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It is suggested that parametric instability can be induced in a confined supersonic shear layer
by the use of a periodic Mach wave system generated by a wavy wall. The existence of such an
instability solution is demonstrated computationally by solving the Floquet system of
equations. The solution is constructed by means of a Fourier—Chebyshev expansion. Numerical
convergence is assured by using a very large number of Fourier and Chebyshev basis functions.
The computed growth rate of the induced flow instability is found to vary linearly with the
amplitude of the mach waves when the amplitude is not excessively large. This ensures that the

instability is, indeed, tied to the presence of the Mach waves. It is proposed that enhanced
mixing of supersonic shear layers may be achieved by the use of such a periodic Mach wave
system through the inducement of parametric instabilities in the flow.

. INTRODUCTION

Recent experiments on high-speed mixing layers by
Ikawa and Kubota,! Papamoschou and Roshko,>* and
Chinzei et al.* revealed that the mixing or spreading rate of
these flows decreased rapidly as Mach number became su-
personic. In addition, Papamoschou and Roshko found that
the normalized mixing rate asa function of convective mach
number correlated extremely well with the normalized max-
imum growth rate of the instability waves of these flows.
This strongly suggests that flow instability is responsible for
the mixing of high-speed shear layers. Further, the decrease
in mixing rate with increase in"Mach number is due to the
fact that, at higher Mach numbers, the instability waves of
these flows have a much reduced spatial growth rate. Since
the pioneering work of Papamoschou and Roshko, a number
of papers have appeared aiming to improve the calculated
growth rates of the flow instabilities and their correlation
with the measured spreading rate. This includes the use of
the spatial rather than the temporal growth rates.’>® The
importante of wall reflections is pointed out®'' and the in-
clusion of the wall effects further improves the agreement
between the calculated results and measurements.' It is now
generally accepted that flow instability is, indeed, the pri-
mary mechanism of fluid mixing in supersonic shear layers.
To enhance mixing, an obvious necessity is to enhance flow
instabilities.

The purpose of this paper is to draw attention to the
possibility of enhancing flow instability of confined super-
sonic mixing layers by the use of a periodic Mach wave sys-
tem generated by a wavy wall as shown in Fig. 1. An advan-
tage of this scheme is that no intrusive objects need be placed
inside the flow. Such objects would inevitably produce shock
waves and dissipation. A periodic Mach wave system can
induce flow instability in two ways. First, is through reso-
nant instability'>!* by which two acoustic modes of the
ducted shear layer flow are driven into resonance and insta-
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bility. It is possible to show that, by choosing properly the
wavelength of the Mach waves, the intéraction of one acous-
tic wave mode with the Mach wave system produces a forc-
ing on the other mode and vice versa. In this way, the two
acoustic modes force each other simultaneously leading to
growth and instability. Second, is through parametric insta-
bility, which is akin to the secondary instabilities of low-
speed boundary layers and shear layers studied extensively
by Herbert'® and Orszag and Patera.'® In the presence of a
periodic Mach wave system, the mean flow is spatially peri-
odic in the flow direction. This periodic mean flow can sup-
port new parametric instability waves. It is the objective of
this paper to show this computationally. For this purpose,
consideration will be confined to temporal instability only.
In order to demonstrate that the presence of a periodic Mach
wave system can induce new instability waves, it is necessary
to show such waves exist. This is done here by expanding the
instability wave solution according to Floquet theory in a
Fourier series in the flow direction and in Chebyshev poly-
nomials in the transverse direction. The number of Fourier
and Chebyshev terms are increased until satisfactory nu-
merical convergence is assured. Furthermore, it will be
shown that the growth rate of the new instability wave de-
pends linearly on the amplitude of the Mach wave system
when the amplitude is not very large. This ensures that the

. new instability wave is, indeed, tied to the presence of the

periodic Mach waves.

It is worthwhile to point out that although the paramet-
ric instability analyzed here is in many ways similar to the
secondary instabilities of subsonic boundary layers, there are
yet major differences. First of all, the boundary-layer sec-
ondary instabilities are induced by the vorticity of the pri-
mary Tollmien-Schlichting waves. In the case of supersonic
shear layers penetrated by periodic Mach waves, the mecha-
nism of parametric instability is not completely clear at this
time. Most likely it is driven by pressure or acoustic reso-
nance. In any case, vortieity plays very little or no role at all.
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FIG. L. Schematic diagram showing a periodic Mach wave system generated by wavy walls superimposing on a supersonic shear layer.

