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ABSTRACT

Accurate numerical non-reflecting boundary condition is important in all the proposed bench-

mark problems of the Second Workshop. Recently, a new absorbing boundary condition has been

developed using Perfectly Matched Layer (PML) equations for the Euler equations. In this ap-

proach, a region with a width of a few grid points is introduced adjacent to the non-reflecting

boundaries. In the added region, Perfectly Matched Layer equations are constructed and applied

so that the out-going waves are absorbed inside the layer with little reflection to the interior do-

main. It will be demonstrated in the present paper that the proposed absorbing boundary condition

is quite general and versatile, applicable to radiation boundaries as well as inflow and outflow

boundaries. It is also easy to implement. The emphasis of the paper will be on the application

of the PML absorbing boundary condition to problems in Categories 1, 2, and 3. In Category

1, solutions of problems 1 and 2 are presented. Both problems are solved using a multi-domain

polar grid system. Perfectly Matched Layer equations for a circular boundary are constructed and

their effectiveness assessed. In Category 2, solutions of problem 2 are presented. Here, in addition

to the radiation boundary conditions at the far field in the axisymmetric coordinate system, the

inflow boundary condition at duct inlet is also dealt with using the proposed Perfectly Match Layer

equations. At the inlet, a PML domain is introduced in which the incident duct mode is simulated

while the waves reflected from the open end of the duct are absorbed at the same time. In Category

3, solutions of all three problems are presented. Again, the PML absorbing boundary condition is

used at the inflow boundary so that the incoming vorticity wave is simulated while the outgoing

acoustic waves are absorbed with very little numerical reflection. All the problems are solved

using central difference schemes for spatial discretizations and the optimized Low-Dissipation and

Low-Dispersion Runge-Kutta scheme for the time integration. Issues of numerical accuracy and

efficiency are also addressed.

1. INTRODUCTION

Recently, a new absorbing boundary condition has been developed using Perfectly Matched

Layer (PML) equations for the Euler equations1 � 2 � 3. In this approach, a region with a width of a few

grid points is introduced adjacent to the non-reflecting boundaries. In the added region, Perfectly�



Matched Layer equations are constructed and applied so that the out-going waves are absorbed

inside the layer with little reflection to the interior domain. The emphasis of the paper will be on

the application PML technique to the Benchmark Problems of the workshop, as accurate numerical

non-reflecting boundary condition is important in all the proposed benchmark problems. It will

be demonstrated that the proposed absorbing boundary condition is quite general and versatile,

applicable to radiation boundaries as well as inflow and outflow boundaries.

We present results of problems in categories 1, 2 and 3 are presented in sections 2, 3 and 4

respectively. Section 5 contains the conclusions.

2. CATEGORY 1 — PROBLEMS 1 AND 2

In Problems 1 and 2, scattering of acoustic waves by a circular cylinder is to be computed

directly from the time-dependent Euler equations. To simplify the implementation of boundary con-

ditions on the surface of the cylinder, a polar coordinate system will be used. In polar coordinates

( ��� � ), the linearized Euler equations are����
	 +
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	 +
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where
�

is the pressure, and
�

and
�

are the velocities in the � and
�

directions, respectively. The

circular cylinder has a radius of 0 
 5 and centered at � = 0. The computational domain is as shown

in Figure 1.

Equations (1.1)-(1.3) will be discretized by a hybrid of finite difference4 and Fourier spectral

methods5 and time integration will be carried out by a optimized Runge-Kutta scheme6. In addition,

numerical non-reflecting, or absorbing, boundary condition is needed for grid termination at the

outer boundary. This is achieved by using the Perfectly Matched Layer technique1 � 2 � 3 in th present

paper.

In what follows, we will first discuss the spatial and temporal discretization schemes used in

solving (1.1)-(1.3). Then the absorbing boundary condition to be used at the far field is proposed

and its efficiency is investigated. These are followed by the numerical results of Problems 1 and

2 and their comparisons with the exact solution whenever possible.

