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ABSTRACT

Accurate numerical non-reflecting boundary condition is important in all the proposed bench-
mark problems of the Second Workshop. Recently, a new absorbing boundary condition has been
developed using Perfectly Matched Layer (PML) equations for the Euler equations. In this ap-
proach, a region with a width of a few grid points is introduced adjacent to the non-reflecting
boundaries. In the added region, Perfectly Matched Layer equations are constructed and applied
so that the out-going waves are absorbed inside the layer with little reflection to the interior do-
main. It will be demonstrated in the present paper that the proposed absorbing boundary condition
is quite general and versdtile, applicable to radiation boundaries as well as inflow and outflow
boundaries. It is aso easy to implement. The emphasis of the paper will be on the application
of the PML absorbing boundary condition to problems in Categories 1, 2, and 3. In Category
1, solutions of problems 1 and 2 are presented. Both problems are solved using a multi-domain
polar grid system. Perfectly Matched Layer equations for a circular boundary are constructed and
their effectiveness assessed. In Category 2, solutions of problem 2 are presented. Here, in addition
to the radiation boundary conditions at the far field in the axisymmetric coordinate system, the
inflow boundary condition at duct inlet is also dealt with using the proposed Perfectly Match Layer
equations. At the inlet, a PML domain is introduced in which the incident duct mode is simulated
while the waves reflected from the open end of the duct are absorbed at the same time. In Category
3, solutions of all three problems are presented. Again, the PML absorbing boundary condition is
used at the inflow boundary so that the incoming vorticity wave is simulated while the outgoing
acoustic waves are absorbed with very little numerica reflection. All the problems are solved
using central difference schemes for spatial discretizations and the optimized Low-Dissipation and
Low-Dispersion Runge-Kutta scheme for the time integration. Issues of numerical accuracy and
efficiency are also addressed.

1. INTRODUCTION

Recently, a new absorbing boundary condition has been developed using Perfectly Matched
Layer (PML) equations for the Euler equations™%3. In this approach, aregion with awidth of afew
grid points is introduced adjacent to the non-reflecting boundaries. In the added region, Perfectly
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Matched Layer equations are constructed and applied so that the out-going waves are absorbed
inside the layer with little reflection to the interior domain. The emphasis of the paper will be on
the application PML technique to the Benchmark Problems of the workshop, as accurate numerical
non-reflecting boundary condition is important in all the proposed benchmark problems. It will
be demonstrated that the proposed absorbing boundary condition is quite general and versatile,
applicable to radiation boundaries as well as inflow and outflow boundaries.

We present results of problems in categories 1, 2 and 3 are presented in sections 2, 3 and 4
respectively. Section 5 contains the conclusions.

2. CATEGORY 1 — PROBLEMS 1 AND 2

In Problems 1 and 2, scattering of acoustic waves by a circular cylinder is to be computed
directly from the time-dependent Euler equations. To simplify the implementation of boundary con-
ditions on the surface of the cylinder, a polar coordinate system will be used. In polar coordinates
(r,8), the linearized Euler equations are

ou Op _
St =0 (1.1)
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et 1.2
o rop ° (12
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where p is the pressure, and v and v are the velocities in the » and ¢ directions, respectively. The
circular cylinder has a radius of 0.5 and centered at » = 0. The computational domain is as shown
in Figure 1.

Equations (1.1)-(1.3) will be discretized by a hybrid of finite difference* and Fourier spectral
methods® and time integration will be carried out by a optimized Runge-K utta scheme®. In addition,
numerical non-reflecting, or absorbing, boundary condition is needed for grid termination at the
outer boundary. This is achieved by using the Perfectly Matched Layer technique®%2 in th present
paper.

In what follows, we will first discuss the spatial and temporal discretization schemes used in
solving (1.1)-(1.3). Then the absorbing boundary condition to be used at the far field is proposed
and its efficiency is investigated. These are followed by the numerical results of Problems 1 and
2 and their comparisons with the exact solution whenever possible.

2.1 Discretization
2.1.1 Mesh
From numerical discretization point of view, it is convenient to use a mesh with fixed spacings
Ar and Af. However, such a mesh will not be desirable for the present problem for two reasons.
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First, the grid points will be over concentrated near the cylinder while relatively sparse at the far
field. Consequently, in order to resolve the waves at the far field, it will result in a needlessly
dense grid distribution near the cylinder. Secondly, and perhaps more importantly, the overly dense
mesh near the cylinder will reduce the CFL number and thus lead to a very small time step in
explicit time integration schemes such as the Runge-Kutta schemes.

