)(9/96) and (1/a)(d/96") represent tangential
derivatives on the boundary.

The right-hand side of (26) is now integrable in the
sense of the Cauchy principal value. To show this, we only
need to note that by the expression of the Green’s function
given in (6) we get
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G i d 70| 2 X
W__ZE 0 Ka Sln2
—iﬁH(l)z : )ﬁ isil‘li
o2 1 ke smal) ax 2
ika X sin x
=—HY in=| | ——>7. 27
g Hj (2Ka smz) Isin %/2] 27

Recalling (20), the asymptotic expression of dG/36" for
small x is found as

oG sinx ka X )
96’ 8mlsinx/2]? 4w o K@ s 3
X sin x ‘0 28)
XJq| 2ka smi |S_11172| (x),

where O(x) denotes smooth terms of order x and higher.
The singular first term shown above is integrable in the
sense of the Cauchy principal value. In fact, we have

sin x

1 2 inx d
27 ,[0 |sin x/2]7 e

0,

24

Upon substituting x=6— @' and equating the coeffi-
cients of e™? , Eq. (25) is reduced to

when n=0,
. (29)
sign(n) when n#0.

. i .
Thtt (’;’% O (x) i cos(x)GLx) i 5 (3)

Xe"™a dx=b,, (30)
in which we have used the fact that, for a circular cylinder
n’ -n=cos(6—8').

The integral in (30) will now be evaluated through the Fou-
rier coefficients of each term.

For the first term, the Fourier coefficients of dG/96' are
obtained from the relation

N/2-1

AR

n=-N/2

in g,e” ™™, (31)

where g, are the Fourier coefficients of G(x) by (13).
The Fourier series approximation of the second term in
the integral of (30) can also be found using g, since we have

N/2—-1 N/2—-1
cos(x)G{(x)=cos(x) 2 gqe M= E gne ",
n=—N/2 n=—N/2
(32)
where
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TABLE L. Values of the layer distribution function f(8) at selected points on the boundary. Dirichlet boundary

condition.
N 6=0° 6=90° #=180° Error
ka=1
4 1.101 447 573 1.102 982 967 1.124 378 820 1072
8 1.113 205 176 1.095 419 894 1.146 430 615 1073
16 1.112 753 432 1.094 877 536 1.145 739 275 1078
24 1.112 753 420 1.094 877 525 1.145 739 263 10712
ka=10
24 4.590 213 453 6.904 710 445 5.180 354 736 1072
32 4.546 357 630 6.901 732 036 5.132718 905 1073
48 4.545 461 066 6.901 500 667 5.132515158 1078
56 4.545 461 055 6.901 500 659 5.132 515156 10712
xka=100
224 20.642 556 59 6.841 653 547 18.932 559 34 1073
256 20.643 257 31 6.842 244 857 18.932 216 46 107°
512 20.643 257 33 6.842 244 863 18.932 216 44 10712

TABLE II. Values of the scattered function ¢ at selected points at far-field r=10a. Dirichlet boundary condi-

tion.

N =0° 6=90° 0=180° Error
ka=1
4 0.414 644 990 3 0.278 771 854 5 0.185224 8716 1072
8 0.422 420 907 6 0.261 278 502 9 0.255115198 5 1074
16 04224153154 0.261303 144 5 0.255218338 1 1071
Exact 0.422 4153154 0.261 303 144 5 0.255218 338 1
xka=10
24 0.825 595 200 3 0.196 967 920 0 0.186 4749710 1072
32 0.828 517 664 4 0.195 358 066 5 0.230 006 705 5 1074
48 0.828 511 066 4 0.195 354 381 4 0.230 093 970 7 10710
Exact 0.828 511 066 4 0.195 354 381 4 0.230 093 970 7
xka=100
224 0.856 222 828 3 0.188130 1853 0.229 523254 8 1073
256 0.856 228 991 1 0.188 1326409 0.229 422 927 4 10710
Exact 0.856228 991 1 0.188 1326409 0.229 422 927 4
TABLE III. Values of the layer distribution function f(6) at selected points on the boundary. Neumann
boundary condition.
N 9=0° 6=90° 0=180° Error
ka=1
4 1.035 182 633 0.302 807 302 7 0.861 658 703 0 107!
8 1.200 134 116 0.397228164 8 0.851 8411247 1072
16 1.199 187 560 0.396 380 679 6 0.849 564 389 6 1077
24 1.199 187 560 0.396 380 658 9 0.849 564 358 7 10712
ka=10
24 0.600 448 635 3 0.481 4454225 1.362 228 889 107!
32 0.627 462 596 9 0.657 589 964 2 1.577 833 267 1072
48 0.630238116 3 0.656 708 135 8 1.460 119 442 1077
56 0.630238 1517 0.656 708 119 8 1.460 119 455 10712
xka=100
224 0.218 554 708 1 1.282 490 390 2.054 272775 1072
256 0.215 794 872 5 1.283 008 634 2.057 912 965 1077
512 0.215 794 780 3 1.283 008 643 2.057 913 072 10712
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TABLE IV. Values of the scattered function ¢ at selected points at far field r=10a. Neumann boundary