2.1 Discretization

2.1.1 Mesh

From numerical discretization point of view, it is convenient to use a mesh with fixed spacings

∆ � and ∆
�
. However, such a mesh will not be desirable for the present problem for two reasons.�



First, the grid points will be over concentrated near the cylinder while relatively sparse at the far

field. Consequently, in order to resolve the waves at the far field, it will result in a needlessly

dense grid distribution near the cylinder. Secondly, and perhaps more importantly, the overly dense

mesh near the cylinder will reduce the CFL number and thus lead to a very small time step in

explicit time integration schemes such as the Runge-Kutta schemes.

To increase the computational efficiency, a multi-domain polar grid system will be used, as

shown in Figure 2. In this system, the number of grid points in the � direction is different in

each sub-domains. For instances, suppose that the entire computational domain is divided into 3

sub-domains and that there are � points in the � direction of the inner most sub-domain, then

∆ � will be taken as follows :

∆ � =
2 �� for 0 � 5 ������� 1 (2 � 1)

∆ � =
2 �
2 � for � 1 � �!��� 2 (2 � 2)

∆ � =
2 �
4 � for � 2 � �!� � 3 (2 � 3)

The Spacing in r, ∆ � , will be fixed for all sub-domains.

2.1.2 Spatial discretization

The spatial derivatives will be discretized using a hybrid of finite difference (in � direction)

and Fourier spectral (in � direction) methods on the grid system described above. In particular, a

7-point 4-th order central difference scheme (as in the DRP scheme4) is used for the derivatives in

the � direction. For grid points near the computational boundary where a central difference can not

be applied, backward differences are used. For numerical stability with backward differences, a

11-point 10th order numerical filter is all applied in all the computations. The details are referred to

ref [2]. This is largely a straightforward process. However, at any interface of two sub-domains,

extra values are needed in the inner sub-domain for the stencils extended from the outer sub-

domain, as shown in Figure 3. These values are obtained by interpolation using Fourier expansion

of the inner sub-domain values5.

2.1.3 Time integration

Time integration will be carried out using an optimized Low-Dissipation and Low-Dispersion

Runge-Kutta (LDDRK) scheme6. The Runge-Kutta scheme is an explicit single-step multi-stage

time marching scheme. Let the time evolution equation, after the spatial discretization, be written

as "
U"$# = % (U & # ) (3)

where the right hand side is now time dependent when the forcing term is present. Then, a ' -stage

scheme advances the solution from U ( to U ( +1 as follows :)



1. For * = 1 + 2 +-,.,/,/+10 , compute ( 2 1 = 0) :

K 3 = ∆ 465 (U 7 + 283 K 3:9 1 +;4 7 + 283 ∆ 4 ) (4 , 1)

2. Then

U 7 +1 = U 7 + K< (4 , 2)

The optimized coefficients 2�3 are given in ref [6]. In particular, the LDDRK 5-6 scheme is

used in all the computations.

2.2 Perfectly Matched Layer

At the far field boundary, non-reflective boundary condition is needed to terminate the grids.

In the present paper, we introduce a Perfectly Matched Layer around the outer boundary for this

purpose, so that the out-going waves are absorbed in the added Perfectly Matched Layer domain

while giving very little reflection to the interior domain.

The Perfectly Matched Layer equations to be used in the absorbing region will be constructed

by splitting the pressure 0 into two variables 0 1 and 0 2 and introducing the absorption coefficients.

This results in in a set of modified equations to be applied in the added absorbing layer. The

following PML equations are proposed :=�>= 4 + ?8@ > = A = 0=�B (5 , 1)=�C= 4 = A 1B = 0=�D (5 , 2)= 0 1= 4 + ?8@60 1 = A =�>=�B (5 , 3)= 0 2= 4 = A 1B =�C=�D A > B (5 , 4)

in which 0 = 0 1 + 0 2 and ?8@ is the absorption coefficient. We note that when ?�@ = 0, (5.1)-(5.4)

reduce to the Euler equations (1.1)-(1.3).