In Herbert’s analysis of the secondary instabilities, only one
or two Fourier terms are all that is necessary to provide an
adequate instability wave solution. In the present case, how- -
ever, a much larger number of Fourier terms are needed to
insure convergence in the eigenvalue and eigenfunction.
Twenty-eight Fourier terms are retained in the example to be
discussed in Sec, V. ‘

_ The scope of the present study is limited. It is focussed
exclusively on the existence of parametric or Floquet insta-
bility waves in a supersonic shear layer induced by the pres-
ence of a periodic Mach wave system. No parametric study
of the most unstable configuration will be carried out.

I1. PERIODIC MACH WAVES

Consider a supersonic shear layer confined within two
wavy parallel walls as shown in Fig. 1. It will be assumed that
the Mach waves are generated by the lower wall. Once gener-
ated, the Mach waves. propagate up passing through the —
shear layer and eventually reach the top wall. For simplicity, -
the amplitude and phase of the top wavy wall will be adjusted
so that no reflection will occur. That is, no reflected wave
will emanate from the top to the bottom wall. It is recognized

]

 that this is not the most practical Mach wave configuration

for applications where the flow conditions may vary. How-
ever, it can be implemented for a single shear flow (design)

~condition. Here, this nonreflecting upper wall condition is

chosen strictly for the purpose of simplifying the analysis:
Let the equations of the wavy walls be,

y=-—H; + 4, sin(k,x) (bottom wall),
y=H, + B, sin(k,, * #)  (top wall).

The strength of the Mach waves depends on the ratio of the
amplitude 4, of the bottom wavy wall to the wavelength
A (== 2m/k,, }.'7 This dimensionless ratio will be denoted
by g, i.e.,

€ =Ag/A,, = Agk,, /2.

Throughout this work, € will be taken to be no more than
2%. For small €, a linear Mach wave solution will suffice.

Now suppose the shéar layer is confined within the re-
gion - §<y<8. Ouiside this region the flow is uniform so
that the pressure perturbation associated with the Mach
waves can readily be found*” as -

( [y 7 2mea/ (M2 — 1)%] cos[Kppx — Ky (M2 — 1)"2(p — H, ) + b1, S<y<H,,

Pm=
+ Ccosfk,x+k, (M} —~ 1)y +B1,

where M, and M, are the Mach numbers on the two sides of
the shear layer. The second term in the region
— H,<y< — 8 represents a weak reflected wave off the
shear layer with amplitude C and phase . Here, C is nu-
merically small but is retained in the stability analysis. The .
reflected wave will again be reflected off the bottom wall.
This secondary reflected wave will be neglected. The corre-
sponding velocity perturbations of the Mach waves are
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U = = (Bill) ™ P,

where subscript { in the above expression is equal to 1 for
b<y<H and 2 for — H,pg — 8.

Inside the shear layer, the pressure associated with the
Mach wavesis governed by the time-independent linearized
equation of motion for a compressible flow. Since the solu-
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tion is periodic in x, it can be represented in the form

P = Rel[fne™™], —8<y<s, (2)

where Re[ ] = thereal part of Eq. (2). From the governing
equation for p,,, it is easily found that the function f(y) must
satisfy the equation

d_zf_(?;ﬁ

ldﬁ)df (a )2 0,
dy* ﬁdy+ a nf'=

g day
(3)

where %(y), p(y), and @(y) are the mean velocity, density,
and speed of sound distribution in the channel. In this work,
# will be approximated by the hyperbolic tangent velocity
profile used in Ref. 10, ie., # =0.5[u, + 2, + (4, — u,)
Xtanh(2y/8,,)], where 8, is the vorticity thickness of the
shear layer. The mean density and speed of sound are calcu-
lated by Crocco’s relation'” and constant static pressure.
The expressions of Eq. (1) may be casted in the same form as
(2) by replacing the cosine function by its equivalent in the
form of the sum of two exponential functions. They provide
the initial conditions for integrating (3). With these initial
conditions, (3) may be integrated numerically from y = § to
y=0andfromy = — &8toy = 0. The requirements of conti-
nuity of fand its derivative at y = O then deterinine the four
unknowns «, ¢, C, and 8. In this way, the periodic Mach
wave field is calculated. For the case M, = 3.5, M, = 1.2,
H,=H,=05H,6, =0.1H, A,, = 0.38H, and equal total
temperature in the two streams, the numerical values of
these parameters are found to be a=0.766, ¢ =1.29,

