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It is well known that the growth rate of instability waves of a two-dimensional free shear layer
is reduced greatly at supersonic convective Mach numbers. In previous works, it has been shown
that new wave modes exist when the shear layers are bounded by a channel due to the coupling
effect between the acoustic wave modes and the motion of the mixing layer. The present work
studies the simultaneous propagation of multiple stability waves using numerical simulation. It
is shown here that the coexistence of two wave modes in the flow field can lead to an oscillatory
growth of disturbance energy with each individua! wave mode propagating linearly. This is
particularly important when the growth rates of the unstable waves are small. It is also shown
here that the propagation of two neutrally stable wave modes can lead to a stationary periodic
structure of rms fluctuations. In the numerical simulations presented here the forced wave
modes are propagating at same frequency, but with different phase velocities. In order to track
the growth of each wave mode as it propagates downstream, a numerical method that can
effectively detect and separate the contribution of the individual wave is given. It is
demonstrated that by a least square fitting of the disturbance field with eigenfunctions the
amplitude of each wave mode can be found. Satisfactory results as compared to linear theory are

obtained.

I. INTRODUCTION

In this paper we present results of numerical simula-
tions of a confined supersonic mixing layer (Fig. 1). It is
well known that at high supersonic convective Mach num-
bers (Mach number in the reference frame of the large-
scale structure), the familiar Kelvin—Helmholtz instability
wave of a free mixing layer becomes stabilized due to the
increased compressibility of the flow. It was found in re-
cent experiments, 1-3 as well as in numerical simulations,*
that the spreading rate of a mixing layer at a supersonic
convective Mach number is a factor of 4 or 5 smaller than
at a low subsonic convective Mach number. As a result,
large-scale rollups of the vorticity layer, a standard feature
of low-speed free shear layers, are absent and the mixing of
the two streams is inefficient. In efforts to explain these
observations, a number of recent studies on the stability of

the free shear layer using inviscid quasiparallel linear the-

ory have been carried out.”® These studies showed that the
intrinsic instability wave of the shear layers has a much
reduced growth rate when the convective Mach number
becomes supersonic. It was suggested that this reduction of
the unstable wave growth is directly responsible for the
small spreading rate of the supersonic mixing layers ob-
served in the experiments and direct numerical simula-
tions.

At the same time, it was also found that a bounded free
shear layer behaves differently from an unbounded one at
high supersonic convective Mach numbers.’™!! These stud-
ies revealed that the same shear layer, when bounded by a
channel consisting of flat walls at the top and bottom, sup-
ports new instabilities due to the coupling between the
acoustic wave modes of the channel and the motion of the
shear layer. A thorough treatment of normal modes asso-

1420 Phys. Fluids A 5 (6), June 1993

0899-8213/93/061420-07$06.00

ciated with a bounded shear layer was given by Tam and
Hu.’ Systematic calculations of normal mode solutions
showed that four families of waves exist. In their naming
convention, class 4 and class B modes are the unstable
waves. Class A waves are related to the wave reflections
from the lower wall and class B waves are related to the
reflections from the upper wall. In addition, there are two
families of neutrally stable waves. They were called class C
and class D acoustic waves since they are related to the
acoustic reflection off both walls. Typical dispersion rela-
tions of the four waves and the growth rates of A and B
waves are given in Fig. 2, where the calculations have been
made for two-dimensional waves at M, (Mach number of
the upper stream)=3.5, M, (Mach number of the lower
stream)=1.2, and the sound speeds ratio of the two
streams a,/a,=1.2. In Fig. 2 a subscript has been used to
indicate the corresponding mode number. It is to be noted
that although the D waves have negative phase velocities,
all waves have positive group velocities and hence are
downstream propagating waves.