To increase the computational efficiency, a multi-domain polar grid system will be used, as
shown in Figure 2. In this system, the number of grid points in the # direction is different in
each sub-domains. For instances, suppose that the entire computational domain is divided into 3
sub-domains and that there are M points in the # direction of the inner most sub-domain, then
Af will be taken as follows :

2

INE ﬁ” for 0.5<7 < 2.1)
2

INE ﬁ for <1< 2.2)
2

IE & for 7o <1 <rg (2.3)

The Spacing in r, Ar, will be fixed for al sub-domains.

2.1.2 Spatial discretization

The spatial derivatives will be discretized using a hybrid of finite difference (in r direction)
and Fourier spectra (in 6 direction) methods on the grid system described above. In particular, a
7-point 4-th order central difference scheme (as in the DRP scheme?) is used for the derivatives in
the r direction. For grid points near the computational boundary where a central difference can not
be applied, backward differences are used. For numerical stability with backward differences, a
11-point 10th order numerical filter is al applied in al the computations. The details are referred to
ref [2]. This is largely a straightforward process. However, at any interface of two sub-domains,
extra values are needed in the inner sub-domain for the stencils extended from the outer sub-
domain, as shown in Figure 3. These values are obtained by interpolation using Fourier expansion
of the inner sub-domain values®.

2.1.3 Timeintegration

Time integration will be carried out using an optimized Low-Dissipation and Low-Dispersion
Runge-Kutta (LDDRK) scheme®. The Runge-Kutta scheme is an explicit single-step multi-stage
time marching scheme. Let the time evolution equation, after the spatial discretization, be written

® du
— = F(U,t 3
- =F(U.1) ®)
where the right hand side is now time dependent when the forcing term is present. Then, a p-stage

scheme advances the solution from U™ to U™ as follows :
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1. Fori:=12, ...,p, compute ($1 =0) :
Ki=AtF(U" + BiK;_1, t, + BiAt) (4.1)

2. Then
U™t =u"+K, (4.2)

The optimized coefficients 3; are given in ref [6]. In particular, the LDDRK 5-6 scheme is
used in all the computations.

2.2 Perfectly Matched Layer

At the far field boundary, non-reflective boundary condition is needed to terminate the grids.
In the present paper, we introduce a Perfectly Matched Layer around the outer boundary for this
purpose, so that the out-going waves are absorbed in the added Perfectly Matched Layer domain
while giving very little reflection to the interior domain.

The Perfectly Matched Layer equations to be used in the absorbing region will be constructed
by splitting the pressure p into two variables p; and p, and introducing the absorption coefficients.
This results in in a set of modified equations to be applied in the added absorbing layer. The
following PML equations are proposed :

g—?+aru=—% (5.1)
1 s gy =2 (53

in which p = p1 + p2 and o, is the absorption coefficient. We note that when o, = 0, (5.1)-(5.4)
reduce to the Euler equations (1.1)-(1.3).

The above PML equations are easy to implement in finite difference schemes since the spatial
derivative in r involves only the total pressure p, which is available in both the interior and PML
domains. Thus the difference operator can be applied across the interface of the interior and
PML domains in a straight forward manner. Inside the PML domain, the value of o, is increased
gradually since a wide stencil has been used in the finite difference scheme. In particular, o, varies

e B
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where D is the thickness of the PML domain and 7, is the location of the interface between the
interior and PML domain.




2.3 Numerical results
2.3.1 Results of Problem 1
In Problem 1, a time periodic acoustic source is located at (r, f) = (4,0). The source term in
equation (1.3) is given as

S(r, 0, 1) = sin(wt)e— (N2 cosd—4+(r sn0)?]/0.22

where w = 8.

For the results presented below, the grid spacing in radial direction is Ar = 0.03125 and the
mesh is terminated at 7,4, = 13.0. Thisresultsin 401 pointsin the r direction. The computational
domain of r x 8 =[0.5,13] x [0, 27] is divided into 3 sub-domains with the r range as [0.5, 1.5),
[1.5,3) and [3, 13] respectively. The value of Af in each sub-domain is as shown below :

2T
= — 5 < .
A, %0 for 0.5<r<15
2 =2" for 15<r <30
= . T .
180 -
27
N =— f 0<r <13
360 or 3.0<r<13.0

This yields a mesh with 135480, or approximately 3512, total grid points.