condition.
N 6=0° #=90° #=180° Error
ka=1
4 0.158 330 060 6 0.169 020 414 4 0.161 996 420 0 107!
8 0.173291 616 0 0.156 3414831 0.2312523394 1074
16 0.1733358919 0.156 326 024 3 02313583724 1071
Exact 0.173 3358919 0.156 326 024 3 0.2313583724
xka=10
24 0.767 958 446 7 0.216 764 338 2 0.157 4136977 1071
32 0.774 071 463 2 0.195 606 942 4 0.228 223 8894 1073
48 0.774 087 417 3 0.195 596 069 1 02283394143 10710
Exact 0.774 087 417 3 0.195 596 069 1 0.228 339414 3
ka=100
224 0.768 801 5277 0.187 165 643 2 0.229 5250315 1073
256 0.768 801 859 0 0.1871717295 0.229399 5512 1071
Exact 0.768 801 859 0 0.187171 7295 0.229 399 551 2
e wpen» n=—N/2 Therefore, the Fourier coefficients of the layer distribu-
- 2 2

tion function f(@) for the Neumann boundary conditions are

—N/2+1<n<N/2-2, obtained explicitly as

gn= %(gn—1+gn+1)’

8N2-2» n=N/2-1. b, 35)
(33) f"_in/2+27ra[—(n2/a2)g,,+ K*g,—inh,)’
Hence, Eq. (30) is reduced to the following algebraic  (here 8n» &n» and h,, are computed by (23), (33), and (21),
equations respectively.
in n? We point out, however, that g, as given by (33) and,
= fat2maf,| =~ gyt K&y —inhs|=b,,  (34)  indeed, h, of (21), are not exact for n=—N/2 and N/2~1,
owing to a truncated series of G(x) in the computation.
for —N/2<sn<N/2-1. Whereas it is possible to compute these two coefficients ex-
2 10
° N4 o N=24
Ne16 | N=s48
1 — 5 1A A
AN
S | A
3 |V /,\/ \/\ Vi
J Ne. | —e~ s
I %
22 -10
0 02 04 06 08 1 0 02 04 06 08 1
021 0/2n
2 10
1 5
S
o A <N oy
32 S £
N4 N [ \/
5o — £ s
2 -10
0 02 04 06 08 1 0 02 04 06 08 1

02w 02w

FIG. 1. Layer distribution function f(#) for ka=1, Dirichlet boundary
condition.

FIG. 2. Layer distribution function f(#) for xa=10, Dirichlet boundary
condition.
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Ka=10

FIG. 7. Directivities of the far-field scattered function, Dirichlet boundary
condition.

actly, the resulting error in the last two coefficients of f, is
negligible because b,, in the numerator, decays exponen-
tially as for smooth boundary conditions. That is, f, for n=
—N/2 and N/2—1 are necessary negligibly small if N is
sufficiently large. For simplicity and practicality, (21) and
(33) are retained in the numerical calculations.

IV. NUMERICAL EXAMPLES

In this section, numerical results of a plane-wave scat-
tering by a circular cylinder are presented. The incident wave
is assumed to be

1 ||
| ]

FIG. 8. Directivities of the far-field scattered function, Neumann boundary
condition.
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The scattered wave ¢ satisfies the Helmholtz Eq. (1). The
boundary conditions considered here are the Dirichlet type
¢=— ¢, and the Neumann type d¢/on=—3¢;/on.

The solutions for the scattered field are obtained by the

. layer representation (2) as

! —'JZW 9 _, G Aa dbé
o(r')= . \on inG |f(0)a
N2-1 2l 3G
2 > fnj (——inG)ei’”’dﬁ.
n=—N/2 o \dn

The above integral can be easily evaluated directly using
FFT, since the Green’s function has no singularity for points
lying outside of the boundary. The details are omitted here.

For plane incident waves, an exact solution is given by
infinite series of the Bessel and Hankel functions.® Our pur-
pose here is to demonstrate the exponential rate of conver-
gence of the numerical solutions. We emphasize again that
the numerical formulation applies to any form of the incident
waves. Due to its simplicity, a sample FORTRAN program is
listed in the Appendix.

