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In this paper the transition from convective to absolute instability in a reacting compressible
mixing layer with finite rate chemistry is examined. The reaction is assumed to be one

step, irreversible, and of Arrhenius type. It is shown that absolute instability can exist for
moderate heat release without backflow. The effects of the temperature ratio, heat

release parameter, Zeldovich number, equivalence ratio, direction of propagation of the
disturbances, and the Mach number on the transition value of the velocity ratio are given. The
present results are compared to those obtained from the flame sheet model for the
temperature using the Lock similarity solution for the velocity profile. Finally, the structure
of the wave packets produced by an impulse in the absolutely unstable flow is examined.

I. INTRODUCTION

Understanding the stability characteristics of reacting
compressible free shear flows is of fundamental importance
(Jackson!) and may have possible usefulness in the devel-
opment of the scramjet engine (Beach?®). As discussed by
Drummond and Mukunda,’ the scramjet combustor flow is
complex but spatially developing and reacting compress-
ible mixing layers of fuel and oxidizer provide the simplest
relevant model. Mixing of the two gases takes place in the
shear layer and combustion occurs when there is both suf-
ficient fuel and oxidizer present at the same point. The
residence time of the fuel and air in the combustion cham-
ber can be very short; therefore, it is extremely important
that a high mixing rate of the fuel and oxidizer be achieved
so that complete combustion is attained before the fuel is
convected out of the engine. Compounding the problem of
a very short residence time is that the mixing rates of shear
layers have been shown experimentally to decrease as the
Mach number increases from zero (e.g.,, Brown and
Roshko;* Chinzei er al.;° Papamoschou and Roshko;*” and
Clemens?®). As a result, a major theme of current research
is mixing enhancement techniques. One obvious mixing
enhancement technique is to force the shear layer at some
prescribed frequency, usually computed from linear stabil-
ity analysis. It is essential to determine whether reacting
flows are convectively or absolutely unstable if one wishes
to control the downstream evolution of the flow. An abso-
lutely unstabie flow is not sensitive to external disturbances
and initial conditions; thus, experiments may not be com-
pletely reproducible nor may ‘“‘flow management” tech-
niques such as forcing be useful. In this paper, we address
the question of transition from convective to absolute in-
stability in compressible reacting shear flows and compute
the associated wave packets to investigate their time evo-
Tution.

The concept of absolute and convective instabilities
was introduced by Briggs® in the context of plasma insta-
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bility. The same idea was put forward independently by
Gaster'®!! within the context of classical hydrodynamic
stability theory based on the Orr—-Sommerfeld equation. A
flow is said to be absolutely unstable if the response to an
impulse in space and time is unbounded everywhere in
space for large time. On the other hand, if the response to
an impulse is a wave packet propagating downstream from
the source with the waves forming the packet having grow-
ing amplitudes, the flow is said to be convectively unstable.
With this type of instability, the response decays o zero
everywhere in space for large enough time. These concepts
have been applied to classify the instabilities of both in-
compressible and compressible flows; see, for example, the
review article by Huerre and Monkewitz.!? In particular,
nonreacting subsonic compressible mixing layers (Huerre
and Monkewitz;'® Pavithran and Redekopp;!* and Jackson
and Grosch!®) have been found to be convectively unstable
unless there is an appreciable amount of backflow.

In the course of a comprehensive study of the stability
of a reacting compressible mixing layer using a hyperbolic
tangent for the mean velocity profile and a flame sheet
model to describe the reaction, Jackson and Grosch'®
found that the flow switches from convective to absolute
instability with a sufficient amount of heat release even
without any reversed flow. Since piecewise continuous pro-
files, such as the temperature of the flame sheet model, can
give spurious results, it is desirable (i) to reexamine the
question of absolute/convective instability for reacting
flows with finite rate chemistry and (ii) to compare the
results with those found using a flame sheet model.

The ignition and structure of a reacting compressible
mixing layer using finite rate chemistry has been studied
recently by Grosch and Jackson.!” They solved the partial
differential equations for the velocity, temperature, and
mass fractions with appropriate initial and boundary con-
ditions by, in the first instance, marching downstream
without making any assumptions as to similarity. They
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found that the velocity field attained a self-similar form at
a very small downstream position. This was in the region
where ignition had not occurred and the temperature and
mass fractions were determined by chemically frozen dif-
-fusion equations. Because of this, they transformed the
equations to the self-similar form and used the self-similar
velocity, temperature, and mass fraction profiles as the ini-
tial conditions of the problem. Of course the temperature
and mass fraction profiles evolved further with down-
stream distance from this initial point and the three re-
gimes of ignition, deflagration, and a diffusion flame were
found to occur. The diffusion flame continued to evolve
farther downstream and very far downstream of the igni-
tion point the diffusion flame finally evolved to a flame
sheet. In this paper we follow Grosch and Jackson and use
the chemically frozen similarity profiles as the initial con-
ditions for the downstream marching solution of the mean
flow equations.

An important consideration in this, and any other
study of reacting flow, is the representation of chemistry of
the reaction. The flame sheet is the simplest possible
model. If the chemistry is assumed to have a finite rate, a
wide variety of models have been used. These range from a
detailed representation of the reactions using multiple rate
equations and including intermediate species® to a one-step
irreversible reaction.!” The former model is believed to give
a very accurate representation of the details of the chem-
istry but requires extremely expensive and time consuming
numerical calculations. The latter model is widely used in
combustion studies and is believed to at least model some
aspects of the relevant chemistry. It has a nonlinear depen-
dence on temperature and mass fractions but is simple
enough that the analysis and numerics are tractable. Be-
cause our primary interest [items (i) and (ii) above] is to
find the effect of finite rate chemistry, in comparison to the
flame sheet, on the convective/absolute transition we chose
to use the simplest finite rate reaction model: the one-step
irreversible Arrhenius model. We believe that this model
will give correct qualitative results but we expect that there
will be quantitative differences with the results of calcula-
tions using the more detailed rate equation models.

In any compressible flow calculations it is necessary to
specify the property variations with temperature and pres-
sure and the appropriate form of the equation of state. At
sufficiently high temperature and/or low density it will be
necessary to use an equation of state incorporating real gas
effects.’® However, in this study the Mach numbers are
moderate and we will assume that a perfect gas law is valid.
We have examined the effect of the form of the velocity
profile, the value of the Prandtl number, and the viscosity—
temperature relation on the stability characteristics of the
nonreacting compressible mixing layer.'® It was found that
the qualitative behavior of the solutions was independent of
these variations although there were quantitative differ-
ences in the growth rates and phase speeds. In view of the
fact that we are using a simplified combustion model in
these calculations, we can only expect that our results will
show correct qualitative dependency of the convective/
absolute instability transition on the flow parameters.
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FIG. 1. Schematic showing the reacting mixing layer.

