PlotXYZ is a 2D/3D plotting program which accepts *plotxy* type of commands. It can plot 2D graphs, contours, surfaces and vector fields. The 2D plots are done by the command **graph** instead of *plot* in *plotxy*. Contour and surface plots are done by the command **contour** and **surface**, respectively. A vector field can also be plotted by **graph** with a specification with the **field** command. To use **PlotXYZ**, enter **pltxyz** < *plotfile*, where *plotfile* is a script file containing the plotting commands. After the execution, **PlotXYZ** automatically generates a Postscript file called *graph.ps*. This file can be viewed in the X-window through a Postscript previewer, like *gs* or *ghostview* or printed by a printer.

A list of commands and proper parameters is given below. [] indicates optional parameters. For a quick start see the example in APPENDIX. Send questions and comments to fang@math.odu.edu.

character size [ang]

Specify the size(in inch) and angle of texts in labels and in commands **print** and **note**.

clabel [size] [ang] [ndigit]

Specify contour labeling. This will cause the contour lines be labeled with contour levels. To change to non-labeling, enter a negative *size* value. Parameter ang specifies the angle of the labels and ndigit specifies the number of digits in the labels. Note: after the clabel is used, the font size afterward is set to be the same as the clabel size. To reset the font size, use psfort command after clabel command (This is yet to be fixed). Default size = 0.12, ang = 0, ndigit = 3.

clvs *n c1 c2 ... cn*

Specify the number and levels of contours. if n < 0, then exactly |n| number of contours are drawn at levels given by $c1 \ c2 \dots cn$; if n > 0, contour levels are generated automatically by **PlotXYZ** and $c1 \ c2 \dots cn$ need not be given.

comment n x0 y0

print *n*th comment starting at (x0, y0). The comments are read in from a file using **mode 99**. To reset comments, enter **comment**. The coordinates of the comment is in the present coordinate system defined in the **xlim** and **ylim** commands. The coordinate (x0,y0) could be inches messured from the lower left corner of the paper when command **truein** has been used. This command is very useful when certain data in the file are to be printed in the graph.

contour x0 v0

Plot the contours with origin at (x_0,y_0) inches relative to the previous graph.

dash d1 d2 [d3] [d4]

Set the dash pattern with d1, d3 inches solid and d2, d4 inches space. d3 and d4 are optional. If d3 is negative, the dash pattern is only for negative contour levels. To use solid lines, set d1 to be negative. Default: d1 = -1.

date

Print the date and time at the lower left corner of the paper.

digits mag ndigits

Specify the digits in the axis labeling. The axis labels are expressed as $f \times 10^m$ where *ndigits* is the significant digits desired for f. Note when m < mag, the labels are written as floating point numbers. Default: mag = 3, *ndigits* = 4.

dimension nx ny

Specify the dimension of the data. This command is necessary for 3D contours and surfaces. It indicates that plotting data are on a $nx \times xy$ uniform mesh. It is preferred that the data file is such that ny points followed by ny points with increment in the x direction:

Preferred Data structure

	3-column	or	1-column
x(1) y(1)	z(1,1)		z(1,1)
$\mathbf{x}(1)$ $\mathbf{y}(2)$	z(1,2)		z(1 , 2)

x(1) $y(ny)$	z(1, ny)		z(1 , ny)
x(2) y(1)	z(2,1)		z(2,1)

			•••

field [size] [arrow size] [angle] [grey]

Use this command to indicate that a vector field is to be drawn in the **graph** command. The data for the vector field is read in using the **mode 40** option. The parameters specify the arrow drawn. *size* is the relative length of the vector, arrow size and angle are the specifications of the arrow. The arrows can be filled with specified grey scale. Defaults: size=1, arrow size=1, angle=15 (degree), grey=1.0.

file name

Specify the file name containing the plotting data.

fill [g] [wd]

Use this command to indicate that the lines in the **graph** command is to be closed and filled with gray of level g. Note that g=1: white, g=0, black. The width of the line is specified by wd.

frame on[off]

Draws a frame for the plot.

graph[x0][y0]

Execution of the 2D plots and write the postscript output. The lower left point of the plot is (x0,y0) inches relative to the previous plot or the lower left corner of the paper if this is the firt graph.

grid [ngx] [ngy] [wd] [gray]

Add a grid to the graph. By default grid lines at tic marks are drawn. If more grid lines are desired, additional grid lines can be specified by assigning values to ngx, ngy, which indicate the number of grid lines between tic marks. wd and gray specify the width and gray used for the grid lines. To change to no grids, type: grid -1. Default: ngx=0, ngy=0, wd=0.2, gray=0.5.

jump n

Read the datafile every other n lines. For no jump, enter **jump 0**. Default: n=0.

mesh nlx nly [nmesh]