The above PML equations are easy to implement in finite difference schemes since the spatial

derivative in
B

involves only the total pressure 0 , which is available in both the interior and PML

domains. Thus the difference operator can be applied across the interface of the interior and

PML domains in a straight forward manner. Inside the PML domain, the value of ?�@ is increased

gradually since a wide stencil has been used in the finite difference scheme. In particular, ?E@ varies

as ?8@ = ?8F G B A B-HI JLK (6)

where
I

is the thickness of the PML domain and
B�H

is the location of the interface between the

interior and PML domain. M



2.3 Numerical results

2.3.1 Results of Problem 1

In Problem 1, a time periodic acoustic source is located at ( N�OQP ) = (4 O 0). The source term in

equation (1.3) is given as R
( N�OQPSO;T ) = sin( UVT ) WYX (ln 2)[( Z cos [ X 4)2+( Z sin [ )2] \ 0 ] 22

where U = 8 ^ .

For the results presented below, the grid spacing in radial direction is ∆ N = 0 _ 03125 and the

mesh is terminated at N-`badc = 13 _ 0. This results in 401 points in the N direction. The computational

domain of NfegP = [0 _ 5 O 13] e [0 O 2 ^ ] is divided into 3 sub-domains with the N range as [0 _ 5 O 1 _ 5),

[1 _ 5 O 3) and [3 O 13] respectively. The value of ∆ P in each sub-domain is as shown below :

∆ P =
2

9̂0
for 0 _ 5 h Nji 1 _ 5

∆ P =
2 ^
180

for 1 _ 5 h N�i 3 _ 0
∆ P =

2 ^
360

for 3 _ 0 h N�h 13 _ 0
This yields a mesh with 135480, or approximately 3512, total grid points.

The time integration is carried out by an optimized Low-Dissipation and Low-Dispersion

Runge-Kutta scheme as detailed in section 2.1.3. The time step is ∆ T = 0 _ 02083.

A PML domain of 16 grid points in the radial direction is used around the outer boundary.

That is, the Euler equations (1.1)-(1.3) are used for 0 _ 5 hkNli 12 _ 5 and the PML equations

(5.1)-(5.4) are used for 12 _ 5 h N!i 13 _ 0. m Z varies as given in (6) with m
` ∆ N = 2 and n = 2.

Figure 4 shows instantaneous pressure contours at T = 30. The resolution of the grid system

is about 8 points per wavelength. To assess the effectiveness of the absorbing boundary condition,

the pressure history was also monitored at a set of selected locations near the PML domain. Figure

5(a)-(c) plot the pressure as a function of time at N = 11 _ 6875 and P = 0, ^po 2 and ^ , respectively.

It is seen that the pressure history first shows large initial transient generated by the startup of the

source term. However, after the transient has passed the monitoring points, time periodic responses

are observed. We point out that the periodic oscillations had much smaller magnitudes compared

with the transient and, yet, the time periodic state is established very quickly after the transient

signal. This indicates that the absorbing boundary condition is quite effective and the reflection is

indeed very small. The reflection error will be further quantified in problem 2.

The directivity pattern of the acoustic field is shown in Figure 6 where ¯q 2 was computed as

¯q 2 =
1r sut 0+ vt 0 q 2 w T

where T 0 = 25 and
r

= 1 has been used, which includes four periods. Also shown in Figure 6 is

the exact solution in dotted line. Excellent agreement is observed.x



2.3.2 Results of Problem 2

In problem 2, the source term in (1.3) is not present, i.e. y ( z�{Q|}{�~ ) = 0, and the acoustic field

is initialized with a pressure pulse given as� = ��� (ln 2)[( � cos � � 4)2+( � sin � )2] � 0 � 22 { � = � = 0

For the results presented below, ∆ z = 0 � 05 and the mesh is truncated at z������ = 8 � 5. Thus the

number of grid points in the z direction is 161. Again, the computational domain is divided into

three sub-domains and the values of ∆ | are

∆ | =
2 �
64

for 0 � 5 � zj� 1 � 5
∆ | =

2 �
128

for 1 � 5 � z�� 3 � 0
∆ | =

2 �
256

for 3 � 0 � z�� 8 � 5
This yields a mesh with 33536, or approximately 1832, total grid points. Time step is ∆ ~ = 0 � 03125.

Figure 7 shows the instantaneous pressure contours at select times. The out-going waves are

absorbed in the PML domain giving no visible reflection to the interior domain. A PML domain

of 10 points in the radial direction is used for this problem. Thus the domain where the PML

equations are applied is for 8 ��z!� 8 � 5. Pressure responses at three chosen locations are shown

in Figure 8.