Therefore we have chosen to use simple property varia-
tions: the Prandtl number constant and equal to one and a
linear variation of the viscosity coefficient with tempera-
ture.

The finite rate model involves solving the Lock simi-
larity profile for the velocities, together with the tempera-
ture and mass fraction equations using a one-step irrevers-
ible reaction of Arrhenius type. For consistency, the flame
sheet model must also involve solving the Lock similarity
profile for the velocities, assuming an infinite rate reaction,
and using a Crocco relation for the temperature and mass
fractions on either side of the flame sheet. We have done
this for the flame sheet calculations reported here. This is
in contrast to our previous reported results using the flame
sheet!'® where we approximated the velocity profile by a
hyperbolic tangent.

In Sec. 11, a brief review of the formulation of the mean
flow equations is given for completeness. In Sec. III, the
inviscid three-dimensional stability equations including the
effect of finite rate chemistry are derived. Certain results
pertaining to the linear stability of this flow with finite rate
chemistry and comparisons to the results obtained with the
flame sheet model are given in Sec. IV. Section V contains
results on the transition from convective to absolute insta-
bility using the finite rate chemistry model, which are then
compared with those obtained from the flame sheet model.
The flame sheet model is found to provide excellent pre-
dictions on the transition values provided one is down-
stream of ignition and Zeldovich numbers are greater than
about 10. Therefore, in Sec. VI results of calculations of
wave packets using the flame sheet model in cases of both
convective and absolute instability are given. Finally, Sec.
VII contains our conclusions.

Il. FORMULATION OF THE MEAN FLOW EQUATIONS

The nondimensional equations governing the steady
two-dimensional flow of a compressible, reacting mixing
layer with zero pressure gradient lying between streams of
fuel and oxidizer with different speeds and temperatures
(Fig. 1) are given by

(pU)x+(p"),=0, (1a)
1=pT, (1b)
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p(UUA+VU) =(ul,),, (fe)
p(UT+VT,) =Pr~'(uT,),+ (y— ) M*uU;+BQ,
(1d)
p(UF 1+ VF;,)=Sc; ' (uF;,),—BQ,  j=12,
(1e)
Q= DpF Fe=Z/T, (1f)

In these equations, the x axis is along the direction of flow,
the y axis is normal to the flow, U and V are the velocity
components in the x and y directions, respectively; p is the
density; T is the temperature; and F,; and F, are the mass
fractions of the fuel and oxidizer, respectively. The reac-
tion is assumed to be one step, irreversible, and of Arrhen-
ius type. The viscosity p is assumed to be a function of
temperature. The nondimensional parameters appearing
above are the Prandtl number Pr, the Schmidt number
Sc;=Pr Le; for species j where Le; is the Lewis number for
species j, the parameters [3; involve stoichiometry of the
reaction and are taken to be one, the Mach number is
M=U_/a_, the Zeldovich number is Ze=E/R T, with
E the dimensional activation energy and R the universal
gas constant, the Damkdohler number is D defined as the
ratio of the characteristic diffusion time scale to the char-
acteristic chemical time scale, 3 is the heat release per unit
mass fraction of the fuel, and finally ¥ is the specific-heats
ratio. The equations have been nondimensionalized by the
free-stream values T, p, U, F1,, for the temperature,
density, velocities, and mass fractions, respectively, and
lengths have been referred to some characteristic length
scale of the flow. The boundary conditions consistent with
(1) are

T=U=F,=1, F,=0

at x=0, y>0 and x>0, y— o, (2a)
T=fr, U=PBy<1, F1=0, F,=¢""

at x=0, y<0 and x>0, y— — oo, (2b)

where ¢=F; /F, _, is the equivalence ratio defined as
the ratio of the mass fraction F, of the fuel to the mass
fraction F, of the oxidizer. If =1, the mixture is stoichio-
metric; if ¢ > 1, it is fuel rich, while if ¢ < 1, it is fuel lean.

The mean flow equations (1) are first transformed into
the incompressible form by means of the Howarth—
Dorodnitzyn transformation

y A y
Y=f pay, V=pV+Uf Px dy, (3)
0 0

and then to the similarity variable for the chemically fro-
zen heat conduction problem,

n=Y/2x. (4)

Under these transformations, with U=/f'(%) and

17 (nf'—f)/x, Bq. (1) becomes
S"42ff"=0, (5a)
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Axf'T—Pr~ ' T"=2fT' —(y—1DM*(f")?
=4xBDF Fpe~%/T, (5b)
4xf'F;—Scj ! F? —2fF)=—4xDF Fye %7, (5¢)

where the primes indicate partial differentiation with re-
spect to the similarity variable 7, and where the linear
viscosity law p= 7 has been assumed (for Chapman’s lin-
ear law u=CT, the constant C can be scaled out by res-
caling % and f appropriately, but must be borne in mind
when transforming the variables back to their dimensional
forms). In terms of the transformed variables, the bound-
ary conditions are

Tzf'=F1=1, F2=0

at x=0, >0 and x>0, - o, (6a)
T=Br, f' =By Fi=0, F=¢~"
at x=0, 7<0 and x>0, 71— — . (6b)

In all of the calculations, we have taken 0<f3; <1 as there
is no solution of (5a) with reversed flow. We also note that
the Damkdohler number D can be scaled out of the equa-
tions by a rescaling of the x coordinate. However, rescaling
x by the Damkdhler number is not particularly useful since
D is typically exponentially large and the rescaled coordi-
nate would be exponentially stretched, which is not desir-
able from a numerical viewpoint. Finally, rescaling to elim-
inate the Damkdhler number is only appropriate for the
boundary-layer equations and is not possible when solving
the full Navier-Stokes equations (see, for example,
Ghoniem and Heidarinejad?®).

In this paper the results of stability calculations carried
out for the above flow field over a range of downstream
positions are presented. The mean profiles are found by
numerically integrating (5) with the initial and boundary
conditions given by (6). For the comparisons to be made
between the finite rate model and the flame sheet model,
the same stability calculations are carried out using the
Lock similarity solution for the velocity field [Eq. (5a)]
and the flame sheet model for the temperature and mass
fraction fields. For completeness, the equations for the
temperature and mass fractions for the flame sheet approx-
imation are given below.