Specify the mesh for the surface plot. nlx lines parallel to y and nly line parallel to x are drawn. if nmesh = 1, then exactly nlx by nly mesh is drawn for the surface. The data on missing grids are obtained by interpolation. If nmesh = 2, the input data are on a non-uniform grid and nlx by nly grid is made by interpolation. (nmesh=2 option has not been implemented yet). Default nmesh=0

midline n [width] [x0 y0]

Draw straight lines across the point (x0,y0). When n=1, a horizontal line is drawn. When n=2, a vertical line is drawn. When n=3, centerlines in both x and y directions are drawn. To reset the centerlines, enter **midline** or **midline** 0. Default: n=0, width=0.5, x0=0, y0=0.

mode 20 c1 c2

Specify the data structure in the data file, where column cI is for x axis and c2 column is for y axis. For example, **mode 20 1 3** indicates that the first column is the x and the third column is the y.

mode 30 c1 c2 c3

Specify the 3D data file structure, column c1 for x, c2 for y and c3 for z. For example **mode 30 2 1 3** denotes column 2 is x, column 1 is y and column 3 is z. If input data is in one column, enter **mode 30 1 1**.

mode 40 c1 c2 c3 c4

Specify the vector field data file structure, column c1 for x, c2 for y and c3 for u, c4 for v. For example **mode 40 2 1 4 3** denotes column 2 is x, column 1 is y and column 4 is u, column 3 is v.

mode 99

This mode allows the next **read** statements to read in ascii lines from the file. These ascii lines then can be printed using the **comment** command. This is most convenient when the data file has certain variable parameters need to be documented in the graph. For example, **read 2** after **mode 99** means to read in two lines in the datafile as is and print them in the graph as comments. To change from comment reading to data reading, use **mode 20** or **mode 30**.

note

Same as in plotxy.

print (x,y) text-string

Print *text-string* at coordinate (x,y). The subscript and superscript are expressed as $_$ and $\widehat{}$. The **note** command of plotxy still works. A **print** command without coordinates and text-string can be used to cancel all the previous text-strings. This is necessary for multiple graphs.

psfont fsize [fnumber]

Specify the font size and type to be used in axis labeling and texts. fsize in inches. Default: fsize = 0.1, fnumber = 1.

fnumber	font type
1	Times-Roman
2	Times-Italic
3	Times-Bold
4	Times-BoldItalic
5	Courier

6	Courier-Oblique
7	Courier-Bold
8	Courier-BoldOblique
9	Helvetica
10	Helvetica-Oblique
11	Helvetica-Bold
12	Helvetica-BoldOblique
13	$\operatorname{Symbol}(\operatorname{Greek})$
14	Palatino-Roman
15	Palatino-Oblique
16	Palatino-Bold
17	Palatino-BoldItalic
18	Palatino-Italic
19	Bookman-Demi
20	Bookman-DemiItalic
21	Bookman-Light
22	Bookman-LightItalic
23	AvantGarde-Book
24	AvantGarde-BookOblique
25	AvantGarde-Demi
26	≉┼●≉▼☆○◆┼柒 ≉★△ □ ★≉ ∷ ≉♥★ 3

range n lower-lim upper-lim

This command truncates the data so that only the lines whose *n*th column is between *lower-lim* and *upper-lim* are read in the **read** command. To set back data truncation, enter **range 0**.

read [number of lines]

Read in data from the data file specified in the **file** command. If no *number* of lines is specified, the file is read to the end.

skip [number of lines]

Skip certain lines in the file. Same as in plotxy.

stop

The last command in the plot file. This is necessary to get a correct postscript

$\mathtt{surface}\ x0\ y0$

Plot the surface with origin at (x0,y0) inches relative to the previous origin.

symbol n[s]

Using symbol instead of continuous lines. When n < 0, continuous lines are drawn. s is the size in points.

n=1	box
2	○ circle
3	\Diamond diamond
4	$_{ m filledbox}$
5	• filledcircle
6	filleddiamond
7	\times cross
8	\triangle triangle
9	${ m filled triangle}$
10	$\operatorname{crossbox}$

thickness width

Change the line width in the plots. The unit is points (72 points = 1 in). Default : width = 0.2.

truein [-1]

Indicates that (x,y) coordinate in **print** and **comment** commands is in inches measured from the lower-left corner of the paper. To change back to coordinate system of the plot, enter **truein** -1.

$view \theta \phi$

Specify the viewing angle for the surface plot. θ : angle in degrees rotated clockwise about x-axis; ϕ : rotated counter-clockwise about z-axis. Defaults: θ =30, ϕ =30.

xlabel text

Specify the axis label. The superscripts and subscripts are entered as $\hat{\ }$ and $\underline{\ }$ respectively. Greek letters use back slash. For example, $\underline{\ }$ **a** and $\underline{\ }$ **b** gives α and β .

xlim *xlength* [*x*1 *x*2] [*x*3]

Specify the axis. *xlength* is the length in inches, x1 and x2 are the minimum and maximum of the axis respectively. x3 indicates the number of tic marks. If x3 is negative, the axis is not labeled. If x3=-2, no axis is drawn.