To further quantify the numerical reflection error at the artificial boundary, the current solution

is compared with a reference solution. The reference solution is computed using a larger com-

putational domain so that its solution is not affected by the grid truncation. The differences of

the computed solutions using PML domains and the reference solution are plotted in Figure 9.

We observe that, first, the reflection errors are small when PML domains of 10 or more points

are used. Second, the reflection errors, however, does not show order-of-magnitude improvements

as the thickness of PML domain increases. This is a different behavior as compared to that of

Cartesian PML equations1 � 2 � 3.

3. CATEGORY 2 — PROBLEM 2

In this problem, CAA technique is applied to compute sound radiation from a circular duct

(Figure 10). The progressive duct wave mode is specified at the duct inlet and the radiated sound

field is to be calculated. In particular, sound directivity pattern and pressure envelope inside the duct

are to be determined. For the given problem, the duct mode has been chosen to be axisymmetric.

In cylindrical coordinates ( �p{�z�{Q| ), the Linearized Euler Equations for the axisymmetric dis-

turbances are � �� ~ +

� �� � = 0 (7 � 1)�



����
� +

������ = 0 (7 � 2)����
� +

����
� +

������ +

� � = 0 (7 � 3)

where
�

is the pressure,
�

and
�

are the velocities in the
�

and
�

directions respectively.

As in the previous section, the spatial derivatives will be discretized by the 7-point 4th-order

central difference scheme and the time integration will be carried out by the LDDRK 5-6 scheme.

These are the same as those used for the First Workshop Problems, ref [7], including the solid

wall and centerline treatments. The emphasis of this section will be on the implementation of the

non-reflective boundaries in the current problem.

There are two types of non-reflective boundaries encountered in the present problem, as shown

in Figure 10. One is the far field non-reflecting boundary condition for the termination of grids.

The numerical boundary condition should be such that the out-going waves are not reflected. The

second type is the inflow boundary condition at the duct inlet. At the inlet of the duct, we wish

to feed-in the progressive duct mode and at the same time absorb the waves reflected from the

open end of the duct. In the present paper, both types of non-reflective boundary conditions are

implemented using the Perfectly Matched Layer technique. The details are given below.

3.1 PML absorbing boundary condition

To absorb the out-going waves, we introduce a PML domain around the outer boundary of

the computational domain, similar to that used in the previous section only that the form of PML

equations will be different. For the linearized Euler equations (7.1)-(7.3) in cylindrical coordinates,

we proposed the following PML equations :����
� + �8  � = ¡ ����
� (8 � 1)����
� + �8¢ � = ¡ ������ (8 � 2)���
1�
� + �8  � 1 = ¡ ����
� (8 � 3)���
2�
� + �8¢ � 2 = ¡ ������ ¡ � � (8 � 4)

where
�

=
�

1 +
�

2 and the absorption coefficients ��  and �
¢ have been introduced for absorbing the

waves that enter the PML domain. The above form follows the PML equations for the Cartesian

coordinates given in refs [1, 2]. Here we need only to split the pressure since no mean flow is

present. We note that, the Euler equations (7.1)-(7.3) can be recovered from the PML equations

(8.1)-(8.4) with �8  = �8¢ = 0 by adding the split equations. Consequently, the interior domain

where the Euler equations are applied is regarded as absorption coefficients being zero.

The absorption coefficients ��  and �8¢ are matched in a special way, namely, ��  will remain

the same across a horizontal interface and ��¢ will remain the same across a vertical interface, as£



shown in Figure 11 and described in detail in ref [1, 2]. Within the PML domain, ¤�¥ or ¤8¦ are

increased gradually as discussed in the previous section.