For finite Damkdhler number a thin diffusion flame
exists within the mixing layer and is characterized by near-
equilibrium conditions: ;=0 on one side of the flame and
F,=0 on the other. In the limit of infinite Damkdhler
number this thin diffusion flame reduces to a flame sheet
described by

1-U
F1=1~—(1+¢_1)(m), Fy,=0, (7a)
U-B
T=Br+8"+ (1 —Br—88~) (757

v—1
+TM2(U—/30)(1~U), (7b)

for n>n4, and
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Fi=0, Fy=¢~'—(1+¢~ 1)( BU), (8a)

—B

T—Brt (1— BT+B>( _gj)

ry—I1
+—— MAU—By) (1= 1), (8b)

for 7 <74, where 7 is the location of the flame sheet given

by the implicit relation

1+Byé
1+¢

Both reactants vanish at 74 and T takes the adiabatic
flame value

= ﬁu)

Ti=Br+(1— BT+/3)( By

—1
+%M2(Uf_BU)(1_Uf)-

(10)
The implicit relation for the flame location is independent
of B and M. This is only the case for a linear viscosity law
‘where the momentum equation decouples from the energy
equation. For a more general viscosity law, the implicit
relation for the flame location depends on 81 and M as
well. Independently of the viscosity—temperature relation,
when using (3) and (4) to transform back to the physical
coordinates the diffusion flame location depends on all four
parameters: By, ¢, By, and M.

1ll. DERIVATION OF THE STABILITY EQUATIONS

The derivation of the equations governing the stability
of the reacting flow is straightforward except for the treat-
ment of the source term. In a previous study of the stability
of a reacting compressible mixing layer (Jackson and
Grosch!®), the limit of infinite Damkdhler number was
taken thus reducing the combustion zone to a flame sheet.
In the flame sheet limit the perturbation does not affect the
heat release in the sheet, it merely wrinkles the sheet.
Therefore, the only effect the reaction has on the flow sta-
bility is through the change in the mean temperature dis-
tribution from that of the nonreacting flow. With finite rate
chemistry, the perturbations not only wrinkle the combus-
tion zone but also change the rate of heat release in the
reaction. This, in turn, affects the stability of the flow.

As we are considering the three-dimensional inviscid
stability problem, the governing equations are

P=pT, (11a)

Pt (pu) -+ (pv),+ (pw) =0, (11b)
1

p(ut+uux+vuy+wu,)+y—A—fz P,=0, (11c)
1

plo~4uv+vv,4wv,) +W P,=0, (11d)
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1
p(w,+ uwx+va+wwz)+m P,=0, (11e)
p(T+uT x+vT+wT,)

—7—;— (P,+uPytvPy+wP,) =PQ, (1)
p(Fj,l+qu,x+UFj,y+ij,Z) -_——Q, j= 1,2, (llg)

with (O given by (1f). The mass fractions F j can be re-
placed by the quantities H;=T 4 BF ;, which satisfy equa-
tions without the source terms. The flow is perturbed with
wave disturbances of the form

[u9vswsP:p:T1ijFj] (x:yyt)
H,F ;1)
+ el d,a cos 60,w,11,p, T H j,ﬁ' 7]

= [ U’O;O’ I,P’T:

><(.]‘,)ei[oz(xcos 0+ zsin 9)—mt]’ (12)

where €<1, a is the wave number, 0 is the direction of
propagation in the x-z plane, and o is the frequency. For
spatial theory, @ is required to be real and solutions are
sought for which « is complex. For temporal theory, « is
assumed to be real and solutions are sought for which w is
complex. The amplification rates of the disturbances are
then given by —a; or w,, respectively. The disturbances are
two dimensional for 6=0" and otherwise oblique.

Upon carrying out the transformations from p to ¥ and
then to 7, it is straightforward to show that
s oA A y—1 =i
T+BF=H;= y THWyMzoz2 cos?0T (U—c)?’
where primes indicate differentiation with respect to 7, «
and o have been rescaled by \/)_c, and c=w/a cos 6 is the
complex phase speed. The source term (), expanded to
order € is

(13)

QO(F+eF |, Fy+efp,T +eT)

=O(FLF,T "mﬁ aQF o0 5 14
QP Fu ) +e( g Pitgp Pt gr B). (9
Using (13) and the relation

I’ +iyM*a? cos® (U —c) =0 (15)

found from (11d), the order € term for the quantity S
becomes

y—1 O+ O,H, ,
T T(QI+Q2)H_’}/M2(12 0082 9( U_c)2 I
+(BO— Q-0 T, (16)
with
aQ an a0

QIZBE’ sza_Fg_’ Q3=a—f- (17)

The equation for the pressure perturbation, found by uti-
lizing (11a)-(11c), (1le), (11f), and (16), is
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I 24 1-K i I’
_(U—c+(’_ 1)7)

—a*T[T—K,M? cos? (U —c)?| =0, (18)
where
=B3/J;, Ky=y—(y—1)(J/J}) (19)
and
(BO3—0—Q)T
h=li a(:ose(lU—i') ’ (20)
(Q+0)T
A= s 0U—a) 5
(O\H,+Q,H;) T
Jo=1—i o O.H;) 22)

la cos 8T (U—c)

The appropriate boundary conditions for IT are obtained
by considering the limiting form of (18) as 17— = o which
gives that

II-exp(+A_7), (23)
where
A% =a?[1—M?cos® 6(1—c)?],
(24)

Az_ =a2[)’T[[3T—M2 cos? By— C)z] .

The values of the phase speed for which A% vanishes are

\Br

Mcos 8’ (25)

C"'zl_McosO’ =But3f cos 6

where ¢ is the phase speed of a sonic disturbance in the
fast stream and c¢_ is the phase speed of a sonic disturbance
in the slow stream. When

1+ {Br
1-By’

Mcos 0=M = (26)
c,. are equal.

The nature of the disturbances and the appropriate
boundary conditions are illustrated by reference to Fig. 1
of Jackson and Grosch,?! which is a plot of ¢, vs M for a
typical value of B and By, the nondimensional tempera-
ture and speed at — o, respectively, and for 8=0°. These
curves divide the phase-speed—Mach-number plane into
four regions. If a neutral disturbance exists with a Mach
number and phase speed in region 1, it is subsonic at both
boundaries, and is classified as a subsonic neutral mode. In
region 3, the neutral disturbance is supersonic at both
boundaries, and is classified as a supersonic—supersonic
neutral mode. In region 2, the neutral disturbance is sub-
sonic in the fast stream and supersonic in the slow stream,
and is classified as a fast neutral mode. Finally, in region 4,
the neutral disturbance is supersonic in the fast stream and
subsonic in the slow stream, and is classified as a slow
neutral mode. For oblique modes (6540°) the four regions
still exist and only the boundaries, as defined by the ¢
curves in the phase-speed-Mach-number plane, are
changed from those of the two-dimensional modes. Finally,
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it is important to note that the sonic speeds are indepen-
dent of the reaction since the far field is chemically frozen.
Thus the classification scheme does not depend on the re-
action model used. A

In all of the stability calculations reported below, we
take D=e® as is suggested by the asymptotics of Grosch
and Jackson.!” In addition, we take y=14, Pr=1, Sc;=1
with varied B, ¢, Ze, By, Br, and M. Unless otherw1se
stated, stability calculations were performed at the down-
stream locations x=3 and 10.