B =0.475, and C=0.01 15€pl . Under these conditions
the pressure amplitude, 275, #3 6/ (M3 — 1)'2, associated
with the Mach waves incident on the shear layer [see Eq.
(1)] is equal to 1.11p, #je. This is much larger than the
amplitude of the waves reflected off the shear layer.

lil. FORMULATION

Now consider small amplitude disturbances superim-
posed on the mean flow and the periodic Mach waves. The
flow variables may be decomposed into three parts as,

u u z’2m u'
v 0 b. 1 |V
w| |0 te 0 * w'
P p Pom P

= [mean flow] + [Mach waves]

+ [perturbation]. (4)

The disturbance variables must satisfy the linearized equa-
tions of motion. On including the effect of viscosity and heat
conductivity, the momentum and energy equations are
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(8)

The boundary conditions are

u’=u'=w’=g’£~=0‘ at y=H,, —H,.
dy

The density p’ will be determined by means of the locally
isentropic approximation i.e. p' = (@ -+ €2,,) ~*p'. In the
above, u, k, and y are the shear viscosity coefﬁcient thermal
conductivity, and specific heat ratio, respectively. Here, u
and k are temperature dependent. At high-flow Mach num-
ber, and especially in the presence of large temperature gra-
dients, such dependence must be taken into account. In this
work, the principal objective is to demonstrate the existence
of parametric instabilities induced by a periodic Mach wave
system. For this purpose, a simpler, although less accurate,
physical model in which u and « are constants will be adopt-
ed. Such an approximate model offers great simplicity in the
analysis and should be adequate for the limited objective of
this paper. It is to be noted that, in the momentum equations
above, the viscous terms involving the second derivatives in
x are found to be numerically insignificant at high Reynolds
number. They may be neglected without incurring notice-
able numerical errors. It is easy to find that the coefficients of
(5)—(8) are periodic in x and independent of ¢ and z. On
following the Floquet theory (see Herbert'®), the paramet-
ric instability wave solution may be expressed in the form,
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Ui = it~ ) " (x,p) .

w

»
u (p)

. o = v {y) ik,
s BT — @t} ol xlazmw ) s (9)

y7169)

In (9), v is a characteristic exponent. When v = lk,,,
(9) gives'the subharmonic solutions. When v = 0, (9) gives
the fundamental solutions. When vs£0 or 1k,,,, the solution s

detuned. Since v and v+ lk,, yield identical expressions for

any integer /, it is sufficient to assume that O0<v < k,,. For -

temporal instabilities that are considered in this paper, the
value of v is given..

Uponsubstituting (9) into (5)— (8) and equating terms
of the same periodsin x, an infinite system of ordinary differ-
entialequations in p for the amplitude functions of expansion
(9) is found. The exact form is given in Appendix A. For
computational purposes, the system will be truncated. Sup-
pose the termsin (9) with/= ~ L;, — L, + 1,..., Lyareto
be retained, then the finite order ordinary differential equa-
tion system can be written in the following matrix form:

2
LG 748, €6 - ()G =0, (10)
ay’ dy
where -
-u L -
vy,
B0ty £ ()
Py, &)
G= : = :
Ur, :
vy, 8a, (V) | m51
wy, ‘
L P Jasrsa
The boundary conditions for G are
. d
ufxuf:wt':‘&zo y= —H,, H, (11
dy

for{= —L,, — L, +1,.., L.
It is easy to see that Eq. (10) and boundary conditions
(11) form an eigenvalue problem. For temporal instabilities,

the value of v is given and @ and G are to be solved as eigen-

values and eigenfunctions.