The time integration is carried out by an optimized Low-Dissipation and Low-Dispersion
Runge-Kutta scheme as detailed in section 2.1.3. The time step is At = 0.02083.

A PML domain of 16 grid points in the radial direction is used around the outer boundary.
That is, the Euler equations (1.1)-(1.3) are used for 0.5 < r < 12.5 and the PML equations
(5.2)-(5.4) are used for 12.5 < r < 13.0. o, varies as given in (6) with o,,Ar =2 and 3 = 2

Figure 4 shows instantaneous pressure contours at ¢ = 30. The resolution of the grid system
is about 8 points per wavelength. To assess the effectiveness of the absorbing boundary condition,
the pressure history was also monitored at a set of selected locations near the PML domain. Figure
5(a)-(c) plot the pressure as a function of time at » = 11.6875 and # = 0, 7/2 and , respectively.
It is seen that the pressure history first shows large initial transient generated by the startup of the
source term. However, after the transient has passed the monitoring points, time periodic responses
are observed. We point out that the periodic oscillations had much smaller magnitudes compared
with the transient and, yet, the time periodic state is established very quickly after the transient
signal. This indicates that the absorbing boundary condition is quite effective and the reflection is
indeed very small. The reflection error will be further quantified in problem 2.

The directivity pattern of the acoustic field is shown in Figure 6 where p? was computed as

1 to+T
PP~ / podt
T Ji,

where tg =25 and T = 1 has been used, which includes four periods. Also shown in Figure 6 is
the exact solution in dotted line. Excellent agreement is observed.
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2.3.2 Results of Problem 2
In problem 2, the source term in (1.3) is not present, i.e. S(r,6,t) =0, and the acoustic field
is initialized with a pressure pulse given as

p = e—(n2C c050—4)2+(rsin9)2]/0.227 w=v=0

For the results presented below, Ar = 0.05 and the mesh is truncated at 7,4, = 8.5. Thus the
number of grid points in the r direction is 161. Again, the computational domain is divided into
three sub-domains and the values of Af are

2
M:é for 05<r<15

27
= — 5 < .
AO 128 for 15<r <30

AH:% for 3.0<r <85
This yields a mesh with 33536, or approximately 1832, total grid points. Time step is At = 0.03125.

Figure 7 shows the instantaneous pressure contours at select times. The out-going waves are
absorbed in the PML domain giving no visible reflection to the interior domain. A PML domain
of 10 points in the radial direction is used for this problem. Thus the domain where the PML
equations are applied is for 8 < r < 8.5. Pressure responses at three chosen locations are shown
in Figure 8.

To further quantify the numerical reflection error at the artificial boundary, the current solution
is compared with a reference solution. The reference solution is computed using a larger com-
putational domain so that its solution is not affected by the grid truncation. The differences of
the computed solutions using PML domains and the reference solution are plotted in Figure 9.
We observe that, first, the reflection errors are small when PML domains of 10 or more points
are used. Second, the reflection errors, however, does not show order-of-magnitude improvements
as the thickness of PML domain increases. This is a different behavior as compared to that of
Cartesian PML equations®?3,

3. CATEGORY 2 — PROBLEM 2

In this problem, CAA technique is applied to compute sound radiation from a circular duct
(Figure 10). The progressive duct wave mode is specified at the duct inlet and the radiated sound
field isto be calculated. In particular, sound directivity pattern and pressure envelope inside the duct
are to be determined. For the given problem, the duct mode has been chosen to be axisymmetric.

In cylindrical coordinates (z,r, ), the Linearized Euler Equations for the axisymmetric dis-
turbances are

ou N @ —o

2 an (7.2)



ov OJp
—+—=0 7.2
ot or (7.2)

op Ou Ov v _

where p is the pressure, v and v are the velocities in the x and r directions respectively.