3.2 Inflow Boundary Condition

At the inlet of the duct, we wish to feed-in the progressive duct modes and at the same time

absorb the waves reflected from the open end of the duct, as shown in Figure 12. For this purpose,

a PML domain is also introduced at the inlet. In this region, referred to as the inflow-PML domain,

we treat the solution as a summation of the incoming and out-going waves and apply the PML

equations (8.1)-(8.4) to the out-going part. That is, we express and store the variables as§©¨ª«©¬ =

§©¨�­¯®ª ­¯®« ­¯® ¬ +

§©¨�°ª °« ° ¬ (9)

in which
¨�­¯®

,

ª ­¯®
, and « ­¯® are the "incoming wave", traveling to the right, and

¨ °
,

ª °
, and « ° are

the "out-going" wave, reflected from the open end and traveling to the left. Since the incoming

wave satisfies the linearized Euler equation, it follows that the out-going reflected wave will also

satisfy (7.1)-(7.3). To absorb the "out-going" part in the inflow-PML domain, we apply the PML

equations (8.1)-(8.4) to the reflected waves. This results in following equations for
¨±°

,

ª °
and « ° :² ¨ °²
³ + ¤8¥ ¨ ° = ² «²
´¶µ ² « ­¯®²
´ (10 · 1)² ª °²
³ + ¤8¦ ª ° = ² «²�¸¹µ ² « ­/®²�¸ (10 · 2)² « °

1²
³ + ¤8¥ « °1 =

² ¨²
´ºµ ² ¨�­¯®²
´ (10 · 3)² « °
2²
³ + ¤8¦ « °2 =

² ª²�¸¹µ ² ª ­¯®²�¸ +

ª ¸»µ ª ­¯®¸ (10 · 4)

where « ° = « °1 + « °2 and
¨

,

ª
, « are those given in (9). Since the inflow-PML domain involves only

a vertical interface between the interior and PML domains, it results in ¤�¦ = 0 in (10.1)-(10.4).

The right hand sides of (10.1)-(10.4) have been written in such a way that they can be readily

evaluated in finite difference schemes. In particular, we note that, first, since the incoming wave

is known, there should be no difficulty in computing their spatial derivatives. Second, the other

spatial spatial derivative terms involve only the total
¨

,

ª
and « which are available in the interior

domain as well as the inflow-PML domain by using (9).

3.3 Numerical Results

For the results given below, the computational domain is
´�¼�¸

= [ µ 9 ½ 9]
¼

[0 ½ 9] in the

cylindrical coordinate system. The duct centerline is at
¸

= 0 and the radius of the duct is unity.

The open end of the duct is located at
´

= 0. For both the low and high frequency cases, we have

used a uniform grid with ∆
´

= ∆
¸

= 0 · 05. This results in a 361
¼

181 grid system. The time step

that ensures both accuracy and stability is ∆
³

= 0 · 0545 in the LDDRK 5-6 scheme.¾



To absorb the out-going waves at the far field, PML domains with a width of 10 grid points

are used around the outer boundaries of the computational domain. In addition, an inflow-PML

domain is employed at the duct inlet with the same width as in the far field.

Figure 13 shows the instantaneous pressure contours at ¿ = 87 À 2 and Á = 7 À 2 (low frequency

case). It is seen that the waves decay rapidly in the PML domain. As in the previous section, the

pressure as a function of time is monitored at a set of chosen points. Figure 14 shows the pressure

histories at two points near the interior-PML interfaces ( ÂpÃ�Ä ) = (8 Ã 0) Ã (0 Ã 8), and two points inside

the duct ( ÂpÃ�Ä ) = ( Å 2 Ã 0) Ã ( Å 4 À 5 Ã 0). We observe that, while the pressure responses at the far field

quickly become time periodic after the initial transients have passed, it takes a longer time for the

pressure inside the duct to reach the periodic state. This is believed to be due to the reflection

of the transient at the open end of the duct which has to be absorbed by the inflow-PML domain

before a periodic state can be established.

Numerical reflection error has also been assessed by comparing the computed solution using

PML absorbing boundary condition to a reference solution using a larger computational domain.

The maximum difference of the two solutions around the outer boundaries is plotted in Figure 15

for Æ = 10 and 20 where Æ is the width of the PML domain used. It is seen that satisfactory results

are obtainable with a width of 10 points and the reflection error is further reduced significantly

by increase the width of the PML domain.

Figure 16 shows the directivity pattern of the radiated sound field. The envelopes of the

pressure distribution inside the duct are given in Figure 17. Results for the high frequency case,Á = 10 À 3, are shown in Figures 18-21.