V. COMPUTATION METHODS
A. Spectral-collocation method

To solve (10), the spectral-collocation method '™ will be
used. This method converts the differential eigenvalu’e prob-
lem into an algebraic one,

Let G be approximated by polynomial expansions in the
form
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N
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ng’ 3] (12)

.
®

- YR

A«
g (ﬂ>¢(n)(y)

Here, the basis polynomials #{"’(y) are chosen such that
boundary conditions {11) are satistied automatically. The
exact forms of ;" (), in terms of Chebyshev polynomials,.
and the collocation points are given in Appendix B. The
coefficients of the expansions g{"are the unknowns. To en-

“sure an adequate distribution of collocation points in the

nondimensionalized physical space [ — 1, + 171 (H /2isthe
length scale), it is mapped into a computational space [ — 1,
-+ 1] by a mapping function. This aspect is discussed in Ap-
pendix B. Now, nupon substituting the spectral expansion
(12) into the ordinary differential equation (10) and de-
manding that (10) be satisfied exactly at the collocation

~ ‘pointsaty = y,, k = 0,1,2,...,N, an algebraic system of equa-

tions for the coefficients g{™ is found-
(a3 ()
,,,,, + i
}Zi,E(uw *f*"az‘;S

+czj ;n)_ﬁ {lw§¢(")) yg}"')ﬁo (13)
k

for i=12,..,M,, k= 0,1,2,....N, where e,
the elements of matrices E, F, and C of (10).

Equation (13} consists of M, X (¥ - 1) homogeneous
algebraic equations for M, X (N + 1) coefficients g/, It
can easily be casted in the form of a generalized elgenvalue
problem : ‘

= {iw)Bg, -

Jy» and c;; are

(14
where g is a'vector contalmng the coefficients gj"™ for j==.1,
M, n=0,12,..,N.

B. The algebraic eigenvalue problem

By carefully rearranging the rows and columns of (14)
it is"possible to put matrices A and B into block tridiagonal
and block diagonal forms. Furthermore, since the boundary
conditions are satisfied automatically by the basis polynomi-
als, B is nonsingular. The generalized eigenvalue problem
may be put into the form of a standard algebraic e1genvalue
problem e

TAy A, 0 O o 1
Ay Ay Ay O 0
0 A‘:n A_;'; :&34 0
... . g=1g
Ay _im
| O O Aum-i A
) | (15)
where JZ =fo and M is the number of Fourier modes re-

tained in the truncated expansion.

F.Q.Huand C.K. W. Tam 1648



TABLEL First 15 eigenvalues listed in the order of decreasing growth rate.
e=0.000, M =4, N=80. -

TABLE III. Numerical results showing convergence of the new instability
wave solution, ¢ = 0.003.

No. Eigenvalue wH /%
1 4.4261 4 0.227 058
2 14.7788 4+ 0.171 145i
3 13.9597 + 0.148 020i
4 7.5891 + 0.102 084i
5 3.3474 + 0.088 174
6 15.7039 + 0.077 435;
7 13.0052 + 0.059 564i
8 3.9231 + 0.052 460
9 16.7104 + 0.020 316/

10 5.5544 + 0.019 343
11 9.4649 + 0.006 913;
12 6.6076 — 0.002 274(
13 1.5515 — 0.002 300
14 12.0282 — 0.004 392/
15 1.5169 — 0.005 152/

In principle, the above algebraic eigenvalue problem can
be solved by standard solvers (e.g., EISPACK) using the QR
algorithm, by which all the eigenvalues and eigenvectors are
determined simultaneously. The QR algorithm, however,
uses full storage for the matrices. Because of the limitation of
computer central memory (even for the ETA 10 supercom-
puter) the size of the matrix that can be handled by the OR
algorithm is limited. For example, if the ETA 10 supercom-
puter is used, the maximum size of the matrix cannot exceed
1000. Under these conditions, it is found that no more than
six Fourier modes (each amplitude is approximated by 40
Chebyshev polynomials) can be included in the truncated
Floquet solutions of (9). This is too small a number of Four-
ier modes to assure numerical convergence. To overcome
this difficulty, the inverse iteration method'® is used to refine
an approximate eigenvalue found by the QR algorithm. The
inverse iteration method is an iterative scheme that finds an
eigenvalue of the matrix that is closest to a given initial guess
value. This method can be implemented such that only the
nonzero block matrices of (15) are stored instead of the full

TABLE II. First 15 eigenvalues listed in the order of decreasing growth
rate. €= 0.003, M =4, N=80.