V. LINEAR STABILITY RESULTS

A comprehensive study of the stability of the reacting
compressible mixing layer using the hyperbolic tangent for
the velocity profile and the flame sheet approximation for
the temperature and mass fraction profiles has been carried
out by Jackson and Grosch.'® Since then, Planche and
Reynolds®? have also carried out stability calculations for
the flame sheet model using the compressible boundary-
layer equations to calculate the velocity profile. Addition-
ally, Shin and Ferziger’?* reexamined the stability prob-
lem using a model of finite rate chemistry. In all of these
studies it was found that the reaction had important and
complex effects on the flow stability but only Jackson and
Grosch reported the presence of an absolute instability due
to the reaction. Because these authors used different mod-
els for the mean velocity and temperature profiles, a quan-
titative comparison of the stability results between the
flame sheet model and the finite rate chemistry model is
not possible.

Our primary interest is in the transition from convec-
tive to absolute instability in reacting flows and the com-
parison of the results for the finite rate model to those of
the flame sheet model. Therefore, we will not present an
exhaustive comparison of the stability results using the fi-
nite rate chemistry model as opposed to the flame sheet
model, but rather highlight some of the differences in the
stability of the flow owing to the use of the two models
through comparison of the phase speeds of the neutral
modes for both models. In this section we consider only
two-dimensional disturbances, thus setting 0=0°

The phase speeds of the subsonic neutral modes with
nonzero wave numbers in region 1 can be found by using
the regularity condition (Lees and Lin®®). Let S(n) be
defined by '

d ( _,dU
S(m)=5- (T —). (27)

Then if a neutral mode exists with a0 in region 1, the
phase speed will be given by cy=U(7,), where 7, is a root
of S. The corresponding neutral wave number, a, must be
determined numerically. In addition to the neutral modes
with a0 there may exist neutral modes having zero
wave number. The phase speed of such modes does not
satisfy (27) but can be found by an asymptotic analysis of
(18) in the limit a—0. The result of this analysis is, for
M=fy=0,
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FIG. 2. Plot of § vs 7 for various values of B with B;=0, Br=0.5, ¢=1,
Ze=20, M=0 at (a) x=3 and (b) x=10. Plot of neutral phase speeds
versus B with B7=0.5 at (¢) x=3 and (d) x=10, and with B;=1 at ()
x=3 and (f) x=10 for the same parameters as (a) and (b). Here — ——
in (c)—(f) denotes the neutral phase speeds corresponding to the flame
sheet model. The disturbances are two dimensional with 8=0°.

1t ieB/
W=Trer
, , (28)
He J“” (Fi+F)T'+B(FFy) d
—» (F1+F2)T—B(ZC—I)F1F2T' .
In the nonreactive case (8=0) (28) reduces to
. __BT+i\/B_T (29)
Y Br+1

which shows that the neutral phase speed is complex for
ay=0.

Figures 2(a) and 2(b) are plots of S vs i for various
values of the heat release parameter, 3, using the finite rate
model. The slow stream has a speed S;=0 and tempera-
ture B-=0.5. The equivalence ratio ¢ =1, with Ze=20 and
M=0. The results shown in Fig. 2(a) were obtained using
the temperature distribution at x=3, while those of Fig.
2(b) were obtained using the temperature distribution at
x=10. As one can see from examination of these figures,
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the rate of heat release has a significant effect not only on
the number of roots of .S, but also on their values. When
the heat release parameter is small ($=0.1), there is a
single root of .S with 7, close to zero at both x=3 and 10.
With B~ 1.5 there are three roots of S at x=3. One root is
located near 1,= — 1.5, while the other two are a double
root with 7, just greater than zero. A further increase in 8
to 2 results in a shift of the first root to more negative
values of  and a splitting of the double root into two
distinct roots, one close to zero and the other near 7=1.
Qualitatively similar behavior is shown in Fig. 2(b) at
x=10.

The corresponding neutral phase speeds (cy) (indi-
cated by boxes) obtained from the roots of S are shown in
Figs. 2(c) at x=3 and 2(d) at x=10 for B;=0.5 (the
slow stream is cool), and Figs. 2(e) at x=3 and 2(f) at
x=10 for B,=1 (both streams are at the same tempera-
ture). These are shown as functions of the heat release
parameter 8 with the values of the other parameters given
above. The real part of the neutral phase speeds for the
ay=0 mode, found from (28), is shown in these figures by
inverted triangles. The flame sheet model results, shown as
dashed lines in these figures, use the Lock velocity profile
as required for consistency in comparison with the results
using the finite rate chemistry model; thus, they are slightly
different from those reported by Jackson and Grosch'®
where a hyperbolic tangent velocity profile was used.

In the nonreactive case (8=0), there are two neutral
modes with different phase speeds which coincide at

7=0.577 53 (Jackson and Grosch'?). With 8;-=0.5 these
neutral modes of the nonreacting flow are slow modes since
they have phase speeds less than 0.5 [see Figs. 2{(c) and
2(d)]. One of these neutral modes has a phase speed de-
termined by a root of S given by ¢y=0.391 344, and the
other member of this pair has a phase speed determined by
(29) with the value cy=(14iv2)/3. With Br=1, these
neutral modes are fast modes since they have phase speeds
greater than 0.5 [see Figs. 2(e) and 2(f)]. Again, one of
these has a phase speed determined by a root of S which is
cy=0.587 270, and the other member of this pair has a
phase speed determined by (29) with the value
ex=(1+10)/2.

When heat release is included (8> 0) and the flame
sheet model is used [denoted by the dashed lines of Figs.
2(c)-2(f), there are, in general, four neutral modes: two
are found from the Lees and Lin condition (27), called
modes 1 and 2; one is found from the zero wave-number
asymptotics (29), called mode 3; and the remaining one,
mode 4, is a mode with phase speed cy=U(%/). The cor-
responding wave number for this last case needs to be de-
termined in the numerical limit as one approaches the neu-
tral mode through the unstable modes. Of the two neutral
modes found from (27), only one (mode 1) exists at f=0.
Mode 1 is a slow mode for 8;<0.577 53 and its phase
speed is a decreasing function of B [Figs. 2(c) and 2(d)]
while for 87> 0.577 53, mode 1 is a fast mode whose phase
speed is an increasing function of 8 [Figs. 2(e) and 2(f)].
Mode 2 only exists for 8>0 and shows the opposite be-
havior of mode 1. The third neutral mode, that with
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ay=0, exists at B=0 and has a phase speed which is con-
stant for all values of the heat release parameter, 3. Finally,
the fourth neutral mode appears at the same value of 8 as
the second mode, has a phase speed which is equal to
U(7ny), and is independent of 8. When both streams have
the same temperature, S,=1, the phase speeds of the third
and fourth modes are equal. These neutral curves separate
stable from unstable regions with an unstable region lying
between modes 1 and 3 (called the slow branch) and an-
other between modes 2 and 4 (called the fast branch).

