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We present a detailed study of spatially propagating waves in a discon-
tinuous Galerkin scheme applied to a system of linear hyperbolic equations.
We start with an eigensolution analysis of the semi-discrete system in one
space dimension with uniform grids. It is found that, for any given order of
the basis functions, there are at most two spatially propagating numerical
wave modes for each physical wave of the Partial Differential Equations
(PDE). One of the modes can accurately represent the physical wave of the
PDE and the other is spurious. The directions of propagation of these two
numerical modes are opposite, and, in most practical cases, the spurious
mode has a large damping rate. Furthermore, when an exact characteris-
tics split flux formula is used, the spurious mode becomes non-existent. For
the physically accurate mode, it is shown analytically that the numerical
dispersion relation is accurate to order 2p + 2 where p is the highest order
of the basis polynomials. The results of eigensolution analysis are then
utilized to study the effects of a grid discontinuity, caused by an abrupt
change in grid size, on the numerical solutions at either side of the inter-
face. It is shown that, due to “mode decoupling”, numerical reflections at
grid discontinuity, when they occur, are always in the form of the spurious
non-physical mode. Closed form numerical reflection and transmission co-
efficients are given and analyzed. Numerical examples that illustrate the
analytical findings of the paper are also presented.

1. INTRODUCTION

Discontinuous Galerkin Method (DGM) is a finite element method that allows a discontinuity of
the numerical solution at element interfaces. It has been developed very rapidly in the past few years
and has been applied to many fields of practical importance, such as computational fluid dynamics,
aeroacoustics, and electromagnetics (e.g., [2,3,7,22]). A recent review of DGM can be found in [5]
with an extensive list of references.

It is well known that for a discontinuous Galerkin scheme employing basis polynomials up to
order p, the rate of convergence is h?*1/2 in general and h?*! in some special cases ([13,12,17,19)]),
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where h is a measure for the size of elements. Occurrences of super-convergence in DGM has
been reported in the literature and some are reviewed in [5] . For examples, Biswas, Devine and
Flaherty[4] and Adjerid, Aiffa and Flaherty[1] showed super-convergence on Gauss-Radau points.
Lowrie, Roe and van Leer reported numerical results of order 2p + 1 convergence in [14]. Most
recently, Cockburn, Luskin, Shu and Siili[6] showed the possibility of obtaining 2p 4+ 1 convergence
by a suitable post-processing of the numerical solution.

In contrast to the many studies on convergence rates, there have been relatively fewer works on the
wave propagation properties of DGM. In [12], Johnson and Pitkéranta included a Fourier analysis
of DGM for the case of p = 1 and showed that the eigenvalue of the “amplification matrix” (E(6)) is
accurate to order 4 (local error). In [15], Lowrie performed a Fourier analysis of a space-time discon-
tinuous Galerkin scheme, up to p = 3, for a one-dimensional scalar advection equation and showed
that the eigenvalue is accurate to order 2p + 2 (locally) which results in a global order 2p + 1 decay
of the evolution component of the numerical error. In [9], Hu, Hussaini and Rasetarinera studied
numerical dissipation and dispersion errors of DGM for one- and two-dimensional wave equations.
They also analyzed anisotropic errors of wave propagation in triangular and quadrilateral elements.
In a recent work by Rasetarinera, Hussaini and Hu [18], it was further demonstrated numerically
that dissipation errors of DGM decay at order 2p+2 (locally) when the exact characteristics splitting
flux formula is used. Another study of Fourier analysis was carried out in [20] by Sherwin which gave
exact expressions of the numerical frequency analytically up to p = 3 and numerically for p = 10.
It is also interesting to note here some related works in continuous Galerkin methods. For instance,
a Fourier analysis of the Finite Element Method with linear continuous basis functions (p = 1) was
given in [22] by Vichnevesky and Bowles. It was found that the wave speed was actually accurate
to order 4. For the Helmholtz equation, a case of super-convergence in phase error in continuous
Galerkin methods has been shown, numerically, by Thompson and Pinsky[21] and, theoretically, by
Thlenburg and Babuska[11]. It was found that when basis polynomials of order p are used the phase
error converges (locally) at h*T1[11]. We point out that this is one order less than that for DGM
as we will show in this paper.

The present work has been motivated primarily by the need to understand wave propagation
in DGM with non-uniform elements (grids). As a first step toward such a goal, we study wave
propagation through an interface with an abrupt change in grid size in one space dimension. We
will first carry out an analysis on spatially propagating waves, referred to as the eigensolutions, of the
semi-discrete system in uniform grids. Then the results of such an analysis will be applied to study
wave reflection and transmission by expressing the numerical solution on either side of the interface
in eigensolutions. The reflection and transmission coefficients are then found by deriving proper
coupling conditions at the interface. As we will see, numerical reflection at a grid discontinuity is
dependent on the flux formula employed in the implementation of DGM. Two commonly used flux
schemes are considered in this paper, namely, the characteristics-based flux and Lax-Friedrich flux
formulas. These two schemes will be analyzed in a unified way by introducing an upwind factor.

A major difference between the present and previous works in wave analysis for DGM is that in
the present work we study spatial waves where the temporal frequency is specified and the corre-
sponding wavenumber is sought as eigenvalues, while in the previous studies the wavenumber was
specified and the frequency was found as eigenvalues. The present approach is necessary because,
with an introduction of grid discontinuity, numerical wave number is not constant across the in-
terface of a grid change. The use of spatial waves also turn out to be advantageous in that the
eigenvalue problem is greatly simplified and reduced. As a result, the numerical dispersion relation
is governed by a quadratic equation that can be solved analytically for any order of the basis poly-
nomials. Specifically, in a uniform grid, it is found that there are at most two spatially propagating
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numerical wave modes for each physical wave of the PDE. One of the numerical wave modes can
accurately approximate the physical wave and the other is a highly irregular spurious mode. They
will be referred to as the physical and spurious numerical waves respectively in this paper. For
the physically accurate mode, it will be shown that the numerical dispersion relation is accurate
to (kh)?P*2 locally where k is the wave number, which confirms those previous works mentioned
earlier[12][14][18]. In fact, we will show that dispersion error is of order 2p + 3 while the dissipation
error is of order 2p+2. For the spurious mode, it is found that it propagates in the opposite direction
of the physical mode and becomes non-existent when the exact characteristics-based flux formula
is used. Following the analysis of waves in uniform grids, the effect of a grid change on either side
of the interface is studied. It is found that waves associated with different physical eigenvectors are
decoupled and numerical reflections are always in the form of the spurious numerical wave and are
highly damped.