As in the previous section, the spatial derivatives will be discretized by the 7-point 4th-order
central difference scheme and the time integration will be carried out by the LDDRK 5-6 scheme.
These are the same as those used for the First Workshop Problems, ref [7], including the solid
wall and centerline treatments. The emphasis of this section will be on the implementation of the
non-reflective boundaries in the current problem.

There are two types of non-reflective boundaries encountered in the present problem, as shown
in Figure 10. One is the far field non-reflecting boundary condition for the termination of grids.
The numerical boundary condition should be such that the out-going waves are not reflected. The
second type is the inflow boundary condition at the duct inlet. At the inlet of the duct, we wish
to feed-in the progressive duct mode and at the same time absorb the waves reflected from the
open end of the duct. In the present paper, both types of non-reflective boundary conditions are
implemented using the Perfectly Matched Layer technique. The details are given below.

3.1 PML absorbing boundary condition
To absorb the out-going waves, we introduce a PML domain around the outer boundary of
the computational domain, similar to that used in the previous section only that the form of PML
equations will be different. For the linearized Euler equations (7.1)-(7.3) in cylindrical coordinates,
we proposed the following PML equations :

- - (8.1)
% + o = _% (82)
Mt oam= -2t 8.3)
N 8.4)

where p = p;+p» and the absorption coefficients o, and o, have been introduced for absorbing the
waves that enter the PML domain. The above form follows the PML equations for the Cartesian
coordinates given in refs [1, 2]. Here we need only to split the pressure since no mean flow is
present. We note that, the Euler equations (7.1)-(7.3) can be recovered from the PML equations
(8.2)-(8.4) with o, = o, = 0 by adding the split equations. Consequently, the interior domain
where the Euler equations are applied is regarded as absorption coefficients being zero.

The absorption coefficients o, and ¢, are matched in a special way, namely, o, will remain
the same across a horizontal interface and o, will remain the same across a vertica interface, as
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shown in Figure 11 and described in detail in ref [1, 2]. Within the PML domain, o, or o, are
increased gradually as discussed in the previous section.

3.2 Inflow Boundary Condition
At the inlet of the duct, we wish to feed-in the progressive duct modes and at the same time
absorb the waves reflected from the open end of the duct, as shown in Figure 12. For this purpose,
aPML domain is aso introduced at the inlet. In this region, referred to as the inflow-PML domain,
we treat the solution as a summation of the incoming and out-going waves and apply the PML
equations (8.1)-(8.4) to the out-going part. That is, we express and store the variables as

()-)-0)
p Din Y

in which u;,, vi,, and p;, are the "incoming wave", traveling to the right, and «/, v/, and p’ are
the "out-going" wave, reflected from the open end and traveling to the left. Since the incoming
wave satisfies the linearized Euler equation, it follows that the out-going reflected wave will aso
satisfy (7.1)-(7.3). To absorb the "out-going" part in the inflow-PML domain, we apply the PML
equations (8.1)-(8.4) to the reflected waves. This results in following equations for «/, " and p’ :

ou’ , _Op  Opin

o =P _ 10.1
a " Tor T ox (10.1)
ov' , _ Op  Opin

W = 10.2
a7 Toar T Tor (10.2)
o’ , _Ou  Oup,

L 10.3
ot P17 90 T T (10.3)
8_])’2 - 9 Iin + v _ Yin (10.4)

+ 0 = — —
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where p' = p} +p), and u, v, p are those given in (9). Since the inflow-PML domain involves only
a vertica interface between the interior and PML domains, it results in ¢, = 0 in (10.1)-(10.4).
The right hand sides of (10.1)-(10.4) have been written in such a way that they can be readily
evaluated in finite difference schemes. In particular, we note that, first, since the incoming wave
is known, there should be no difficulty in computing their spatial derivatives. Second, the other
spatial spatial derivative terms involve only the total u, v and p which are available in the interior
domain as well as the inflow-PML domain by using (9).

3.3 Numerical Results
For the results given below, the computational domain is x x r = [=9,9] x [0,9] in the
cylindrical coordinate system. The duct centerline is a » = 0 and the radius of the duct is unity.
The open end of the duct is located at = = 0. For both the low and high frequency cases, we have
used a uniform grid with Az = Ar = 0.05. This results in a 361 x 181 grid system. The time step
that ensures both accuracy and stability is At = 0.0545 in the LDDRK 5-6 scheme.
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To absorb the out-going waves at the far field, PML domains with a width of 10 grid points
are used around the outer boundaries of the computational domain. In addition, an inflow-PML
domain is employed at the duct inlet with the same width as in the far field.