As with the flame sheet model, there are also four
neutral modes when using the finite rate chemistry model.
The phase speeds of modes 1, 2, and 4 are determined from
the Lees and Lin condition (27), and the third neutral
mode is again the zero wave-number mode with phase
speed determined from (28). The reason the fourth mode
of the flame sheet model is not determined from (27) is
that the Lees and Lin condition fails to hold because S is
discontinuous and the derivatives of the eigenfunctions be-
come discontinuous at the flame sheet position. For the
finite rate chemistry model, the phase speed of the fourth
neutral mode approaches that given by mode 4 of the flame
sheet model, i.e., cy=U(7,), as x increases. The phase
speeds of the neutral modes 1, 2, and 4 are indicated by
boxes in Figs. 2(c)-2(e), and the phase speed of the third
neutral mode is indicated by inverted triangles. Unlike the
flame sheet model, the neutral phase speeds for modes 3
and 4 are functions of the heat release parameter 3 and the
downstream position x.

The value of the phase speeds of all four neutral modes
will depend critically on whether the x location is upstream
or downstream of ignition. In the region of ignition, the
temperature and mass fraction fields vary rapidly with po-
sition and consequently the parallel flow approximation no
longer holds. If x is sufficiently downstream of the ignition
point, neutral modes 2 and 4 are present. At x=3 and with
Br=0.5 [Fig. 2(c)] the phase speeds of neutral mode 3
show large variations between 0.5 <f8<2. This is to be
expected because ignition occurs in this region and the
parallel flow assumption fails. As 3 is increased past 2, the
phase speeds of all four neutral modes approach the phase
speeds predicted by the flame sheet model. Similar behav-
ior is shown in Fig. 2(d) at x=10. The variations in the
real part of the phase speeds of the ay=0 neutral mode
appear smaller than at x==3 which is consistent with (5b)
since the source term is proportional to x 8 and thus at
larger x the ignition region extends over a smaller range of
B. All of the phase speeds which were determined from
(27) and (28) have been confirmed by full numerical sta-
bility calculations.

V. ABSOLUTE-CONVECTIVE INSTABILITY

In the stability problem, the eigenvalue is a zero of the
characteristic equation relating the wave number o and the
frequency o at fixed Mach number. Since a(w) has a
square root branch point singularity at a zero of the com-
plex group velocity do/da (Gaster'®), transition from
convective to absolute instability occurs when the zero lies
on the real w axis. We therefore choose o to be real, « to
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FIG. 3. Plot of «; vs «, for various values of By at x==10 showing the
saddle point. Here =2, ¢=1, B7=0.5, Ze=20, and M =0. The distur-
bances are two dimensional with 8=0".

be complex, and carry out a numerical search for a zero of
dw/da. In these calculations, we take y=1.4, Pr=1,
Sc;=1, and vary B, ¢, Ze, By, Br, and M. Unless otherwise
stated, Ze=20, M =0, and ¢=1 in all of the calculations
reported below. Finally, we note that for spatial stability it
was shown by Jackson and Grosch'® that the fast branch is
convectively unstable for all 3, while the slow branch un-
dergoes a transition from convective to absolute instability.
Hence, all results shown in this section are for the slow
branch. We first preseni results for two-dimensional dis-
turbances (8=0°) and then for oblique waves.

A plot of a; vs a, at x=10 as the real frequency
varies continuously is shown in Fig. 3 with =2, B;=0.5,
0=0", and various values of 8. There is a saddle point for
the speed of the slow stream, 3y, between 0.014 and 0.016
which is the same qualitative behavior as first observed
with the flame sheet model!® and shows the presence of a
square root branch point singularity due to a transition
from convective to absolute instability. For the flame sheet
model, this transition from convective to absolute instabil-
ity occurs at a fixed 3 independent of x. For the finite rate
chemistry model, the transition value of B, is dependent on
the downstream position x, and its variation is shown in
Fig. 4 for B=2 and B;=0.5. The region below the curve
designates conditions in which the flow is absolutely un-
stable and the region above the curve designates conditions
where the flow is convectively unstable. For all non-
negative By, the flow is convectively unstable up to x~ 1.9,
which is just beyond the ignition point. Once ignition has
occurred, there is a range of non-negative 8 in which the
flow is absolutely unstable. As the flow field evolves down-
stream, the range of B, in which there is an absolute in-
stability decreases and asymptotes to that predicted by the
flame sheet model given by the dashed line. For the param-
eters of this calculation, the flow will always exhibit an
absolute instability if 0<f;<0.015 and even up to about
0.038 near the ignition point. The slow moving stream
must be nearly stationary if the flow is to be absolutely
unstable. This is broadly consistent with previous studies
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"FIG. 4. Transition value of By from absolute to convective instability as
a function of the downstream coordinate x for f=2, ¢=1, B;=0.5, Ze
=20, and M=0. Here ——— denotes the value given by the flame sheet
model. The disturbances are two dimensional with 6=0".

where an absolute instability was only found if the streams
were moving in opposite directions.

The boundary between regions of convective and ab-
solute instability in the parameter space is mapped out by
a systematic set of calculations at two fixed locations: x=3
and 10. These results are presented in Figs. 5-10 for two-
dimensional disturbances with 6=0°. For the results
shown in Figs. 5-8 the Mach number is zero. The Mach
number is varied for the results shown in Figs. 9 and 10.
The results presented in Figs. 11 and 12 show the bound-
ary of the region of absolute instability in the
By—Mach-number plane for oblique waves with 6540°.

In Fig. 5 we show the locus of the branch point posi-
tion in the BB plane for 87=0.5. The region to the left of
each curve is that of convective instability and that to the
right the region of absolute instability. At x=3 the flow
can become absolutely unstable for the heat release param-
eter 5> 1.55 if the speed of the slow stream 3, is sufficiently
small. On the other hand, at x=10 the transition from
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0.031

0.02

0.01

0.00 1 L ] 1

FIG. 5. Transition value of B from absolute to convective instability as
a function of B for ¢=1, B;=0.5, Ze=20, and M=0 at x=3 and 10.
Here — — — denotes the value given by the flame sheet model. The distur-
bances are two dimensional with 6=0°.
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are two dimensional with 8=0".

convective to absolute instability first occurs at f~1.3 with
By=0. For B> 1.3 the flow can be absolutely unstable for
some range of positive 8. Also at x=10, the flame sheet
model results (dashed) are in excellent agreement with
those obtained using the finite rate chemistry model. Even
at x=3, the finite rate chemistry model results asymptote
to the flame sheet model results as f3 is increased. In Fig. 6,
the effect of the temperature ratio By on the transition
value of the speed at — 0, By at a value of the heat release
parameter of B=2 is shown. The region below each curve
is that of absolute instability. At this value of 8 the flow is
always convectively unstable for B> 0.62. At both x=3
and 10 there is a range of cooling of the stream at — o for
which the flow becomes absolutely unstable provided that
By is sufficiently close to zero. The range of S for which
absolute instability can occur is smaller at x=3 than at
x=10. Figure 7 is a plot of the transition value of B versus
the Zeldovich number at =2 and B,=0.5. Decreasing
values of Ze result in a decrease in the transition value of
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0.04 | Convecfive
L x=3
. 0.03 /N\_'_\ﬂ
.
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Absolute

0.00 ! L : ] ol L
0 5 10 15 20 25 30 35

Ze

FIG. 7. Transition value of B from absolute to convective instability as
a function of Ze for ¢=1, f=2, B4=0.5, and M'=0 at x=3 and 10. Here
— — — denotes the value given by, the flame sheet model. The disturbances
are two dimensional with 8=0".
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FIG. 8. Transition value of B from absolute to convective instability as
a function of ¢ for B=2, Br=0.5, Ze=20, and M=0 at x=3 and 10.
Here — — — denotes the value given by the flame sheet model. The distur-
bances are two dimensional with 8=0°.