The rest of the paper is organized as follows. In section 2, we describe the discretization process
and the associated flux formulas. In section 3, the eigenvalue problem for spatially propagating
waves in a uniform grid is formulated. In section 4, numerical dispersion relation and its accuracy
are analyzed and discussed. Wave propagation through a grid discontinuity is studied in section 5.
And numerical examples are presented in section 6. Section 7 has our conclusions.

2. FORMULATIONS OF DISCRETIZATION AND NUMERICAL FLUX

Consider the discontinuous Galerkin method for a system of hyperbolic equations in one-dimensional
space:

du  9f(u)

ot " oz

=0 1)

where u is a vector of dimension N and f is the flux vector. We will only consider linear cases in
our analysis and assume that

f(u) = Au (2)

where A is a constant IV x N matrix. We assume that A has NV real eigenvalues, denoted by a; for
j =1,2,..,N and the eigenvectors of A, denoted by e;, form a complete basis in N-dimensional
space. Throughout this paper, unless specified otherwise, lower case bold face letters will stand for
column vectors and upper case bold face letters stand for matrices.

In a discretization of (1) using the discontinuous Galerkin method, the spatial domain is parti-
tioned into elements, E,, =[x, _1,T,], where n is the element index. In each element, the numerical
solution, denoted by u}(z,t), is expressed as

P

uji(z,t) = ) cf(O)pf (@), (3)

=0

where {p}(x),£=0,1,...,p} is the set of basis polynomials for element E,. Here p, without super-
script or subscript, denotes the highest order of polynomials in the chosen basis and ¢} (t) is the
expansion coefficient. In a weak formulation for (1), we require that
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I (Oup  Of\ B
/mn_l (W + %) Y (.'L')dl' =0 (4)

for ¢/ =0,1,...,p. By a use of integration by parts, the above is re-written as follows,

[ G+ e s, - [ 1% 5

n— n—

At any interface between two elements, i.e., the end points x,_; and z,, the flux vector £¥ is not
uniquely determined and a flux formula has to be supplied to complete the discretization process.
Various kinds of flux formulas have been proposed and used in the literature. In this paper, we will
consider two commonly used flux formulas. They are specified below and will be referred to as the
characteristics-based flux formula and Lax-Friedrich flux formula respectively.

The characteristics-based flux formula is of the form

fR(llL,llR) = %[f(uL) =+ f(uR) - 0|A|(11R — llL)], 0 >0 (6)

where uy, and ug are the values of u at the interface calculated using expansion coefficients of the
elements at the left and right of that interface respectively. (In DGM uy, and ug are not required to
be the same.) Here 6 is a scalar parameter. The value of 8 is usually unity in practice which makes
(6) an exact characteristics splitting (the exact Roe solver). On the other hand, (6) will result in a
symmetric averaged scheme when § = 0. Here, we will keep 6 as a parameter so that our analysis
can be useful for a wide range of cases. For convenience, (6) will be written as

fR(uy,ug) = Apu, + Agup (7)
where
1 1
A= LA+0A] An=[A—0lA]L ®

The Lax-Friedrich flux formula is of the form

ff(ug,ug) = %[f(uL) +f(ugr) — 0lalmaz(ur —ug)]  0>0 9)

where |a|mqz is the maximum (absolute value) of the eigenvalues of A. This can again be written
in the form of (7) with

1 1
A= §[A + 0alma21], Ap = §[A — blalmasT]- (10)

Using expression (7) for both cases, the semi-discrete equation (5) can now be written as
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In Qup
[ ke @do + [Aru(n,d) + Ana w0, 0] 5 2)

on opy,
— [ALu} ™ (@po1,t) + Agu}(Tn_1,1)] P} (Tn_1) — / Aup ;); dz =0 (11)
Tn—1
for ¢/ =0,1,...,p
Together with (3), equation (11) yields a system of time evolution equations for the expansion

coefficients for each element. This system is usually solved by some time integration scheme such
as the Runge-Kutta schemes ([2], [7]).

3. SPATIALLY PROPAGATING WAVES IN UNIFORM GRIDS

3.1. Use of local variables
Introducing a local coordinate £ for each element, we let

2 n— n
&= Az, (r —Tp) where Az,=2z,—Z,_1 and Z,= % (12)
In addition, the basis functions will be taken to be the same for all the elements when expressed in

the local coordinate &, i.e., we assume

pi (x) = P(8),

where {P;(¢),£ =0,1,...,p} is a chosen set of basis functions, such as the Legendre polynomials, or
the set of {1,£,&2,...£P}. The results of our analysis are independent of the specific choice on the
basis functions.

We look for wave-like solutions supported by (11). By assuming a periodicity in time with a
frequency w, we let

p
up(6,t) = cTPHER(E)  where Gf(6) = S &FP(€), and i= V1 (13)

£=0
The expansion coefficients ¢} are now independent of ¢. Substituting the above into (11), we get

wAx,

25 [ RO Po©de + A () + A (1] Po()

— [ALa" (1) + AR} (—1)] Po(— /AA” ‘m d§_0 (14)

for ¢/ =0,1,...,p
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3.2. Uniform grid and the eigenvalue problem
We now consider the case where elements are uniform in length, i.e., Az, = h. After substituting
(3) into (14), we look for solutions with expansion coefficients of the form

¢} =A"¢ (15)
where ) is an undetermined complex number and &, is a vector independent of the element index
n. It is easy to see that, if we express A as

X = eikrh (16)
then, kp can be interpreted as the wave number of the numerical solution. Here k;, will be referred

to as the numerical wave number.
For convenience of discussion, we define a column vector that contains all the expansion coefficients

€o
x=|% (17)
Cp
and matrices
1
Q = {que}, where gp¢= / Py(&) P (£)dE, (18)
~1
! ! 12 ! 6P[l
Q' = {qp,}, where ¢, = / Pe(f)a—gdf, (19)
1
B(a,b) = {bf/@}, where bglg = Pgl (a)Pg(b) (20)
where ¢/, £ =0,1,...,p. Then, equation (14) can be re-written compactly as
iwh - ~ B ) 5
——5 (QeDx+ By ®AL)X — (B-1,-1) © Ap)x — (Q' ® A)X
.1 -
+A(B1,—1) ® Ag)X — X(B(—l,l) ®AL)x=0 (21)

where ® denotes the Kronecker product (The definition and relevant properties of ® can be found
in appendix A1l). For a given frequency w, equation (21) forms an eigenvalue problem with A being
the eigenvalue and X the eigenvector.