When disturbances are initiated upstream, it is ex-
pected that the wave with the largest growth rate domi-
nates downstream. Observation of the spatial growth rates
of the 4 and B waves indicate that at certain frequencies
the 4 waves are dominant, while at other frequencies the B
waves are the dominant waves. Yet the 4 and B waves
have comparable growth rates. In numerical simulations,
unless the upstream perturbation is an eigenfunction of a
single wave mode, it is likely that both the 4 and B unsta-
ble waves as well as the neutrally stable waves are excited
and propagate downstream. Consequently, simulations of a
bounded mixing layer could be significantly different from
the unbounded counterpart in two respects. First, since the
A and B waves have a comparable growth rate, both waves
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are important in downstream propagation. Second, because
the growth rates of the unstable 4 and B waves are gener-
ally small at high convective Mach numbers, no large scale
vorticity roll-ups are present, and, as a result, the excited
neutrally stable waves may also constitute an important
part in the downstream flow field.

The present work is concerned with the cases when
multiple waves are forced at the same frequency. One ob-
jective of this paper is to show that the coexistence of
multiple propagating waves can lead to an appearance of
oscillatory growth of the disturbance flow field, even
though the waves are growing linearly. A second objective
of this paper is to construct a numerical method that can
detect the growth of individual waves as they propagate.

In many experimental and computational studies it is
essential to know the growth or decay rate of the propa-
gating waves. For example, in the studies of turbulent tran-
sitions of plane mixing layers,'>'® the spatial evolutions of
the fundamental and subharmonic waves are monitored as
the waves propagate downstream. The interplay of the fun-
damental and subharmonic waves is studied by their
growth and saturation as they propagate. Usually the
waves are identified by their frequencies using time series
spectrum analysis of the disturbances at chosen down-
stream locations. The assumption is that, for plane mixing
layers, the only dominant growing (unstable) wave mode
is the Kelvin—Helmholtz (KH) wave. Thus the frequency
spectrum naturally indicates the strength of the KH wave
at any given frequency. For this reason, the local wave
number of the disturbances can also be estimated from the
phase difference of simultaneous measurements of the time
series at two nearby points in space.!* In this way the
dispersion relationship can be established experimentally.
However, when multiple wave modes of comparable
strength are propagating at the same frequency but with
different phase velocities, the growth or decay of each in-
dividual wave mode cannot be distinguished from an ex-
amination of the frequency spectrum alone. One method of
tracking each wave is to use a cross-bispectrum analysis.'®
In this paper a method based on the eigenfunction expan-
sion is proposed. It is shown numerically that by an ex-
pansion of the disturbances in the form of eigenfunctions it
is possible to track and separate the growth of each indi-
vidual mode.

In Sec. IT we give the formulation of the problem and
a description of the numerical methods. The method of
eigenfunction expansion for detecting wave amplitudes is
also described. In Sec. III resuits of numerical simulations
and eigenfunction expansions are presented. Two cases are
considered and discussed. Section IV contains the conclu-
sions.

il. FORMULATION
A. Governing equations and numerical simulation

We consider a two-dimensional mixing layer formed
between two streams of uniform parallel flow confined in-
side a channel (Fig. 1). The coordinate system is such that
x is in the direction of the flow and y is in the direction
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FIG. 1. Schematic drawing of a bounded shear layer.

perpendicular to x. The governing equations for an invis-
cid, compressible flow, in conservative form, can be written
as

Ju JE JF g )
az+ax+ay* A (1)
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and p=pT, e,= (1/9) T +[(y—1)/21M3 (> +0%).

In the above equations, # and v are the velocities in the
streamwise (x) and cross-stream (y) directions, respec-
tively, p is the density, T is the temperature, p is the pres-
sure, y is the specific heats ratio, and M, is the upper
stream Mach number. The equations have been nondimen-
sionalized with respect to the mean velocity, temperature,
and pressure of the upper stream. The height of the chan-
nel is 1. The flat walls are located at y= 0.5 and y=0.5,
respectively. Boundary conditions at the walls are that v
and normal derivatives of #, T, and p are zero. '

For the purpose of this paper, an explicit second-order
MacCormack scheme! is used to solve the above nonlinear
Euler equations. Numerical solutions are advanced from
time ¢ to 4+ At by the two-step predictor—corrector-type
algorithm.

Numerical simulation starts with an initially parallel
flow, namely,

u(x,p) =U(p) =0.5[1+4 U+ (1—U,)tanh(p/8,) 1,
(2)

v(x,y) =0, (3)
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T(xy)=T(y)

1-0 T-U,
(T21 o, 1-0,
=] o _
+7—2—M§(1—U)(U—U2)), (4)
1
p(xy)=p(») = @)

T’

where 8, is the vorticity thickness of the mean velocity
U(y). The temperature T () is obtained by using the Cor-
roco’s relation across the stream. Here U, and T, are the
velocity and temperature of the lower stream, respectively.