By At x=3 the transition from convective to absolute
instability does not occur for values of Ze less than about 4.
Also at the same x there is a substantial difference between
the finite rate chemistry model results and that of the flame
sheet model (dashed) even at large Ze. On the other hand,
at x=10 it is apparent that for Ze larger than about 10
there is essentially no effect of increasing Ze on.the transi-
tion value which is nearly the same as that calculated from
the flame sheet model. Figure 8 is a plot of the transition
value of By versus the equivalence ratio at f=2 and
B7r=0.5. For fuel lean mixtures (i.e., ¢ < 1) the region of
absolute instability is slightly enhanced. For fuel rich mix-
tures there is a substantial decrease in the transition value
of By, and beyond ¢=1.7, the flow is always convectively
unstable.

The effect of increasing the Mach number on the tran-
sition value of By with a fixed heat release, =2, equiva-
lence ratio, ¢=1, and temperature at — 0, Br=0.5, is
shown in Fig. 9. Increasing the Mach number decreases the
region of absolute instability until it completely disappears
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FIG. 9. Transition value of By from absolute to convective instability as
a function of M for ¢=1, f=2, Br=0.5, and Ze=20 at x=3 and 10.
Here —— — denotes the value given by the flame sheet model. The distur-
bances are two dimensional with 6=0".
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FIG. 10. Transition value of 8 from absolute to convective instability for
the flame sheet model as a function of M with ¢= 1. Resulis are shown for
—O—B7=0.5 and f=2; -[0-:fr=0.15 and B=2; and —/\—Br=0.15 and
B=4. The disturbances are two dimensional with 6=0".

at M ~0.8. At any Mach number less than 0.8 the range of
By over which the flow is absolutely unstable decreases
with increasing downstream distance. The effect of varying
the temperature at — o, 37, and the heat release parame-
ter B, on the boundary between the regions of convective
and absolute instability in the B;~-M plane is shown in Fig.
10. With B fixed, decreasing By, that is, cooling the flow at
— o0, results in an increase in the range of 5 for which the
flow is absolutely unstable. Similarly, increasing the heat
release parameter, 3, with fixed temperature at — o also
increases the range of By over which the flow is absolutely
unstable. Although the range of By over which the flow is
absolutely unstable is largest for subsonic flow, sufficient
cooling at — o and/or heat release can cause an absolute
instability for supersonic mixing layers.

Finally, in Figs. 11 and 12 we show how having ob-
liquely traveling disturbances affects the convective/
absolute instability transition. The results presented in Fig.
11 show that increasing the angle of propagation with re-
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FIG. 11. Transition value of By from absolute to convective instability for
the flame sheet model as a function of M with ¢=1, =2, and B=0.15
for two-dimensional and oblique disturbances with 8=0° 45°, 60°, and
75°.
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FIG. 12. Transition value of B from absolute to convective instability for
the flame sheet model as a function of M cos 8 for ¢=1, =2, Br=0.15,
and Ze=20 at x==10 for two-dimensional and oblique disturbances with
g=0", 45°, 60°, and 75°.

spect to the mean flow direction, 6, increases the range of
By over which the reacting flow is absolutely unstable, at
least over the parameter ranges examined in this study.
This effect seems to be a purely kinematic one in that the
wave propagating at an oblique angle relative to the mean
flow direction “sees” a flow with a lower Mach number.
This is evident from Fig. 12 where the data of Fig. 11 are
plotted versus an effective Mach number, M cos §, for the
oblique disturbances. This rescaling collapses all of the
curves of Fig. 11 onto essentially a single curve, corre-
sponding that for 6=0"

The results presented in Figs. 4-12 give a rather com-
plex picture of the convective/absolute instability transi-
tion in the reacting mixing layer. The complexity is in part
due to the fact that the reacting mean flow is governed by
a large number of parameters. However, despite this, a
overall interpretation of these results can be suggested
which leads to a better understanding of the convective/
absolute transition in both reacting and nonreacting flows.

Previous studies of the convective/absolute instability
transition in nonreacting subsonic compressible mixing
Jayers'3'® have shown them to be convectively unstable
unless there was an appreciable backflow. Thus the veloc-
ity shear must be sufficiently large for the mixing layer to
be absoluiely unstable. With the Mach number less than
one, the temperature gradient within the layer does not
appear to have a major effect on the transition to absolute
instability of a nonreacting compressible mixing layer. In
the case of a reacting mixing layer the magnitude of the
required velocity shear is reduced so that the flow with a
non-negative [ can be absolutely unstable. This suggests
that the increased temperature gradient within the layer
due to the reaction can trigger an absolute instability with-
out backfliow, i.e., with a non-negative critical value of 3.
All of the results presented in Figs. 5-12 are consistent
with this conclusion which is explored in more detail be-
low.

Because of the approximations used in this study the
velocity profile (thus the shear across the layer) is depen-
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dent on only one parameter, 3. (This is an advantage of
using the simple property variations as discussed above;
the velocity and temperature gradients can be varied inde-
pendently which is not possible for more complex thermo-
dynamic models of the fluid). As mentioned above, B0
because solutions to (5a) for the velocity field do not exist
with backflow at — «o. The results presented here show
that the flow upstream of ignition is always convectively
unstable. We could have carried out stability calculations
within the ignition region but the results would be of rather
dubious validity because the large streamwise variation in
temperature which occurs within a small distance in the
ignition region violates the quasiparallel flow assumption.
However, just downstream of ignition our results show
that the flow can be absolutely unstable over a range of
non-negative By, at least for some range of Mach numbers.
Thus the temperature and mass fraction distributions
across the reacting layer must have a major effect on the
convective/absolute instability transition. In particular, the
presence of a large temperature gradient due to the reac-
tion in the mixing layer appears to cause a convective/
absolute transition. We further note that the combustion
zone evolves to a flame sheet with increasing distance
downstream of ignition'” and that the results of Figs. 5-12
indicate that the trends in the convective/absolute transi-
tion as the flow parameters are varied are reasonably well
predicted using the flame sheet model. This suggests that
the results of the flame sheet model [described by Egs.
(7)—(10)] are not spurious results owing to the disconti-
nuity of derivatives at the flame sheet, but are real effects of
a concentrated addition of heat. The agreement of the finite
rate and flame sheet results indicates that we can use the
flame sheet model to investigate the trends.