Next, we show that (21) can be equivalently separated into N independent eigenvalue problems,
where each sub-problem corresponds to one of the physical wave modes of the PDE. Here each pair
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of the eigenvalue and eigenvector {a;, e;} of the PDE will be referred to as a wave mode of the PDE
(1) and a; is the wave speed of that mode. Since we are interested in spatially propagating waves,
we assume a; # 0.

We first express X given in (17) in terms of eigenvectors of the PDE as follows,

. N
& > j=1Y0i€; N | Yoi N

g= | & | o | Ximyues | _ Z il ge; = Z Y ®ej (22)
:. ~ . j=1 oo j=1
Cp 23:1 Ypi€j Yri

where y; is a column vector of dimension p+ 1. By substituting (22) into (21) and using a property
of the Kronecker product (equation (63) of Appendix Al), we get

N .
iwh
> <_T(Qy]‘) ®ej+ (Ba,1)y;) ® Are; — (B(_1,-1)¥;) ® Arej — (Q'y;) ® Ae;
j=1

1

+)\(B(1,_1)y3') ® AREj - b\

(B(_l,l)y]’) ® ALEj) =0. (23)

Furthermore, for A, and Ag given in (8) and (10), we have

where

B; = laj| (25)

for the characteristics-based flux defined in (8) and

|a|maz
= dimas 26
gi= e (26)
for the Lax-Friedrich flux defined in (10). Thus the two types of flux formulas can be treated in a
unified way by using (24). For convenience of discussion, we define

;= 0B;. (27)

and vy; will be referred to as the upwind factor of the scheme for the jth wave mode of the PDE. We
note that, for both cases given in (25) and (26), |v;| = 1 leads to the exact characteristics splitting.
For |v;| > 1, the eigenvalues of A; and A are all positive and negative, respectively. Note also
that for the Lax-Friedrich flux formula applied to a system of equations in which the |a;| varies
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widely, |v;| will be large for the slowest wave modes; however, the wavenumber wh/a; will also be
proportionally large for any given w.
Equation (23) can now be expressed as

N .
iwh 147 11—y,
Z (—TQYJ' + T]ajB(l,l)yj o ]a]'B(fl,fl)yj - a;Q'y;

Jj=1

1—7; 11+

+A—5a;Ba,ny; - XTwajB(—171)yj) ®e; =0. (28)

Due to linear independency of e;’s, it is easy to see that (28) yields N independent sub-eigenvalue
problems,

iwh 1
——Q +(14+7%)Bay — (1 =%)B1,-1 —2Q + A1 —)Ba, 1 -5+ 7;)3(71,1)] yi = 0(29)
for j =1,2,...,N, in which y; is the eigenvector and A is the eigenvalue.

We observe that, by solving the eigenvalue problem posed in (29), we will obtain \ as a function
of the non-dimensional frequency ﬁ—f (or wavenumber) and the upwind factor v;, i.e.,

A=F(—,7)- (30)
a;
Since A is directly related to the numerical wave number k; by (16), equation (30) is the numerical
dispersion relation of the scheme. It is an intrinsic property of the discretization.
In addition, the non-trivial solution of (29) forms the eigenfunction of the numerical mode. Specif-
ically, let the eigenvectors of (29) be denoted by y = {v;}, then the eigenfunctions will be of the
form

uj(€,t) = e “tap(Ee;, (31)

where

wh
@7(6) = ™R F(E 22 yy), and f(€ _,% va (32)

J

For convenience, the eigenfunctions will be normalized such that

h
£ “;—j,vj) =1. (33)

4. NUMERICAL DISPERSION RELATION
4.1. Determinant of equation (29)
Wave propagation properties of the numerical scheme are encoded in the numerical dispersion

relation (30). For convenience of discussion, the subscript j will be dropped in this section. We
define
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K= 7 and Kh = khh,
where K is the non-dimensional exact wave number of the PDE and K} is the non-dimensional
numerical wave number as given in (16). K}, is related to A of (29) by

X =eifn, (34)

By letting the determinant of the coefficient matrix for y; in (29) be zero, we get an algebraic
equation for A\ for any given value of K. We have computed the determinant of (29) symbolically
using the computer algebra system MAPLE [16]. It is found that the determinant, after some
normalization, can be written in the following form:

1 =NGEE)A = HGK)] + (1" (1 + 7)[0(—@'K)§ — H(-iK)] =0 (35)
where G(z) and H(x) are polynomials of degree p and p+ 1, respectively, with real coefficients. The
exact expressions for G and H are given in appendix A2.

Before presenting the numerical and analytical results of (35), we make some general remarks:

1. We observe that, due to the fact that the rank of B matrices in (29) is unity (see equation
(20)), equation (35) is quadratic in A. Consequently, there will be at most two distinct solutions
for X in (35). Furthermore, when v = 1 (exact characteristics splitting of the flux), equation (35)
becomes linear in A and there will be only one solution for .

2. That equation (35) is a polynomial of degree p + 1 in K while only quadratic in A is a direct
consequence of the fact that, in equation (29), the mass matrix Q is of rank p + 1 while boundary
matrices B's are of rank unity. Moreover, as we will see later in section 5.2, the number of spatially
propagating waves stated in the previous remark is consistent with the matching conditions found
at a grid discontinuity.