In numerical calculations, the radius of the cylinder a is
taken to be 1 and also 7=1. Computations for ka=1, 10,
and 100 have been carried out. In Tables I-IV, numerical
values of the layer distribution function f(#) and the scat-
tered function ¢ at far field are given for selected points in
space. Exact values at far field are also shown in the tables.
Clearly, as the number of Fourier collocation points in-
creases, the numerical solution converges exponentially fast.
Significant improvements in accuracy are observed with rela-
tively small increase of the number of data points. This is
often true for spectral methods in general. The error de-
creases dramatically when the number of points is large
enough to resolve the basic features of the solution.

The corresponding layer distribution function f(6) is
plotted in Figs. 1-6 for the Dirichlet and Neumann boundary
conditions for ka=1, 10, and 100. These graphs demon-
strate again the remarkable accuracy of the Fourier spectral
methods with relatively small number of datum points.

Far-field scattered intensities, computed as |r|¢? are
plotted in Figs. 7 and 8 for the Dirichlet and Neumann
boundary conditions, respectively.

V. CONCLUSIONS

A fast numerical solution of wave scattering by a circu-
lar cylinder has been presented. It is shown that by properly
removing the nonsmoothness of the integral kernels of the
boundary integral equations, spectrally accurate numerical
solutions are obtained. The numerical error decays exponen-
tially as the number of datum points increase. This implies
that the present method requires significantly fewer points
for achieving a given accuracy in comparison with previous
numerical approaches. The present method is also easy to
implement.

Moreover, the combined single- and double-layer for-
mulation of the boundary integral equations ensures the
uniqueness of the numerical solution for all frequencies. It is
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shown that the hypersingularity of the boundary integral
equations can be handled easily in the spectral method.
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APPENDIX
1. Exact expressions of g, and h,,

In this appendix we derive the exact analytic expressions
for the Fourier coefficients of G(x) and (9G/dm)(x).
It can be shown that, e.g., by (7.2.51) of Ref. 6,

) = z Hf,,l)(Ka)J,,,(Ka)e’i’"".

m=—o

H((,”( 2Ka

Lox
sin =
2

(A1)
Hence

1 27

En=5

27 Jo G(x)e'™ dx

1 (274
2w )y 4

(1) X inx
Hy (21«1 sin 5 )e dx

i
4
Moreover, for n#0, using integration by part and (A1)

1' sz oG inx d
. In (x)e x
sin —

h"=ﬁ
]

H{(ka)J (xa).

I . X inx d
Sin = sin e X
2 2

27 )
——8— 0 Hl 2ka

X
sin ~
2

x .
cos ) e'™ dx

- (1)
. H, (ZKa 2

2

K°a 27 > .
=167rnj ( 2 anl)(Ka)J,,,(Ka)e_"”x)

0

=—c
X sin xe™™ dx

K’ai )
== 16n [Hn+1(Ka)Jn+1(Ka)

—HY (ka)T,_ (ka)]

K’a
=- Tn— (gn+1—gn—l)’
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where use has been made of the formula’

;_z [zH(ll)(z)] =zH§,1)(z).

For n=0, further calculations show that

«2ai
ho=—1¢ [H3"(a)I(ka) — H (ka)T o xa)]

i
- EH(II)(Ka)JI(Ka)

K2a

1
=7 (82— 80)— 81

2. Evaluation of convolution sums

An algorithm of computing convolution sums u, with
O(N log, N) operations is shown below.?

Let M=3N and

§=2mj/M, j=0,1,2,...M~-1.
Compute the following using FFT for j=0,1,2,....M —1:

M/2-1
A]= z éme_iméj,

m=—M/2

M/2-1
Pf= 2 ﬁme_imgj’

m=-M/2

where

3 a,, —Ns=msN-1,
Im= 0, other,
; Pm>» —N/[2<m<N/2-1,
Pm= 0, other,

and form the product

Then the convolution sum u,, is the (backward) FFT of U jas
follows

1 M-1
un:A_l 2 Ujeingj,
j=0

for —N/2<n<N/2-1.

3. FORTRAN program

A FORTRAN program of implementing the Fourier spec-
tral method is listed below. (The external routines cftti,
cfttf, and cfttb denote initializing, forward, and back-
ward FFT transforms, respectively.)
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program circle

€ n:

number of points; isoft=1 : Dirichlet B.C.; izoft=0 : Neumann B.C.