ylabel text

See xlabel.

ylim ylength [y1 y2] [y3]

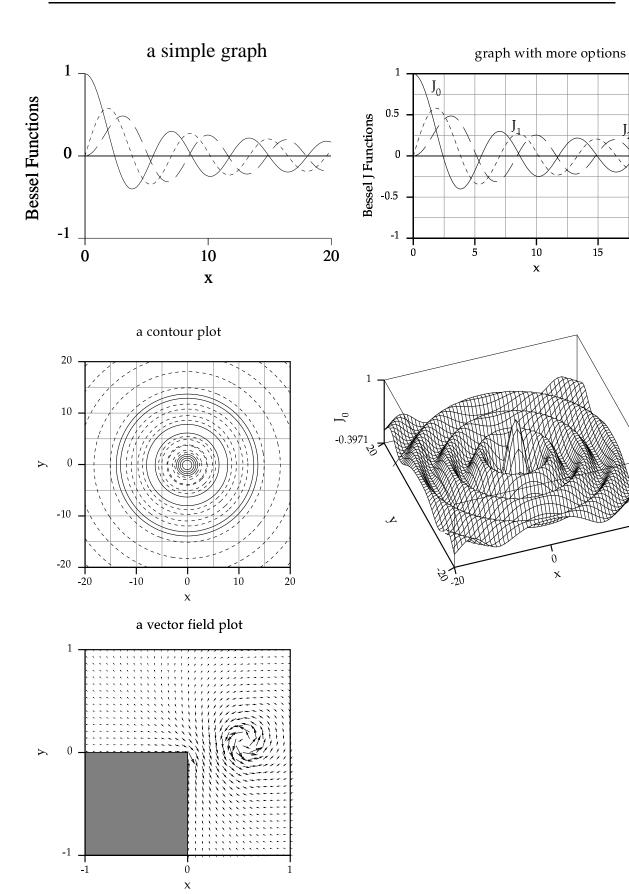
See xlim.

zlabel text

See **xlabel**.

zlim zlength [z1 z2]

zlength specifies the length of the z axis in inches. Optional for contour plots. When specified, contour levels below zI or above zZ are not plotted.


APPENDIX

```
xlim 3 0 20
ylim 2 -1 1
xlabel x
ylabel Bessel Functions
midline 1
mode 20 1 2
file fort.81
read
dash 0.05 0.05
mode 20 1 3
file fort.81
read
dash 0.2 0.1
mode 20 1 4
file fort.81
print (5,1.2) a simple graph
graph 1.0 8.2
print
frame
grid 1 1
psfonts 0.16 14
thickness 0.5
xlim 3 0 20 5
ylim 2 -1 1 5
xlabel x
ylabel Bessel J Functions
midline 1
mode 20 1 2
dash -1
file fort.81
read
dash 0.05 0.05
mode 20 1 3
file fort.81
read
dash 0.2 0.1
mode 20 1 4
file fort.81
read
print (1.5,0.8) J_0
print (8,0.32) J_1
print (17,0.27) J_2
print (5,1.2) graph with more options
graph 4.0 0
print
xlim 2.5 -20 20 5
ylim 2.5 -20 20 5
xlabel x
ylabel y
```

```
midline
dash -1
dimension 201 201
mode 30 1 2 3
file fort.83
read
clvs 10
print (-10,25) a contour plot
contour -4 -4.0
print
xlim 2.5 -20 20
ylim 2.5 -20 20
zlim 1 -1 1
zlabel J_0
dash 1 0
mesh 51 51 1
view 50 20
file fort.83
read
surface 4.5 0
xlim 2.5 -1 1
ylim 2.5 -1 1
mode 20 1 2
file edge.data
read
fill 0.5 0.5
graph -4.5 -3.5
file edge.data
read
print (-0.5,1.2) a vector field plot
graph 0 0
mode 40 1 2 3 4
file fort.62
skip 2821
skip 2821
skip 2821
skip 2821
read 2821
field
graph 0 0
stop
```

INDEX

```
character size
clabel [size] [ang] [ndigit]
{\tt clvs} n\ c1\ c2\ ...\ cn
comment n x0 y0
contour x0 y0
dash d1 d2 d3
date
dimension nx ny
field [size] [arrow size] [angle] [grey]
file name
fill [g] [wd]
frame on[off]
graph [x0][y0]
grid [ngx] [ngy] [wd] [gray]
jump n
mesh nlx nly [nmesh]
midline n [width] [x0 y0]
mode
mode 30 c1 c2 c3
mode 40 c1 c2 c3 c4
mode 99
note
print(x,y) text
psfont fsize [fnumber]
range n lower-lim upper-lim
read [number of records]
skip [number of records]
stop
surface x0 y0
symbol n[s]
thickness width
truein [-1]
view theta phi
xlabel text
xlim xlength [x1 x2] [x3]
ylabel text
ylim ylength [y1 y2] [y3]
zlabel text
zlim zlength [z1 z2]
```