Approximation
sequence N M Eigenvalue wH /%,
1 80 4 1.916 38 4 0.0585 234/
2 80 8 1.917 91 4 0.0563 136i
3 80 16 1.918 06 + 0.0564 042
4 100" - 16 1.918 03 4 0.0564 178/

matrix.2° This technique allows the eigenvalue calculation to
process with much larger size matrices. In this work, the QR
algorithm is used as an initial search of the eigenvalues of a
smaller truncated matrix of the Fourier—Chebyshev expan-
sion. Then the inverse iteration scheme is employed to refine
the eigenvalues one at a time. During the eigenvalue refine-
ment process, higher-order Fourier and Chebyshev terms
are included.

V. NUMERICAL RESULTS

For the purpose of showing computationally that the
presence of a period Mach wave can induce new parametric
instability waves in a supersonic shear layer, the case
M =20, M,=12, &/a,=23.0, ¥ =Y. = 1.4,
H =H,=H/2, A,/H=04, §5,/H=005, pB=0,
v =lk,,, where 8, is the vorticity thickness of the mixing
layer is considered. In addition, the Reynolds number
(p,u,8,/p) is taken to be 500 and the Prandtl number
(cppu/Kc) is assumed to be unity. To start the search for new
instabilities, a truncated system consisting of 80 Chebyshev
polynomials in the y direction and four Fourier modes
(I= —2, — 1,0, 1) in the x direction is used initially. This
leads to an algebraic eigenvalue problem with a 972972
matrix. This matrix is solved twice by the QR algorithm of
the EISPACK subroutines. In the first run, € is set equal to
zero. This corresponds to the case with no Mach waves. The
first 15 eigenvalues of this run are listed in the order of de-
creasing growth rate in Table I. There are 11 unstable eigen-
values. In the second run, € is set equal to 0.003 correspond-
ing to the presence of a weak Mach wave system. The first 15
eigenvalues are listed in Table II. There are now 12 unstable
eigenvalues. By comparing the unstable eigenvalues of the
two tables and accounting for some slight changes in the
eigenvalues because of the interaction of the original insta-

No. Eigenvalue w/H /i No. in Table I bility waves with the Mach wave system, it is seen that eigen-
1 4.4390 4 0.283 532i 1
2 12.7804 + 0.172 778i 2
3 7.6112 + 0.150 544; 4
4 13.9579 + 0.147 166i 3
5 15.7050 + 0.076 094/ 6 TABLE IV. Numerical results showing convergence of the new instability
6 13.0062 + 0.060 194¢ 7 wave solution, € = 0.01.
7 1.9164 + 0.058 523i new
8 3.8625 + 0.055 412/ 8 Approximation )
9 3.4488 4 0.052 387 5 sequence N M Eigenvalue 0H /4,
10 5.5422 + 0.025431i 10
11 16.7130 + 0.020 519 ~ 9 1 80 16 2.069 24 + 0.234 844
12 9.4656 + 0.005 610; 11 2 80 20 2.069 12 4- 0.235 120/
13 1.5512 — 0.002 438/ 13 3 80 24 2.068 93 4-0.235 171
14 6.6076 — 0.002 991/ 12 4 100 20 2.072 82 4 0.233 876i
15 3.7456 — 0.003 059{ 23 5 100 28 2.072 47 4 0.233 796
1645 Pliys. Fiuids A, Val. 8, No. €, durs 16€1 F. Q. Hueand G KO W. Tam 1649
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FIG. 2. Spatial distributions of different Fourier modes of the eigenfunction (# component} of the new instability wave. /= order of Fourier mode;-—,real
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A/H=04,8,/H=005B=0,v= ik,
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FIG. 4. Growth rate of the new instability wave as a function of wavy wall
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value No. 7 in Table II is a possible candidate for new insta-
bility waves. In order to be sure that it is, indeed, a new
parametric instability wave, it is necessary to demonstrate
numerical convergence both in eigenvalue and eigenfunction
as the number of terms in the Fourier—Chebyshev expansion
increases.