3. In previous works in the literature, the spatial wave number K}, thus X in (35), is specified
and K is to be solved from (35). This, of course, will result in solving a polynomial of degree p + 1
which is difficult to do analytically for p > 3.

4. If A = ) is a solution to (35) for v = g, then A\ = ALO is a solution for v = —p. (This can be
shown simply by taking a complex conjugate of (35).) Thus, it is sufficient to consider theoretically
only the cases with v > 0 in (35), i.e., right-going waves, for dissipation and dispersion errors.

4.2. Numerical results of the eigensolutions

We first present numerical results of (35). Its analytical properties will be presented in section
4.3. As we have seen in previous discussions, when |y| # 1, there are two roots for A. Each root
represents a numerical wave mode whose wave number is found by (34) and whose mode shape
(eigenfunctions) found by (32). As we will see, one of the numerical modes can faithfully represent
the physical wave and the other mode is spurious or non-physical. These two modes behave very
differently and it is easy to distinguish the physical mode from the non-physical mode. When |y| =1
(exact characteristics flux), of course, there will be only one root and the spurious mode will not be
present.

We will use a case with v = 0.5 as an example to demonstrate numerical results. For a given value
of exact wave number K, we solve equation (35) and obtain two values of A which are then converted
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into numerical wave numbers K}, according to (34). In general, the numerical wave number K}, will
be a complex number. For the physical mode, the ratio of the real part of K, and the exact wave
number K is plotted in Figure 1(a), for cases p = 1,2,3,4,5. The horizontal axis is the scaled
exact wavenumber K/(p + 1) (wavenumber per degree-of-freedom of the basis functions). It is seen
that, for a given value of p, the ratio is close to unity for a range of K values. This range will be
termed resolved wave number space. Clearly, the higher the order of the basis functions, the larger
the resolved space. Figure 1(b) shows the imaginary part of the numerical wave number, Im(K}).
Since the wave is right-traveling for the present case (v > 0), the positive imaginary part represents
numerical damping as the wave propagates in space. We note that the damping is not significant
for wave numbers within the resolved wave number space in each scheme. The exact boundary
of resolved range is, of course, somewhat arbitrary and depends on the accuracy criteria imposed.
This issue will be closely examined in section 5.2. In general, the dissipation error places a higher
requirement on the resolution of the scheme than the dispersion error in DGM.

For the spurious mode, the relation of K} v.s. K is plotted in Figure 2. For the real part of
K shown in Figure 2(a), the curve starts at 0 for p odd and starts at = for p even. The group
velocity of these waves (slope of Re(K}) v.s. K) is negative, indicating that the spurious waves are
left-traveling, in the opposite direction of the actual physical wave. The imaginary part of K}, is
also negative, indicating again that the wave is left-traveling and damped. The damping rates for
the spurious modes in Figure 2(b) are quite large for the cases shown. This means that the spurious
mode is expected to be damped very rapidly in computation.

The corresponding eigenfunctions of the physical and spurious modes are plotted in Figures 3 and
4 respectively. The eigenfunctions are constructed according to (32) using eigenvectors from (29)
as the expansion coefficients. Plotted are eigenfunctions over a span of 30 elements, with the first
element being [-1,1] as indicated by dark lines in the plots. As shown in Figure 3, the physical mode
travels to the right and the amount of damping is quite visible for p = 1 and 2 with the chosen value
of K = 2. The damping error reduces significantly as order increases.

In Figure 4, we see that the spurious non-physical mode is damped very rapidly for all cases
shown, which is consistent with our observation in Figure 2.

As will be shown later (equation (40)), the damping factor of the spurious mode is related to the

1-|v|
1+[v]

when < is close to unity and much less damped when 7 is close to zero or much greater than unity. In
practice, small v is avoided by choosing § ~ 1; large v occurs for slow wave modes where |a|maz/a;
is small.

value of v as ‘ , plotted in Figure 5. Thus the spurious wave modes become highly damped

4.3. Super-accuracy of the numerical wave number
The numerical wave number K} of the physical mode should be a close approximation of the
actual wave number K, especially in the long wavelength limit, i.e., when K is small. Here, we
give an estimation on the order of convergence in wave number space and show that K} is accurate
to the actual wave number K to order 2p + 2, which is twice the order of accuracy of the basis
functions.
Assuming |y| # 1, we can re-write (35) as a quadratic equation for A as follows,

11+ H(—iK)
+(-1) HSW A+ (-1)

pr11+7 G(=K)
1-v G(K)

—0. (36)
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FIG. 1. The physical mode. (a) The ratio of the numerical wave number Kj and the exact wave number

(normalized frequency) K. (b) Imaginary part of Kj. p is the order of the basis functions. y = 0.5.
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FIG. 2. The spurious mode, numerical wave number K}, v.s. actual wave number (normalized frequency) K.
(a) Real part, (b) imaginary part. p is the order of the basis functions. v = 0.5.
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FIG. 3. Eigenfunctions of the physical mode. K =2. y=0.5. (a) p=1,(b)p=2,(c) p=3,(d) p=4.
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exponential damping rate
&

Y(=0p)
FIG. 5. Effects of v on the damping rate of the spurious mode.