Figure 13 shows the instantaneous pressure contours at ¢ = 87.2 and w = 7.2 (low frequency
case). It is seen that the waves decay rapidly in the PML domain. As in the previous section, the
pressure as a function of time is monitored at a set of chosen points. Figure 14 shows the pressure
histories at two points near the interior-PML interfaces (z,r) = (8, 0), (0, 8), and two points inside
the duct (z,r) = (=2, 0), (—4.5,0). We observe that, while the pressure responses at the far field
quickly become time periodic after the initia transients have passed, it takes a longer time for the
pressure inside the duct to reach the periodic state. This is believed to be due to the reflection
of the transient at the open end of the duct which has to be absorbed by the inflow-PML domain
before a periodic state can be established.

Numerical reflection error has also been assessed by comparing the computed solution using
PML absorbing boundary condition to a reference solution using a larger computational domain.
The maximum difference of the two solutions around the outer boundaries is plotted in Figure 15
for n = 10 and 20 where n is the width of the PML domain used. It is seen that satisfactory results
are obtainable with a width of 10 points and the reflection error is further reduced significantly
by increase the width of the PML domain.

Figure 16 shows the directivity pattern of the radiated sound field. The envelopes of the
pressure distribution inside the duct are given in Figure 17. Results for the high frequency case,
w = 10.3, are shown in Figures 18-21.

4. CATEGORY 3

In this category, CAA technique is applied to a turbomachinery problem in which the sound
field generated by a gust passing through a cascade of flat plates is to be computed directly from
the time-dependent Euler equations :

ou Oou Op

—+ M —+—— = .
ot "Moo 70 (L1
ov ov  Op

— + M —+ == .
ot Mozt 70 (11.2

ap dp Ou Ov

E’LM%Jr%’La_y_o (11.3)
where M is the Mach number of the mean flow. In the above, the velocities have been non-
dimensionalized by the speed of sound a, and pressure by p,a? where p, is the density scale.
The problem configuration is as shown in Figure 22. In non-dimensional scales, the chord length
and the gap-to-chord ratio are both unity. In addition, periodicity is assumed for the top and
bottom boundaries. A uniform mean flow is present which has a Mach number of 0.5. The
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incident vortical gust is given as

v

Uip = _Yeb cos(ax + By — wt) (12.1)
o

vin = Vg cos(ax + By — wt) (12.2)

pin =0 (12.3)

where V;; = 0.005.

In al three problems posed in this category, the sound field scattered by the plates as well as
the loadings on the plates are to be determined. In Problem 1, the solutions are to be calculated
by using a frozen gust assumption. In problem 2, the convected gust is to be ssmulated together
with the scattered sound field. In problem 3, a diding interface is introduced and the grids down
stream of the interface are moving vertically with a given speed V. Problems in this category
include several important and challenging issues in developing CAA techniques, such as the inflow
and out flow conditions, solid boundaries and moving zones. In the present paper, the inflow and
outflow conditions are implemented by the PML technique. The details of the boundary conditions
as well as the diding zone treatments are described below.

4.1 Outflow condition
At the downstream outflow boundary, the out-going waves consist of the acoustic waves scat-
tered from the plates and the vorticity waves convected by the mean flow. To absorbed these waves
with as little reflection as possible, a PML domain is used at the outflow boundary. For the linear
Euler equations (11.1)-(11.3) with a uniform mean flow in the z direction, the following equations
are applied in the added PML domain :

ou ou OJp

—+o,u=—M—— — 13.1
ar =" oz 0z 13D
o1 ap
—— = 13.2
ot dy (132
0 0
SE o vp = —Mo (133)
op1 op Ou
— 4o, p1=—-M—+— 13.4
ot Pt oz oz (134
op2 ov
— == 13.5
ot dy (13.5)

where v and p have been split into v1, vo and p1, p2, i.€, v = vy +wvp and p = p1 + p2. Note
that, since now the top and bottom boundaries are periodic, only one absorption coefficient, o,
is needed. In addition, the u velocity may not be split. For the Cartesian coordinates, it has been
shown that the PML domain so constructed is reflectionless for al the linear waves supported by
the Euler equations and the waves that enter the PML domain decay exponentially. The details
are referred to ref. [1, 2].
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4.2 Inflow condition