Mach waves (i.e., larger €) using the previous eigenvalue as
a starting value. Table IV shows the trend of convergence as
M and N increase for € == (.0%. Again, numerical conver-
gence of the eigenvalue to four significant figures is realized
at N == 100 and M = 28. Figure 2 shows the spatial distribu- -
tions of the various Fourier modes that make up the eigen-
function. Clearly, the Fourier terms decrease in amplitude _
rapidly as the order increases, gs those of a converged eigen-
function should. Figure 3 shows plots of the coefficients of
the Chebyshev expansion of each Fourier mode. Again, the

- distributions of these coefficients are consistent with those of

The No. 7 eigenvalué m Table II is used as an initial

guess.value for eigenvalue refinement using the inverse iter-
ation algorithm.'®? In performing the inverse iteration pro-
cess, the number of Fourier modes (M) and Chebyshev basis
polynomials (V) are significantly increased. Table III pro-
vides the list of computed eigenvalues for different M and N.
In each calculation, the previous converged value is used as
the starting value. From this table it is clear that the eigen-
value converges, at least, to four significant figures when
N=280, M= 16. ;

After having demonstrated numerical convergence for
€ = 0.003, the inverse iteration eigenvalue refinement proce-
dure is then applied to flows with successively stronger

o O DO

QHOD

K3 7 0 0 L ol
v, p 0
—im| | H+Riv+Ik,)|0 & 0 0|48 0
wl -
00 @ 0
Ll B O 0 7 0
re] [0 0 0 (1) T L o
v 0 0 0 —|dl|Ww |0 1
+ pi— ———
wy : dy w; P 0 0
0o 00 o]®% b ©
2l jo p o o) LAl
' 1 0 6 0 4
) g 1 Q Q U;
v+ Ik, + B E
0 0 0 Q/——l D;-
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a converged eigenfunction.

The dependence of the growth raie of the new paramet-
ric instability wave on the strength of the Mach wave system
is given in Fig. 4. For € < 0.01, the dependence is nearly lin-
ear. The fact that the growth rate increases monotonically
with the strength of the Mach waves further indicates that
the existence of this new, instability wave is tied to the pres-
ence of the Mach wave system. Ate = 0.015, the growth rate
of the new instability wave is larger than the maximum
growih rate of theinstability waves of the supersonic shear
layer without Mach waves given in Table I. Thus it appears
that the suggestion of inducing instability waves of signifi-
cant growth rate by means of a periodic Mach wave system
to enhance mixing in a supersonic shear layer may, indeed,
be possible.
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APPENDIX A: EQUATIONS FOR THE AMPLITUDE

‘FUNCTIONS

The system of ordinary differential equaiions for
u;, U, W, and p,; obtained by substituting (9) into (5)—(8)
is”

0" 0 0o P 4 o
0 Q dy
o Ll+jo 0 00
B 00 0 0
5 0] loo o o0 0
0 7 u
-0 g%y
0 2}5 w; |
"=l P
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r
APPENDIX B: BASIS AND MAPPING FUNCTIONS dy
= (+1)=0.

Chebyshev polynomials 7, (v) are used to form the ba-
sis functions for the spectral expansion (9). In order to satis-
fy the boundary conditions at the end points of the normal-
ized interval [ — 1,1] (using H /2 as the length scale), each
polynomial is combined either with T,(y) or T;(y) depend-
ing on whether » is even or odd to form the basis polynomi-
als.

(a) For velocity components %, v, and w, the following
basis polynomials are used:

P — {To ) =T,

Ly -T,,,0),
=@ (£ 1) =0.

(b) For pressure p, the basis polynomials ¥ ,,, are used:

1,

n even,
r odd,

n =0,

The collocation points are the zeros of Ty | (), i.e.,

Qk+ V)7

), k =0,1,2,...,N.
IN+2

yk = COS(

It is easy to see that the collocation points are dense around
the end points of the interval { — 1,1]. In order to place
more points in the center region where the mixing layer is,
the following coordinate transformation (mapping) from
ye[ — 1,1] to the computational coordinate Ye[ — 1,1] is

used:
9 1 )
3

+._'__

5 )Y+0.1(

9

- 4%
21\ 3 7

\y(")(y) = (

2

2 2
) T,()—T,,.,(»), n even,

16¢

=

il

5

(n+2)2Tl (}") _Tn+2(y):
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n odd,

X ln(

cosh[(]Y| —0.3)/0.1]

cosh(0.3/0.1)

)sign( Y)].
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