" To initiate the disturbances, perturbations of u, v, T,
and p are superimposed on the mean flow at the inflow.
For the computations reported here, perturbations in the
form of eigenfunctions were forced. Thus the boundary
values at x=0 are ‘

u(0.,2) U\ i,(y,0)
v(0.p,0) 0 b (ps0)
TOp) |=| TO) |+ Z )| Too) le=,  (6)
p(0p,1) p) | = | pa(0)
p(0y,1) 1 B.(y,0)

where i, 0y, Ty, Pn»and g, are the normalized eigenfunc-
tions of the wave modes. The normalizations are such that
[#,(3,0) | max=1. Here N is the number of modes used in
the forcing, ¢, is the forcing amplitude, and  is the forcing
frequency. Computations of the eigenfunctions will be
briefly discussed below.

B. Eigenfuction expansion

For small perturbations forced at the inflow, the initial
spatial growth is linear and is governed by the linearized
Euler equations. By invoking local parallelism of the mean
flow and substituting perturbations, of the form
#(p)e =) for 4 and similar forms for other variables
into the linearized version of (1), an eigenvalué problem
for the normal modes is derived. In particular, it is found
convenient to form the eigenvalue problem in the pressure
perturbation. It is straightforward to determine that the
equation for the pressure eigenfunction is

d*p 2k dU 1 a’T
5 ==
dy o—kU dy T dy dy
—kO)2M?
((w - ) l—kz)ﬁ=0, )

with boundary conditions dp/dy=0 at y=—0.5 and
y=0.5.° For the spatial problem considered here the fre-
quency @ is given and the wave number X is sought from
(7) as the eigenvalue. For a closed domain, the eigenvalues
form a discrete set for any given . A typical dispersion
relation of the eigenvalues is shown in Fig. 2. The corre-
sponding 4(y), {y), T(y), and p(¥) can be easﬂy ob-
tained from j(y) by using the linearized Euler equations.
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FIG. 2. Dispersion relation of the normal modes associated with a
bounded supersonic shear layer. ., unstable modes, —, neutral modes.
The mode number is denoted by subscripts. Here o is the frequency, and
k, and k; are the real and imaginary parts of the wave number, respec-
tively. In addition, M,=3.5, M,=1.2, and a,/a,=1.2.

It is expected that the normal modes form a complete
spectrum of small-amplitude waves. Indeed, for bounded
flows, it was shown that eigenfunctions of hydrodynamic
1nstab111ty problems form a complete basis in the functional
space. ! 5 This fact has been exploited in several recent stud-
ies, where elgenfunctlon expansions are used in improving
numerical calculations'® or in representing nonlinear tur-
builent Alows.!” Our aim here is to reconstruct the flow field
obtained from the results of direct numerical simulations
as a summation of eigenmodes. By doing so, the spatial
development of each individual mode imposed at the in-
flow will be established.

To implement the expansion in eigenmodes, we first
record the time series on a mesh of selected points (x;,y i)
For convenience of discussion, let the time series of the
normal velocity at (x;,y;) be v'(x;,p;,t,). Here the prime
denotes the fluctuation over its mean value and ¢, is the
discretized time. Using a discrete FFT, the time series is
transformed into the frequency spectrum, 5’ (x;,y j,w). We
expect §"(x;,p;,0) to be a summation of eigenfunctions for
fixed x; and w, i.e.,

N

B (xi0550) = 2 0,90, (8)
n=1
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where §,(y,w) are the eigenfunctions at frequency w. The
coefficients @, in (8) are found by requiring that the quan-
tity

2
E': Z 'a,(xi)yjrw)_ zanﬁn(yjaw)‘
7 n

be minimum. That is, the calculated time series spectrum
as a function of y is fitted in the least square sense by a
summation of normal mode eigenfunctions. Clearly the
{a,} represents the wave amplitude of the corresponding
mode and varies with x. It gives a measure of the strength
of the wave as it propagates. For the results reported here,
eigenfunction expansions are performed at the forcing fre-
quency.