At the inflow, two types of waves co-exist, namely, the downstream propagating vorticity waves
(the gust) and the upstream propagating acoustic waves (scattered from the plates). A successful
inflow condition should simulate the downstream connection of the vorticity waves and at the same
time be non-reflective for the upstream acoustic waves. As in the previous section (category 2),
the inflow condition is implemented by introducing a PML domain at the inflow boundary. In
the inflow-PML domain, the variables u, v and p are expressed and stored as a summation of the
"incoming" vorticity wave and "out-going" acoustic waves as those given in (9). The incoming
wave u;,, vip and p;, IS as given in (12.1)-(12.3). The PML equations (13.1)-(13.5) are then
applied to the "out-going" waves «/, v" and p’. Thus, in the inflow-PML domain, we solve

o’ , ou 9dp OUin | Opin

vogu = —M— — LM + 14.1
ot et or oz or | oz (14.1)
81}'1 Op  Opin

on _ 9, 14.2
ot dy 0Oy (14.2)
—~< 4o =—M—+M 14.3
ot 02 o o (14.3)
o} ;L op Ou Opin  OUip

F G TR TR PR (144

/ .

9pp _ _Ov  Ovin (14.5)
ot dy Oy

Again, the right hand sides have been written in a way that the spatial derivatives can be readily
evaluated in finite difference schemes. The implementation of above is smilar to that in section
3.2

4.3 Sliding Zone Treatments

In problem 3, a diding interface is added to the computational domain and the grids down-
stream of the diding interface is moving vertically with a speed Vs, Figure 23. That is, after each
time step, the grids in the diding zone advance vertically by V,At. Due to this movement, the
grids in the two zones are not necessary aligned in the horizontal direction. This will obviousy
give rise to difficulties in finite difference schemes when the stencils extend across the interface.
Extra grid points are created as shown in Figure 24. In the present paper, values of variables on
these points are obtained by interpolation using Fourier expansions in the vertical direction. For
instance, let the values of pressure p on the regular grids be denoted as p(jAx, kAy). Then the
values of p on a point (jAx,y), not on a regular grid point, will be computed as

N/2-1
- 2mn

PGBz, y)= Y P T

n=—N/2

11



where p;, is the Fourier transform of p(jAx, kAy) in the y direction and N is the number of
grid points (N = L/Ay). The Fourier expansions are implemented efficiently using FFT. It is
well known that Fourier interpolation is highly accurate, better than any polynomial interpolations.
Indeed, we found that, using Fourier interpolation, the results with diding zone (Problem 3) are
virtually identical to those without a diding interface (Problem 2).

4.4 Numerical Results
Since solutions of all three problems in this category are similar, we will concentrate on nu-
merical results of Problem 2 in particular and present the results of Problems 1 and 3 as references.

4.4.1 Effectiveness of the inflow-PML boundary condition

We first demonstrate the validity and effectiveness of the inflow-PML boundary condition
described in section 4.2 by a numerical example plane wave smulation. In this example, a plane
vorticity wave, convecting with the mean flow, will be smulated. The computational domain is
the same as that of problem 2 except that now no plate is present. The flow field is initialized as
follows :

Att=0:

u= —%ﬂ cos(ax + By — wt)H (z + 1)
v =V, cos(ax + fy — wt)H (x + 1)
p=0
where H(x) is a step function which has a value of zero for x > 0 and unity for = < 0.

Figure 25 shows instantaneous pressure contours at the initial state ¢ = 0 and subsequent
moments at t = 4.8 and 14.4. The inflow-PML domain described in 4.2 is applied at the inflow
boundary. It is seen that a plane vorticity wave is established. Figure 26 shows the v-velocity
and pressure as functions of time at a point (x,y) = (—2,0). Notice that while the velocity is
periodic, the pressure is not exactly zero as a plane vorticity wave should behave. This is due to
our initial flow field being not exact along the cut-off line x = —1 which generates small pressure
waves. Although these pressure waves are eventually absorbed by the PML domains at both the
inflow and out-flow boundaries, the decay of the pressure is slow due to periodicity of the top and
bottom boundaries. However, the magnitude of these pressure waves is small as shown in Figure
25.