By examining the computed H(z) and G(z) functions (appendix A2), we found that the ratio
H(z)/G(x) is always ezactly the Pade approximation of e” to order 2p+2. (This has been calculated
and verified symbolically for p up to 16 and is conjectured to be true for all p.) That is, we have

% = ¢ + O(z ), (37)

Consequently, we can show that, for K small, the two roots of (36) are

AP = oK 4 0y (iK% 4 Co(iK)%PH8 + ... (physical mode) (38)

and

(8) — (_qyp+r12 " TV —iK 2p+2 2p+3 4 .. _
A (-1) 1 GGE) e + D, (iK) + D5(iK) + (non — physical mode)

(39)
where C1, Cy and D, Dy are real coefficients, and dots represent higher order terms in (iK). A
detailed derivation is given in the appendix A3. Here the superscripts (p) and (s) indicate the

physical and spurious modes respectively.
Thus, for the numerical wave number of the physical mode K ,(lp ), equation (38) gives

eiK;(mp) =K 4 o (iK)2p+2 + Cy (iK)2p+3 + -
Therefore, we get the following order estimate

K = —iln[e’® + Cy (iK)? 2 + Co(iK)PH3 + -] = K —iCy (iK) 2 —iCy(iK) >+ + - .
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=K + (=1)PiC1 K?P+2 4 (—1)PH LK +3 4 ... (40)

where C) is also a real coefficient. Furthermore, by considering the real and imaginary parts of
(40), we can get an estimation on the convergence rates of the dispersion and dissipation errors.
Specifically, we have

dispersion error : Re(K,(lp)) - K = (1P KPS 4. (41)
dissipation error : Im(K,(Lp)) = (=1)PCLK?*2 ..., (42)

That is, for DGM, the dominant error is the dissipation error which reduces locally at order 2p + 2.
The dispersion error, on the other hand, reduces locally at order 2p+ 3. This is confirmed in Figure
6 where the numerical dispersion relations shown in Figure 1 are re-plotted in log-log scale.

Note that when |y| = 1, the spurious mode is non-existent and it is straightforward to verify
directly from (35) that (40)-(42) are still true for the physically accurate mode.

We also note that for polynomials H(z) and G(x) with given orders, (37) is the best possible
order of approximation. This suggests that (40) is the best asymptotic numerical dispersion relation
possible.

5. WAVE REFLECTION AT AN INTERFACE OF MESH DISCONTINUITY
5.1. Reflected and transmitted waves

In this section, we consider a situation where the size of the element is abruptly changed from h;
to hs across the interface between elements n = 0 and n = 1, as shown in Figure 7. We will study
the wave reflection and transmission at the interface. Specifically, we will introduce an incident
physical wave, traveling from left to right, and look for the reflected and transmitted waves caused
by the grid discontinuity.

Using the eigenfunction expression (31), we can express the incident wave as

_iw 'nK(P) wh
Wincident = Age” e m f}:) (& a; . ) ’on)ejo (43)
0

where Ay is the wave amplitude. Here e;, denotes the eigenvector of a right-going wave mode of the

PDE (1), and K ,(fl’ ) jo and f;g’ )( i ;o) are the numerical wave number and eigenfunction for that
wave mode found assuming a uniform mesh hy. In other words, (43) satisfies the time harmonic
semi-discrete equation (14) if Az, = hy is held for all n. The superscript (p) in (43) denotes that
the incident numerical mode is a physical wave mode. Likewise, a superscript (s) will be used to
denote the spurious modes.

Due to the discontinuity in mesh size, there will be reflections at the interface. For convenience
of discussion, let 1, ;, and 7, ,, denote the time independent solutions in the left and right half-
domains on either side of the interface respectively. By making a use of (32), we get

wh1
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Local order of convergence for the dispersion and dissipation errors of the physical mode. Circle:

numerical wave number computed by equation (35); solid line: theoretical convergence rate. (a) dispersion error; (b)
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FIG. 7. A schematic of grid change.
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o ink® whi
Wy py = Aoem "1.40 f;:) (57 TﬂWio)ejo
incident
inK (s) why why
+ Are hlmf (é- ; J’on eJo+ZBe hl]f & ; 7'7])
o J#Jo B
reﬂected
(44)
and
~n mK( (p) why K, + h2
urz'ght: At ZJOf (é. y 7’7]0 e]0+ ZA € 2]f (é- y 77])
. J#Jo |
transmitted
(45)

Here, A, and A; are amplitudes of the reflected and transmitted waves associated with the e;,
wave and B; and A; are those associated with the other waves of the PDE. The superscripts +
and — in the terms inside the summations of (44) and (45) denote the direction of propagation
(right-traveling and left-traveling respectively). It will be shown next, however, that all B; and A;
are zero.

5.2. Matching conditions at the interface
To derive matching conditions at the interface, we first note that 4y, ;, and a7, ,, satisfy equation
(14) for a uniform element size hy and hy respectively. The coupling of the solutions can be found
by applying (14) at the two adjacent elements near the interface of the grid discontinuity, namely,
at elements n = 0 and n = 1, Figure 7. Thus, from (14), we have
n = 0:

_inhl /_1 ﬁ?eft(g) - Pp(§)dE + [ALﬁ?eft( )+ ARurzght( )] Py (1)

- . BP/
~ [Ast by (1) + Agif g, (1) Pu(- / At (€) -de = 0 (46)

iwh
_le : _/;1 Aizght(é‘) ' Pel (§)d§ + [ALurzght( ) + ARumyht( )] PK’(I)
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N anl
- [ALu?eft( ) + ARumght( Pff' / Aurzght € —-d€=0 (47)

These two conditions can be simplified when we recognize the fact that (46) and (47) will still be
true when f,, ,,(=1) in (46) is replaced by d;,;,(—1) and 47, (1) in (47) is replaced by 4%, ,,(1)
due to the reason stated at the beginning of the section. Consequently, the matching conditions
(46) and (47) are equivalent to the following two equations that are much more compact:

ARﬁlleft( ) ARumght( 1) (48)

and

ALﬁ?eft( ) ALurzght(l) (49)
Now by substituting (44) and (45) into (48) and (49), and recalling (24), we easily get

w_hl 1_'7j0

(®) wh 1—7;
ZKh1 Jof(p)( ; alla')'jo) = aj ej, + Ar e hl Jof(S)( i ;'on)Tajoejo
Jo Jo
+ 3 B g ( .)ﬂa.e.
2 77
J#jo

iK®) wh 1 wh why 1—7;
:AteKhZ’]Of;g))(_l;a—'zavjo)iamem + ) Age ’L“fJr s —— ) —5aje; (50)

Jo J#jo 2
and
1+ .
Ao 2’}/]0 jo®jo T A ’YJO —5 5 €5, + Z B ’Y Y @€
J#jo
1+ 147
= At 2790 Ajo €44 + Z A]-T%a]-ej, (51)

J#Jo

(In (51), we have used the fact that eigenfunctions are normalized such that f|¢=; =1, as in (33).)
Since e;’s are linearly independent, it follows that

Bj=A4;=0,  j#jo (52)

This means that no component of wave modes other than that of the incident mode e;, will be
present in the reflected and transmitted waves. This also suggests that the reflected wave can only
be in the form of the spurious mode, the only opposite traveling numerical wave for the e;, mode.
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An interesting consequence of this is that when the exact characteristics splitting flux formula is
used, there will be no reflected wave because the opposite-traveling spurious wave is non-existent.