lll. RESULTS AND DISCUSSIONS

To demonstrate the effects of multiple propagating
wave modes and the method of eigenfunction expansion,
we study two cases here. In the first case, a class B unstable
wave and a class C neutrally stable wave are forced at the
inflow boundary. In the second case, two neutrally stable
waves, the C and D modes, are forced. In all the calcula-
tions shown here a2 101 X201 uniform mesh have been used
for the MacCormack scheme. The computational domain
extends over eight channel heights in x. The vorticity
thickness of the initial flow is 0.02. The Mach number of
the upper and lower stream are M;=3.5 and M,=1.2,
respectively. The lower stream has initial velocity
U,=0.29 and temperature 7,=0.91. The two streams
have a speeds of sound ratio a;/a,=1.2. The specific heats
ratio y=1.4 for both streams. The dispersion relations of
the normal modes are those given in Fig. 2.

A. Case I: Simulation of B, and C, modes

The forcing modes chosen here are the B, and C,
modes. The forcing amplitude is 0.015 and forcing fre-
quency is w=1 for each mode. From linear stability cal-
culations, the B; mode has a wave number of 2.13 and
spatial growth rate of 0.313, The C, mode is a neutrally
stable wave with wave number 3.93. The eigenfunctions of
the two modes are shown in Fig. 3, where the velocity
components # and & are plotted as functions of y.

Figure 4 shows the time series and frequency spectrom
of the streamwise velocity fluctuations at selected center-
line locations. At the chosen forcing level, nonlinear effects
are not developed within the computational domain. A
FET was performed for the time series after =240, when
the initial perturbation has been “washed” out of the do-
main. The spectrum shows a clear peak at the forcing fre-
quency, w=1. In Fig. 5 plots of the root-mean-square vari-
ations of velocity fluctuations across the stream are given
for selected downstream locations. It is seen that the
streamwise velocity has a peak in the centerline, where the
shear layer is formed. However, no such peak is found in
the normal velocity components. A comparison of rms
fluctuations with the eigenfunctions given in Fig. 3 seems
to suggest that the v components show more apparent
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FIG. 3. Eigenfunctions of the B, and C, modes for w=1. The velocity
components are shown.

modal differences than the u components. For this reason
the normal velocity fluctuations are used for the eigenfunc-
tion expansion below.

As a measure of disturbance energy, we evaluate the
following integral along the downstream direction:

© [0S

= f |, W+, ®)
where u/. and v are the rms variations over the mean
values. In Fig. 6(a), this energy integral is plotted as a
function of downstream distance x. It is seen that initially
the energy decreases. Farther downstream oscillatory
growth is found with a period of about 3.3 channel heights.
We point out that plots of maximum u/, or vy, exhibited
similar trends. In Fig. 6(b), the amplitudes of B, and C,
wave modes, obtained using the least square eigenfunction
expansion described in Sec. II, are shown. (For the resulis
given, time series at 51 evenly spaced y locations across the
stream have been used for the least square fitting.) It is
found that the growth of the B; wave over the downstream
distance fits extremely well with a line of linear growth rate
0.313. The amplitude of the C, wave is shown staying more
or less the same in the downstream direction. The slight
variations of the C, amplitude are due to the accuracy
limitation of the least square fitting. Figure 6(b) indicates
that, although the disturbance energy in rms measure-
ments shows oscillatory growth, each wave initiated up-
stream is still propagating linearly. Clearly the coexistence
of the two waves leads to periodic cancellation and rein-
forcement, which resuits in the appearance of oscillatory
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FIG. 4. The time series and spectrum at indicated centerline locations.
Plotted are the streamwise velocity fluctuations. Here the B, and C,
modes are forced at the inflow.
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FIG. 6. (a) Energy integral (9) as a function of downstream distance x,
showing oscillatory growth. Vertical dotted lines have a separation dis-
tance of 3.3. (b) Amplitudes of B, and C, modes calculated using the
least square fitting with eigenfunctions. The solid straight line represents
an exponential growth rate of 0.313.

growth of the energy. Similar calculations for class 4 waves
and neutral waves have also been carried out. However,
since the 4 waves have larger growth rates, the oscillatory
behavior is not as pronounced as that shown in Fig. 6.