The results of Figs. 9-12 show that, whatever the val-
ues of the other parameters, this flow will be convectively,
rather than absolutely, unstable at sufficiently large Mach
number. From Eqgs. (7b) and (8b) it is clear that, for any
B and ¢, if M is large enough the temperature distribution
in the layer will be approximated by that of a nonreacting
flow which requires a negative 8y for an absolute instabil-
ity. Thus large Mach numbers cause the flow to be con-
vectively, rather than absolutely, unstable. From Figs. 5
and 10 in particular, cooling the slow stream (decreasing
Br) and increasing the heat release (increasing [3) both
cause an increase in the range of By and Mach number
over which an absolute instability exists. An increase in 3
increases the magnitude of the temperature gradient in
1 <7, and decreases it in 17> 7. However, the magnitude
of the temperature gradient on both sides of the flame is
increased by a decrease in 7. This suggests that it is the
magnitude of the temperature gradient induced by the
flame which must be large for the absolute instability to
occur.

Finally, one can see why a very rich or very lean mix-
ture inhibits absolute instability. If the flow is very fuel
rich, ¢»1, Eq. (9) yields Uy=By so ny— — o and from
Eq. (10) T ;=fB7. On the other hand if the flow is very fuel
lean, ¢—-0, Eq. (9) shows U,~1 and 7,- + . This
gives, from Eq. (10), T y~14-pB. In both cases there is a
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distinct flame (the flame sheet) but it occurs far away from
the center of the mixing layer. Since 87/dn is proportional
to dU/dm, which is very small outside of center of the
layer, the temperature gradient due to the flame is very
small; thus absolute instability is not present. These con-
siderations suggest that a slightly lean mixture will en-
hance absolute instability while a very lean or very rich
mixture will inhibit absolute instability as is shown in Fig.
3.

Vi. WAVE PACKETS

In the previous section we found that the flame sheet
model can provide excellent predictions on the transition
values provided one is downstream of ignition and Zeldov-
ich numbers are greater than about 10. Therefore, in cal-
culating the wave packets we use the flame sheet model
described in Sec. II. The equation governing the stability of
this flow is (18) with K;=K,=1, valid on either side of
the flame sheet. To illustrate the dynamics of the instabil-
ity, contrasting the cases of convective instability and ab-
solute instability, we present selected results for By=0,
Br=0.5, and ¢=1 and vary 8 and M. We take 8=0°in this
section and thus consider only two-dimensional wave pack-
ets.

Figures 2(c) and 2(d) show the variation of the phase
speeds of the neutral modes as a function of 5. As dis-
cussed in Sec. IV there can be both fast and slow neutral
branches and hence both fast and slow unstable modes.
The fast branch is convectively unstable for all 3, while the
slow branch may undergo a transition from convective to
absolute instability. This behavior is illustrated in Fig. 13
where we plot the spatial growth rates of both the fast and
slow branches as a function of @ for several values of f3.
The fast branch shows regular behavior as f3 increases,
with the maximum value of the growth rate first increasing
and then decreasing slightly. In addition, the range of un-
stable frequencies increases with increasing 3. On the other
hand, for the slow branch the spatial growth rate forms a
cusp as 3 approaches 1.38, indicating the transition from
convective to absolute instability. This transition can also
occur at fixed 3 as one of the other parameters is varied; for
example, Fig. 3 shows the saddle point in the complex «
plane which occurs as By is varied with =2. For temporal
stability, the growth rates of both the fast and slow
branches, shown in Fig. 14, have regular behavior as 3 is
increased and therefore do not indicate a transition from
convective to absolute instability even though such a tran-
sition occurs at the same value of 3. This difference in the
behavior of spatial stability as opposed to temporal stabii-
ity was first noted by Gaster.'©

A complementary approach to investigate the transi-
tion from convective to absolute instability is to examine
the response, I(x,t), of the flow to an impulse in space and
time (see Huerre and Monkewitz!? and the references cited
therein). The impulse gives rise to a wave packet in the
(x,t) plane. The real part of [ is the wave packet and its
absolute value is the envelope. An asymptotic expansion of
the impulse response for large time can be determined by
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FIG. 13. Plot of the growth rates of the spatial stability problem for the
fast and slow modes of the flame sheet model as a function of @ for
various values of 8. Here M =0, B,=0.5, By=0, and ¢=1. The distur-
bances are two dimensional with 6=0°.
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FIG. 14. Plot of the growth rates of the temporal stability problem for the
fast and slow modes of the flame sheet model as a function of a for
various values of 8. Here M =0, B;=0.5, B,=0, and ¢=1. The distur-
bances are two dimensional with 6=0°.
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the method of steepest descent. The details of this analysis
are given by Gaster'"?® and for what follows we use the
leading term in his expansion,

2r 172
L ) —1
I—((wa/d&f)“t)a=a*e [1+0(r )1, (30)
where
X
2:1’(0&*;—&)((1*)). (31)

The value of «* is found from the requirement that the
rays in the wave packet have constant real values of the
group velocity, C,. Thus,

c do x
g: (E) =0 -? ’

The set of {a*,w(a*)} pairs which satisfy (32) are found
by choosing a (real) value of x/f and then carrying out an
iterative search in the complex a and w spaces for an o*
which satisfies (32) and also permits the solution of (18)
with the appropriate boundary conditions.

There are two, generally distinct, wave packets: the
first is made up of the unstable modes of the slow branch,
which are absolutely unstable in certain parameter ranges,
and the second is made up of the unstable modes of the fast
branch which are always convectively unstable. The real
part of =, the temporal growth rate along the rays, is plot-
ted in Fig. 15 for both the fast and slow unstable branches

(32)
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FIG. 16. Plot of the real part of = as a function of x/¢ for various Mach
numbers. Here f=4, Br=0.5, B;;=0, and ¢=1. The disturbances are two
dimensional with 6=0".

at M =0 for various values of 8. As f increases, the max-
imum of the real part of = for the slow branch decreases
and the range of x/¢ for which the real part of X is positive
decreases. For the fast branch, the maximum growth rate
increases by a small amount, and the range of unstable
frequencies increases. Figure 15(b) is an enlargement of
Fig. 15(a) near x/t=0. The real part of = goes to zero at
x/t slightly above 0.03 for f=0.5. For 8=1.38, it is zero at
x/t=0, and for B=4, it is zero at x/t~ —0.035. The fact
that the real part of X is positive for a range of negative
values of x/t shows that the wave packet is traveling both
upstream and downstream and therefore that the flow is
absolutely unstable. It is important to note that the growth
rates in the region of x/#<0 are small compared to the
maximum growth rate. This shows that the upstream prop-
agating portion of the wave packet grows slowly compared
to the downstream propagating part. The effect of increas-
ing the Mach number on the temporal growth rate along
the rays is shown in Fig. 16 where the variation of £ with
x/t for =4 and various Mach numbers is shown. The
temporal growth rates for the fast branch are only slightly
affected by the change in M from O to 0.8 with a small
decrease in the maximum and the range of x/¢ over which
it is positive. There is a much greater effect on the slow
branch. The peak value decreases by more than a factor of
2 as M increases to 0.8 and the range of x/¢ over which this
branch is unstable decreases. For M =0.8 the slow branch
only has a positive growth rate for x/¢> 0 indicating that
there is no absolute instability at this Mach number.