Further, by equaling the coeflicients of e;, in (50) and (51), and assuming |v;,| # 1, we get two
coupled equations for A, and A;,

iK®) wh i s wh wh
AoeKhl’JOf](g))(_]-;—'l; J0)+A € hl]of()( I; a'laryjo) Ate h2 JOfJo( ) a-2’7j°)’
Jo Jo Jo
Ao+ A, = A4

Solving the above, we get the following closed expressions for the reflection and transmission coef-
ficients

iK®) K (P
A, e hasio f(p)( 1; U;h2 , ,7]0) et rilio f(g))( 1; u;jl; 7'7]0)
A_O - iK) (s) whi [ ,(LP)- (p) wha (53)
e hl’JijO (—].; a5 77]0)_ 2’]0fj0 ( ;a 7’7]0)
K ZK(P)
A, _ M £ (L g0) — e £ (1 ) (54
T T e K@)
Ao e 19 (<138, ) — o [P (<15 282, )

Thus, numerical reflection and transmission coefficients are directly related to the change in disper-
sion properties of the scheme when grid change occurs.

To express the above in a more compact and, perhaps, more insightful form, we note the fact
that numerical solutions in DGM have a small discontinuity (or gap) at the boundary of any two
elements. This discontinuity, of course, becomes diminished with the increase of the resolution of the
scheme. Specifically, if we let A, denote the discontinuity of the numerical solution at the interface
of elements n = 0 and n = 1 had the grid size been uniformly h, then we have

) ) i wh
A= h(-1) — (1) = R0 f(-1, 2 5) 1

where u}(§) is the eigenfunction specified in (32). Thus, in terms of Ay, the expressions for the
reflection and transmission coefficients given in (53) and (54) can now be written as

A, _ AP - AP

S S 55
FPRNCIN (55)

Ao~ A A

in which the superscript denotes the mode type, the physical (p) or spurious (s) mode, and the
subscript denotes the mesh spacing used for calculating the gap.
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Equation (55) implies that numerical reflection will be small for waves that are well resolved under
the grids on both sides of the interface, since the solution discontinuity decreases dramatically
as the resolution of the scheme increases. This is further illustrated in Figure 8 where regions
that satisfy the requirement on the resolution (degrees of freedom per wavelength) so that the
reflection is 2% or less are plotted for a given grid discontinuity of ratio hy/h;. A value of v = 0.5
is used in the calculations. The solid line is the 2% reflection boundary for each given order
of the scheme as indicated on the graph. As we can see, when the ratio ho/hy increases, the
requirement on resolution also increases. It is interesting to compare this requirement with the
resolution requirement placed by the accuracy criteria of the scheme had the grid been uniformly
spaced. Since here we assume hs > h;, the accuracy requirement will be calculated based on hs.
The accuracy boundaries are plotted in Figure 8 as dotted lines. The criteria used here consist of
the dispersion error ZWW < 0.001 and dissipation error 1 — e~ 2mIm(krh)/K < (.001. This
corresponds to requiring that the phase and damping errors be less than 10% after a wave has
been propagated 100 wavelengths. Enlarged numerical dispersion relations are plotted in Figure 9
where the accuracy limits used are shown as dotted lines. Figure 8 indicates that the uniform grid
accuracy constraint is similar to, and in many cases more stringent than, the accuracy constraint
due to the abrupt change in mesh size. Although the uniform grid and discontinuous grid error
criteria used here are somewhat arbitrary, we use Figure 8 to emphasize the notion that both types
of errors follow parallel trends with respect to varying mesh sizes and the increase of the resolution
of a scheme leads to the reduction of numerical reflection caused by a grid discontinuity.

6. NUMERICAL EXAMPLES

In this section, we present numerical examples that illustrate and verify the wave propagation
properties found in this paper.

6.1. Super-accuracy of wave propagation
We solve the linearized Euler equations with constant mean flow in 1-D:

ou Ou Op

E+M8_m+6_x_0 (57)
dp Op  Ou _
E+M%+%_O (58)

where M is the mean flow Mach number, u is the velocity and p is the pressure. The Jacobian
matrix has eigenvalues M — 1 and M + 1, which represent the acoustic wave modes. We use
Legendre polynomials as basis functions in our calculation. The semi-discrete equation is solved by
an optimized 4th-order Runge-Kutta scheme (LDDRK56[10]).

To verify the accuracy of spatial propagation, we consider a computational domain of [0, 100] and
introduce an incoming wave

v | = st - 1| ] (59)

Din

at the left boundary x = 0. The frequency is chosen to be wy = 7/2 with a wavelength A\g = 4 in
a mean flow M = 0. At the right boundary z = 100, we implement the characteristics boundary
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FIG. 8. Solid lines: boundaries of 2% numerical reflection. Reflected wave is less than 2% of the incident wave
for parameters above the curves. v = 0.5. Dashed lines: accuracy limits determined from the dispersion relation of a
uniform grid hz. The accuracy limit for p = 1 (not shown) is far above and out of the picture.
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FIG. 9. Enlarged numerical phase (a) and damping (b) errors per wavelength of propagation for the physical
mode. kj, is the numerical wave number and K is the exact wave number. r = ¢~ 27Im(kxh)/K j5 the wave amplitude
damping factor. The dotted lines indicate the accuracy limits used in plotting Figure 8.
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FIG. 10. Propagation of a periodic sine wave. The difference of the solutions at two periods shown in dark

lines are computed in Table 2.

condition, i.e., the exact characteristics flux formula (v = 1) is used at the right boundary of the
last element. After the initial transient has exited the right boundary, the computational domain is
filled with the sine wave. We then compare the numerical solutions at the first period near z = 0
with that of the 20th period, noted by dark lines in Figure 10. Specifically, we measure the error
according to pressure p as:

Ao
E:\// |ph($,t)—ph($+20A0,t)|2d$
0

no—1

h
= 52
n=0

1
[ et g o) de (60)

where n is the element index and ng = % Table 1 shows the mesh refinement results for p =1 to
4. Since the local dispersion relation is accurate to order 2p + 2, the global error measure E defined
in (60) will decrease at order 2p + 1. This is observed in all the cases.
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TABLE 1
Solution of (57)-(58), M = 0, using uniform grids. Error is calculated by (60).

vy=1 v=20.5

p h Error E order Error E order
1 1.74054 - 1.79386 -

1 05 1.09166 0.6730 1.46813 0.2890
0.25 0.197915 2.4635 0.344971 2.0894
0.125 0.0261657 2.9191 0.0506057 2.7691
1 0.27629 - 0.286715 -

2 05 0.010116 4.7714  0.00634575  5.4976

0.25 0.000323692  4.9658  0.000172082  5.2053
0.125 0.1016 x 10~* 4.9923 0.5165 x 10~¢ 5.0574

1 0.00386958 - 0.00381781 -

3 05 0.3217 x 10~* 6.9102 0.4912 x 10~* 6.2801
0.25 0.2552x107% 6.9780 0.4709 x 10~ 6.7048
0.125 0.2019x 10~% 6.9812 0.3964 x 10~8  6.8919

2 0.0126055 - 0.0238191 -
4 1 0.3002 x 10~% 8.7137 0.3034 x 10~* 9.6164
0.5 0.6153 x 10~7 8.9305 0.3858 x 10~7 9.6192

6.2. Reflection at grid discontinuity and comparison with eigenfunctions

In Figures 11 to 13, we show the propagation of the sine wave (59) through a mesh discontinuity.
Since the numerical wave reflection properties are dependent on the flux formula used, we will show
cases with the exact as well as inexact characteristics flux formulas. This will be indicated by the
value of v used in the computation. A value of |y| = 1 indicates exact characteristics splitting
while a value of |y| # 1 indicates inexact characteristics flux. In some calculations, a fairly large
grid discontinuity has been used. This is to make reflection errors more visible for the purpose of
illustration. In all the calculations, a fifth-order (p = 4) scheme is used.

6.2.1. Ezact characteristics flux formula |y| =1

In Figures 11(a) and (b), a grid discontinuity is introduced at = 50 with the ratio of grid spacing
being 2 and 5 respectively. The exact characteristics-based flux formula is used in this example with
0 = 1. In both cases, the abrupt change of element size causes no numerical reflection because
the opposite-traveling spurious mode is now non-existent. The damping of wave amplitude in the
coarsened grid is due to the reduction in resolution and is expected.
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FIG. 11. Propagation of a periodic sine wave through a grid discontinuity at z = 50. M = 0, v = 1 (exact
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6.2.2. A slow wave mode |y| = 10

In Figure 12(a), we show the solution for a case in which « is large (v = 10). This situation
is likely to occur when the wave speed of an eigenmode is small relative to the fastest eigenmode
governed by a given system of equations. In Figure 12(a), the amount of reflection is visible since the
grid ratio here is quite large. By subtracting out a calculation with uniform grids (done separately),
the reflected wave is extracted and plotted in Figure 12(b). Inspecting visually, the reflected wave
is in the form of the spurious numerical mode. This will be further confirmed when we compare the
numerical solution with the eigenfunction formed in (31).

To compare the numerical solution with the eigenfunctions found in section 4, we first extract the
complex coefficient vector from the numerical solution by constructing

vV = vlt:to + /L.V|t:t0+%

in each element. In the above, T is the period of the sine wave and t¢ is an arbitrary time at which
the numerical solution has become time periodic and v denotes the solution coefficient vector of
the pressure p. Then, we fit this coeflicient vector by a linear combination of the eigenvectors of
(29). Specifically, suppose the eigenvectors of (29) are denoted by v() and v(*) for the physical and
spurious modes, we try to find a and b such that

v=av? +bv® (61)

The coefficients a and b are computed by requiring (61) be orthogonal to v(?) and v(*). In other
words, we “decompose” the numerical solution into eigen-modes. This is done for every element and
the residues of (61) have been found to be near machine zero in all cases. The magnitudes of a
and b plotted in Figure 12(c). Here, circles indicate the magnitude of the physical mode, |a|, and
the triangles the spurious mode, |b|. The reflection at the interface at = 50 and their subsequent
exponential decay are clearly shown. Also shown, in dotted lines, are the predictions of the reflected
and transmitted waves with their amplitudes at the interface being determined by (55) and (56).
Excellent agreements are found.

6.3. Propagation of an acoustic pulse with mean flow

In the third example, Figure 13, we show the propagation of an acoustic pulse in a mean flow of
Mach number M = 0.8. We solve (57)-(58) using the Lax-Friedrich formula (9) with § = 1. The
initial Gaussian profile in the u velocity component is separated into a downstream propagating
pulse, with speed M + 1, and an upstream propagating pulse, with speed M — 1. Both pulses
are to propagate through a grid discontinuity of ratio ha/h; = 5 located at £ = 30 and z = —30
respectively. The difference in wave propagation speed results in two different upwind factors « for
the two pulses, namely, v = 1 for the downstream propagating pulse and v = —9 for the upstream
propagating pulse according to (26) and (27). For the right-traveling pulse, since the flux formula
is the exact characteristics splitting, no reflection occurs as the pulse propagates through the grid
discontinuity. For the left-traveling pulse, small reflected waves are detected due to the inexact
characteristics flux formula for that wave speed. We note that the reflected waves are in the form of
spurious waves and decay rapidly. We emphasize that the use of a relatively large abrupt increase
in grid size is to make the reflections more visible. Indeed, a calculation using a grid ratio of 2
produced much smaller reflected waves.
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FIG. 12. (a) Propagation of a sine wave through a grid discontinuity, ho/h1 = 5, v = 10. (b) Reflected wave.
(c) Decomposition of numerical solution into physical and spurious modes. circles, physical mode; triangles, spurious
mode; dashed lines, theoretical predictions of (55)-(56).
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7. CONCLUSIONS