As poinfed out in the Introduction, multiple wave
modes are excited unless the disturbance at the inflow is
exactly that of the eigenfunction of the chosen wave mode.
The later condition is usually difficult to meet in experi-
ments and sometimes not always imposed in numerical
simulations. For example, Lu and Wu* used only the pres-
sure perturbation in the inflow in their simulations. Often
in expériments, the initial disturbances are excited by ran-
dom fluctuations'® or “v-component-producing” element. '8
In those studies, however, the growth rate of the unstable
wave is relatively large. Because of this, the component of
the unstable wave grows quickly and becomes dominant
over other wave components within a short distance. As a
result, a linear growth rate in disturbance energy is ob-
served. However, as shown in the present calculations,
when the growth rate of the linear instability wave is rel-
atively small, the other excited waves can play a part in the
flow field and lead to an appearance of oscillatory growth
of the disturbance energy.
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FIG. 7. (a) Energy integral {9) as a function of downstream distance x.
The C, and D; modes were forced. Vertical dotted lines have separation
distance of 1.19. (b) Amplitudes of the C, and D; modes calculated using
least square fitting with eigenfunctions.

B. Case lI: simulation of C, and D; modes

Here we study the case when two neutral modes are
excited. The forcing modes are the C, and D; modes. The
forcing frequency w=0.25. The wave numbers of the C,
and D; modes are 2.76 and —2.53, respectively. The forc-
ing amplitudes are 0.02 for the C, mode and 0.01 for the
D; mode.

In Fig. 7(a) the resulting energy integral (9) as a
function of downstream distance x is given. Using the least
square eigenfunction expansion, the amplitude of each
wave is calculated and given in Fig. 7(b). Figure 7 dem-
onstrates that, although the energy of the perturbation field
has a spatial periodicity, the amplitude of each wave still
remains the same as they propagate downstream. Again,
this is not too surprising because the two waves are trav-
eling at different phase velocities and amplitude modula-
tion is expected. However, it is important to note that the
periodic structure of disturbance energy variation is time
independent. This point is made clearer in Fig. 8, where the
rms variation across the stream for #’ and v’ are plotted
along the downstream distance. It shows that, when aver-
aged in time, the coexistence of the C, and D, waves pro-
duces a spatially periodic and stationary structure.

The period of the structure can be estimated as below.
Without the loss of generality, let two waves be
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FIG. 8. Root-mean-square fluctuation as a function of x and y. (a)
Streamwise velocity component; (b) normal velocity component; {c)
contours of the normal velocity component shown in (b).

Ccos(kox—wt) and D cos(kpx—wt), where k¢, kp rep-
resent the wave numbers and C, D are the amplitudes.
Then the mean square variation produced by the two
waves is (the overbar denotes time averaging)

[Ccos('kcx—cot) + D cos(k px—wt)]?

=C? cos?(kex—ot)

+2CD cos(kex—wt)cos(k px—wt)

+ D? cos*(k px—ot)

=3C*+1D*+CD cos[ (kc—kp)x]. (10)

1t is seen that a streamwise modulation is resulted with a
spatial period of 27/(ke—kp). This expression gives a
period of 1.19 for the present case, which is the same as
that observed in Figs. 7 and 8. In case I, the expression
gives a period of 3.49 by substituting D by B; in (10).
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IV. CONCLUSION

One difference between the numerical simulation of
bounded and unbounded shear layers is that the former
permits multiple propagating wave modes. This becomes
important when the growth rates of the unstable waves are
small. It was shown here that two forced modes can pro-
duce oscillatory growth in disturbance energy, even though
each individual mode is propagating linearly. In particular,
it was shown that two excited neutral modes with different
phase velocities can lead to a stationary and periodic-struc-
ture of the rms fluctuations. Moreover, a method of effec-
tively detecting and separating the growth of each individ-
ual wave mode is given. Finally, it was shown numerically
that, by fitting the disturbance field as a summation of
eigenfunctions, the amplitude of each mode can be accu-
rately monitored.
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