10

21

22

23

31

32

40

parameter(n=32,ak=10.0,is0ft=1,eta=1.0,ni=n-1,nhalf=n/2,m=3+n,
> rn=float(n),pi=3.14159266358979324,euler=0.57721566490153286)
complex b(0:n1),fn(0:n1),gbar(0:n1),gn(0:n1),hn(0:n1),p(0:n1),

> gtilde(0:n1),am(0:m-1),pm(0:m~1),wsave(2000),wsave2(2000),ei,phi

i=(0.0,1.0)
call cffti(n,vsave)
call getbc(n,ak,b,ei,pi)
call ctftf(n,b,vsave)
do 10 j=0,n-1
tmp=2.0%ak*abs (sin(pi*float(j)/rn))
if(j.eq.0) then
gbar(0)=-euler/2.0/pitei/4.0
p(0)=1.0
else
gbar(j)=ei/4.0+(besjO(tmp)+ei*besy0(tmp))
+0.5%alog(tmp/2.0)*beajo(tmp)/pi
p(j)=besjo(tmp)
endif
continue
call c!ttb(n,gbar,vsavg)
call cfftb(n,p,vsave)
am(0)=alog(ak/2.0)
am(2#n)=-1.0/2.0/1n
do 21 i=i,n-1
am(i)=-1.0/2.0/float (i)
am(2#n+i)=1.0/2.0/tlocat(i-n)
do 22 i=0,nhalf-1
pu(i)=p(i)
pm(5*nhalf+i)=p(nhalf+i)
call cffti(m,vsave2)
call cfftf(m,am,wsave2)
call cfftf(m,pm,usave2)
do 23 j=0,m-1
pu(j)=an(j)*pm(j)
call cfftb(m,pm,usave2)
do 31 i=0,nhalf-1
gn(i)=gbar(i)-0.5+pm(i)/float(m)/pi
gn(nhalf+i)=gbar(nhalf+i)-0.5+pm(E*nhalf+i)/float (m)/pi
hn(0)=ak»#2/4.0%(gn(2)-gn(0))-gn(1)
hn(nhalf-1)=ak++2/4.0/float (nhalf~1)*gn(nhalf-2)
hn(nhalf)=ak+#*2/4.0/float(nhalf)*gn(nhalf+1)
hn(n-1)=ak#+2/4.0%(gn(0)-gn(n-2))
gtilde(0)=0.6*(gn(1)+gn(n-1))
gtilde(nhalf-1)=0.5%gn(nhal?-2)
gtilde(nhalf)=0.5%gn(nhalf+1)
gtilde(n-1)=0.5+(gn(0)+gn(n-2))
do 32 i=1,n-2
itrue=i
if(i.ge.nhal?) itrue=i-n
if(i.eq.nhalf-1.0r.i.eq.nhalt) go to 32
hn(i)=-ak#*2/4.0/float(itrue)*(gn(i+1)-gn(i-1))
gtilde(i)=0.5+(gn(i-1)+gn(i+1))
continue
do 40 i=0,n-1
it(isoft.eq.1) then
£n(i)=b(i)/(0.6+rn+2.0+pi*(hn(i)-ei*eta*gn(i)))
else
itrue=i
if(i.ge.nhalf) itrue=i-n
£0(i)=b(i)/(0.5*eiretasrn+2.0*pi*(~tloat (itrue)**+2+gn(i)
> +ak#*2xgtilde(i)-eixeta*hn(i)))
endif
continue

v

¢ The following is to find phi at far field r=r0

[£Y

72
70
100
299

10

r0=10.0
npoint=4
do 70 ii=1,npoint
8j=2.0+pi*float(ii-1)/float(npoint)
do 71 j=0,n-1
theta=2.0%pi*float(j)/rn
rj=8qrt(1.0+r0+r0-2.0+r0*cos(theta-sj))
dj=1.0-r0*cos(theta-sj)
tap=ak*rj
gn(j)=ei/4.0*(besjO(tmp)+ei*besyO(tmp))
bhn(j)=-ei*ak/4.0*(besj1(tmp)+ei*besyli(tmp))*dj/xj
call cfftb(n,gn,vsave)
call ctftb(n,hn,wsave)
phi=0.0
do 72 i=0,n-1
phi=phi+2.0#pisfn(i)*(hn(i)-ei*eta*gn(i))/rmn
write(3,100) r0,sj,phi,cabs(phi)
format(’ r0=’,e16.6,’ theta=’,e15.6/’
stop
end

phi=*,317.10)

subroutine getbc(n,ak,b,ei,pi)

complex ei,b{0:n-1),tmp

do 10 j=0,n-1
tmp=ei*ak+cos(2.0+pi*float(j)/float(n))
b(j)=-cexp(tmp)

return

end
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