We have carried out a detailed study of spatially propagating waves in a discontinuous Galerkin
scheme applied to a system of linear hyperbolic equations. An eigenvalue problem for the spatially
propagating waves is formulated. In one dimensional space, the eigenvalue problem reduces to a
quadratic equation and, consequently, yields at most two numerical wave modes for each physical
wave mode of the partial differential equations. One is physically significant with the dispersion error
that decays like h2P+3 and the dissipation error that decays like h?P*2 locally. The other numerical
mode is spurious. The spurious mode becomes non-existent when the exact characteristics splitting
flux formula is used. Furthermore, reflection and transmission coeflicients of an incident wave at
an interface of grid discontinuity are derived. It is shown that numerical reflection error consists
of only the spurious mode and its magnitude depends on the spatial resolution of the grids on
both sides of the interface. Theoretical predictions are verified with numerical examples. These
predictions should benefit the design and application of the DGM scheme with non-uniform grids.
In a forthcoming paper, we will examine the effects of grid discontinuity in two-dimensional space.
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APPENDIX

Al. KRONECKER PRODUCT
Let A = {a;j}ixk and B = {B;; }nxm. The Kronecker product is defined as

O[llB Oé]_2B OélkB

O[21B a22B ang

A9B= (62)

OéllB OélgB OélkB Inxkm

It is easy to verify by direct calculation that for any matrices A, B and vectors x, y, we have
(A®B)(x®y) = (Ax) ® (By) (63)

A2. POLYNOMIALS G(X) AND H(X)
Polynomials G(z) and H(z) appeared in (35):

G(x) H(z)
=1 1-g2 1+ 2z + Lo?
=2 1-2z+ 4a? 142z + 2a2% + La®
77+ 137° — 5% 1+ 22+ 72% + 32° + gt

4 5

5 5.2, 5,3 5 4 1.5
L+ 524 5527 + 552° + 35512 + 51z 2

_4 1.2 _ 1 .3, 1
I-52+ 552 126 2" T 30242

ST =T B~ T B S T IS
I
(@3 =~ w [\
—
|

Il

5 1,2 1.3 1 4 _ 1 __5 6., 3.2, 2.3, 1 4 1 .5 1.6
- 32+ 52 — 552° + ms? — 5?1+ 2+ 5577 +552° + 5557 + 0%° + 3326002

Tt is straightforward to verify that H(x)/G(z) is exactly the Pade approximation of e® to order

2p + 2. This has been confirmed up to p = 16 and is conjectured to be true for all p.
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A3. ACCURACY OF EIGENVALUES

In this appendix, we give a derivation of (38) and (39). We need only to consider the cases when
|7] # 1. The case for |y| = 1 follows trivially from (35).
For convenience of discussion, define

1+~
= (-1)PH —.

Then, equation (36) becomes

H(iK)
G(K)

H(—iK)

i G(—iK)
Gar) | M7

- G(iK)

=0. (64)

+8
Let the two roots of (64) be denoted by A?) and A(®*) with their values at K = 0 as follows,

at K =0, \P =1 and A\ = 3.

Now consider an auxiliary quadratic equation:

; _;k G(—iK) G(—iK)
2 _ iK iK —
o e + Be GGK) +p GGE) 0 (65)
The two roots of (65) are easily found to be
. _;k G(—iK)
(p) = giK (s) — iK

o e and o fBe GOE)

By subtracting (65) from (64), we get
. H(iK) H(—z‘K)] [ : _;k G(—iK)
2 _ 2 iK iK = 0.
AN —0o GUE) +p GGR) A+ e+ pe GGE) c=0 (66)
By the results of Appendix A2, we have
HGK) _ ik ,
GUK) =e"* + R(iK)
and
H(—iK) H(—iK)G(—iK) ik . G(—-iK)
= = g — K
GUE) Gk cur) — L& T RER] Tes
_ik G(—iK) . G(—iK)
— i —iK) L
 Gan TR G

where R(z) is an O(2?P+?) function with real coefficients. Then equation (66) can be written as

—7] A—0) = [R(iK) 4 BR(—ir) SO (67)
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For simplicity, let’s define

G(—iK)

N i —iK
AGK) = % + Be GGR)

B(iK) = R(iK) + BR(—iK) G-

and rewrite (67) as

(A=0)[A+0—A(iK)] = BGK)A.

It is straightforward to verify that, as K — 0, we have

AGK) = [1+ 8]+ m (iK) + po i K)* + - - -

B(K) = [1+ Blv1 (iK)*"*? + (i K)*F3 + - -

and

AP +0®) — AGK) = [1— B] + 4 K) + 15 (iK)* + -+

A 460 — AGK) = [8 — 1]+ p K + py (i K)? + -

33

(68)

(71)

(72)

where all the coefficients on the right hand sides are real and the dots represent higher order terms

in (1K) with real coefficients.
Therefore,
(i) if B # £1, it follows easily from (68) that

AP _ ) — H * g} W GK)P¥2 4 ...

and

) _ o) = LBl rmvopin |
A [B_l]ﬂyl(zK) +

This immediately leads to (38) and (39).
(ii) if 8 = 1, then, instead of (71) and (72), we have

AP 4 60— AGK) = p (iK) + phy(iK)? + - --

(73)
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A 40 — AGK) = pff (iIK) + pl (iK)* + -
which gives

AP _ ) = l%,lfl(iK)sz N
1

and

2
A8 _ 58 — M_IIIBVI(iK)2p+1 4.

This is one order lower than that of case (i).
(iii) if 8 = —1, then, instead of (70), we have

B(iK) = o (iK)?P+3 ...
and it follows from (68) that
AP _ 5P — %yz(iK)2p+3 4.
and
A o) = _ L, gy
-0 =—§V2(1K) +---
This is one order higher than that of case (ii).

We note, however, that (ii) or (iii) is possible only if v = 0 or vy = 0o. Both are not very practical
situations.