The wave packets resulting from the impulse with
M =0 and =4 are shown at (a) z=-100 and (b) #=500 in
Fig. 17. In each figure there is a pair of wave packets: one
is a fast packet containing the unstable modes of the fast
branch and the other a slow packet containing the unstable
mode of the slow branch. As the pair evolves in time, they
move apart because of the substantial differences in their
group velocities. At =100 [Fig. 17(a)}] the slow packet is
somewhat larger than the fast packet and clearly exists in a
region of x <0 showing the absolute instability. At #=500
[Fig. 17(b)]1 both packets have grown, spread, and moved
apart. The notation, X 10, close to the slow packet means
that the amplitude of the slow packet, but not that of the
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FIG. 17. Plot of the wave packets and envelopes for the fast and slow
modes as a function of x at (a) =100 and (b) #=500. The slow packet
is absolutely unstable and the fast packet convectively unstable. Here
B=4, M=0, Br=0.5, By=0, and ¢=1. The disturbances are two dimen-
sional with §=0".

fast packet, has been multiplied by a factor of 10 in order
that it be visible on this scale. In Fig. 17(b) the fast packet
is much larger than the slow packet because of its greater
growth rate. The slow wave packet extends into the region
x <0, but because of the scaling it is difficult to see this on
the figure. As time increases, the slow packet will continue
to grow, but at a much slower rate than the fast packet,
and spread both upstream and downstream. However, the
upstream propagation is very slow.

Figure 18 shows the wave packets generated with
B=4, as in Fig. 17, but with M =0.4. Both packets have
nearly the same group velocity as at M =0 but smaller
growth rates. Again, the upstream propagation of the slow
packet at rt=100 is visible but is not readily visible at
t=500 because of the scale. Since there is a substantial
decrease in the growth rates of the slow branch relative to
those of the fast branch as Mach number increases, the
slow packet is much smaller than the fast packet, particu-
larly at r=500. With the Mach number increased to 0.8
(Fig. 19), the absolute instability has vanished [the up-
stream propagation shown in Fig. 19(a) is artificial owing
to the relatively small time, for larger time it has com-
pletely disappeared consistent with the results of Fig. 16].
The amplitudes of both branches are further decreased be-
cause of the increase in the Mach number, with that of the
slow branch more so than that of the fast branch. The fast
packet at this Mach number is much larger than the slow
packet; note the scaling of 500 for the slow packet in this
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FIG. 18. Plot of the wave packets and envelopes for the fast and slow
modes as a function of x at (a) #=100 and (b) #==500. The slow packet
is absolutely unstable and the fast packet convectively unstable. Here
B=4, M=04, B;=0.5, By=0, and ¢=1. The disturbances are two di-
mensional with 6=0°.

figure. The absolute instability is also absent at higher
Mach numbers. The results presented here on the
convective—absolute transition have been for Br=0.5. Sim-
ilar results are also found at other values of B

VIl. CONCLUSIONS

. In this paper we have studied the absolute/convective
instabilities of a compressible mixing layer with finite rate
chemistry using a one-step, irreversible reaction of Arrhen-
ius type. It is important to note that the similarity solution
for the velocity profile does not permit reverse flow, and
thus all results presented here are for coflowing mixing
layers.

It was found that absolute instability occurs for mod-
erate heat release without the introduction of backflow.
The effects of the temperature ratio, heat release parame-
ter, Zeldovich number, equivalence ratio, direction of
propagation of the disturbances, and the Mach number on
the transition value of the velocity ratio were given. It was
found that the flame sheet model provides excellent pre-
dictions on the transition values provided one is down-
stream of ignition and Zeldovich numbers are greater than
about 10. In particular, with fixed but small velocity ratio,
it is possible to induce an absolute instability by increasing
the heat release parameter or by decreasing either the
equivalence ratio or the temperature ratio. If the slow
stream is sufficiently cool and the heat release sufficiently
large an absolute instability occurs with the fast stream
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FIG. 19. Plot of the wave packets and envelopes for the fast and slow
modes as a function of x at (a) =100 and (b) £=500. Both the slow and
fast packets are convectively unstable. Here B=4, M =0.8, 3=0.5,
Bu=0, and ¢=1. The disturbances are two dimensional with 8=0".

moderately supersonic. For a sufficiently rich mixture the
flow will always be convectively unstable. We conclude, on
the basis of the results of our calculations and the analysis
of Sec. V, that cooling the slow stream (decreasing ),
using a slightly lean mixture (¢ < 1), and having a large
heat release (large ) will all tend to increase the magni-
tude of the temperature gradient in the layer and that this
causes the flow to undergo a transition from convective to
absolute instability. We also showed that the effect of the
direction of propagation on the transition from convective
to absolute instability is a kinematic one. The fiow field sees
the effective Mach number (31 cos 8) in the direction of
propagation.

Finally, we have shown that wave packet calculations
are very useful for displaying the structure of both convec-
tively and absolutely unstable flows. Because there is both

a slow and a fast branch of unstable waves an impulse

generates a pair of wave packets in both the case of abso-
lute as well as convective instability. In particular, the
wave packet calculations have shown that when the react-
ing shear layer is absolutely unstable it is weakly unstable.
That is, with increasing Mach number from zero and a
fixed rate of heat release, the absolute instability becomes
progressively weaker in that the range of negative x/z over
which the growth rate is non-negative grows smaller and
the growth rate in this region and the speed of the up-
stream traveling waves.also become smaller. Thus a wave
packet will grow and spread throughout the entire domain,
but it may take a long time for this to happen.
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In future work, we plan to carry out numerical simu-
lations of the absolutely unstable mixing layer with finite
rate chemistry. This approach. is similar to that of Hanne-
mann and Qertel”” who studied the absolute/convective
instabilities of the nonreacting incompressible wake. The
object of this will be to examine the effects of the nonpar-
allel mean fiow, in particular in the ignition region, and the
nonlinearity of the disturbances.
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