Simulation of a plane acoustic wave has also been performed with similar results.

4.4.2 Low frequency gust

For the low frequency case, w = 57/4, « = = 5n/2. The computational domain is
[—3.5,4.5] x [0, 4]. A uniform grid with Az = Ay = 0.05 is used and time step used is At = 0.044.
The PML domains contain 20 points in the x-direction. Thus the interior domain in which the
Euler equations are applied is [—2.5,3.5] x [0,4]. Figure 27 shows the instantaneous pressure
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and v-velocity contours. In the velocity contours, aso visible is the trailing vorticity waves from
the plates due to numerical viscosity in the finite difference scheme. The pressure intensity along
x = —2 and x = 3 are shown in Figure 28, along with the results of Problems 1 and 3. Close
agreement is found. Especialy, results of Problems 2 and 3 are identical.

4.4.3 High frequency gust

For the high frequency case, w = 13r/4, o = 3 = 137/2. The computational domain is
[-3.5,4.5] x [0,4] and Az = Ay = 0.03125. Time step At = 0.028.

Pressure and v-velocity contours are shown in Figure 29. We point out that it appears that
the out-going waves are not absorbed as efficiently as in the low frequency case as they enter
the out-flow PML domain. However, the waves reflected from the end of the PML domain are
absorbed more effectively so the solutions in the interior domain are not affected. Results for
sound intensity are shown in Figure 30.

5. CONCLUSIONS

Problems in Categories 1, 2 and 3 have been solved by a finite difference method. Numerical
schemes have been optimized for accuracy and efficiency. Perfectly Matched Layer technique for
Euler equations have been successfully applied to al the problems as a general treatment for non-
reflecting boundaries. It is demonstrated that the proposed PML technique is applicable to radiation
boundaries as well as out-flow and inflow boundaries and can be effective for non-Cartesian grids.
The accuracy and efficiency of the PML absorbing boundary conditions are also addressed.
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PML
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Figure 1. Schematic of the computational domain in cylindrical coordinates. A PML domain is
introduced at outer boundary.
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Figure 2. A schematic showing variable spacing in ¢ direction in sub-domains.

Figure 3. Extra values near the interface of sub-domains.
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Figure 4. Instantaneous pressure contours. Problem 1.
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Figure 5a. Pressure as a function of time at » = 11.6875, § = 0.
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Figure 7a.

Figure 7b.
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Figure 7c

Figure 7d.

Figure 7 Instantaneous Pressure contours. Problem 2. (@) t =3; (b) t=5; (¢) t=7; (d) t = 9.

20



0.06 |

Pressure

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Pressure

6= 135°

6= 180°

Pressure

0.0

-0.02 |

-0.04 |

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
time

Figure 8. Pressure history at three chosen locations. r = 5.

10 T
s n=10
L n=20
2
g n=30
h] 3L
Jox 10
&
— 5
o
|
c 2
o
E 10* |
‘©
o 5
2
10°

Time
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Figure 10. Schematic of the computational domain for Category 2, Problem 2. PML absorbing
domains are introduced at the far field, as well as an inflow-PML domain at the inlet.
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Figure 11. Schematic of absorbing coefficients in the interior and PML domains.
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Figure 12. At the duct inlet, incoming and out-going waves co-exist. An inflow-PML domain is
introduced inside the duct at the inlet to absorb the out-going wave only.
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Figure 13. Pressure contours at ¢t = 87.2, w = 7.2.
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Figure 14. Pressure history at four locations, w = 7.2, (@) (x,r) = (8,0), (b) (0, 8), (¢c) (—2,0), (d)

(—4.5,0).
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Figure 15. Maximum reflection error on the far field boundaries. The reference solution is obtained
by using a larger computational domain. n indicates the width of the PML domain used.
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Figure 16. Directivity of radiated sound. w = 7.2.
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Figure 20. Directivity of radiated sound. w = 10.3.
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Figure 21. Pressure envelopes inside the duct at indicated values of r. w =10.3
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Figure 23. Sliding zone.

Figure 24. Extra grid points near the diding interface for a central difference scheme.
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Figure 25. Instantaneous velocity contours at indicated moments, simulating a plane vorticity wave
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Figure 27. Instantaneous v-velocity and pressure contours. Probelm 2, low frequency case.
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