4. CATEGORY 3

In this category, CAA technique is applied to a turbomachinery problem in which the sound

field generated by a gust passing through a cascade of flat plates is to be computed directly from

the time-dependent Euler equations :Ç�ÈÇ ¿ + É Ç�ÈÇ Â +

Ç�ÊÇ Â = 0 (11 À 1)Ç�ËÇ ¿ + É Ç�ËÇ Â +

Ç�ÊÇ�Ì = 0 (11 À 2)Ç�ÊÇ ¿ + É Ç�ÊÇ Â +

Ç�ÈÇ Â +

Ç�ËÇ�Ì = 0 (11 À 3)

where É is the Mach number of the mean flow. In the above, the velocities have been non-

dimensionalized by the speed of sound Í}Î and pressure by Ï�ÎÐÍ 2Î where Ï$Î is the density scale.

The problem configuration is as shown in Figure 22. In non-dimensional scales, the chord length

and the gap-to-chord ratio are both unity. In addition, periodicity is assumed for the top and

bottom boundaries. A uniform mean flow is present which has a Mach number of 0 À 5. TheÑ



incident vortical gust is given as Ò�Ó¯Ô
= Õ×Ö8Ø�ÙÚ cos( ÚpÛ + ÙpÜ ÕÞÝVß ) (12 à 1)á Ó¯Ô = Ö
Ø cos( ÚâÛ + ÙâÜ ÕÞÝVß ) (12 à 2)ã Ó¯Ô = 0 (12 à 3)

where Ö
Ø = 0 à 005.

In all three problems posed in this category, the sound field scattered by the plates as well as

the loadings on the plates are to be determined. In Problem 1, the solutions are to be calculated

by using a frozen gust assumption. In problem 2, the convected gust is to be simulated together

with the scattered sound field. In problem 3, a sliding interface is introduced and the grids down

stream of the interface are moving vertically with a given speed Öåä . Problems in this category

include several important and challenging issues in developing CAA techniques, such as the inflow

and out flow conditions, solid boundaries and moving zones. In the present paper, the inflow and

outflow conditions are implemented by the PML technique. The details of the boundary conditions

as well as the sliding zone treatments are described below.

4.1 Outflow condition

At the downstream outflow boundary, the out-going waves consist of the acoustic waves scat-

tered from the plates and the vorticity waves convected by the mean flow. To absorbed these waves

with as little reflection as possible, a PML domain is used at the outflow boundary. For the linear

Euler equations (11.1)-(11.3) with a uniform mean flow in the Û direction, the following equations

are applied in the added PML domain :æ Òæ ß + ç8è Ò = Õêé æ Òæ Û Õ æ ãæ Û (13 à 1)æ á
1æ ß = Õ æ ãæ Ü (13 à 2)æ á
2æ ß + ç8è á 2 = Õëé æ ãæ Û (13 à 3)æ ã
1æ ß + ç8è ã 1 = Õêé æ ãæ Û +

æ Òæ Û (13 à 4)æ ã
2æ ß = Õ æ áæ Ü (13 à 5)

where á and ã have been split into á 1, á 2 and ã 1, ã 2, i.e., á = á 1 + á 2 and ã = ã 1 + ã 2. Note

that, since now the top and bottom boundaries are periodic, only one absorption coefficient, çEè ,
is needed. In addition, the

Ò
velocity may not be split. For the Cartesian coordinates, it has been

shown that the PML domain so constructed is reflectionless for all the linear waves supported by

the Euler equations and the waves that enter the PML domain decay exponentially. The details

are referred to ref. [1, 2]. ì�í



4.2 Inflow condition

At the inflow, two types of waves co-exist, namely, the downstream propagating vorticity waves

(the gust) and the upstream propagating acoustic waves (scattered from the plates). A successful

inflow condition should simulate the downstream connection of the vorticity waves and at the same

time be non-reflective for the upstream acoustic waves. As in the previous section (category 2),

the inflow condition is implemented by introducing a PML domain at the inflow boundary. In

the inflow-PML domain, the variables î , ï and ð are expressed and stored as a summation of the

"incoming" vorticity wave and "out-going" acoustic waves as those given in (9). The incoming

wave î�ñ¯ò , ï�ñ¯ò and ð8ñ¯ò is as given in (12.1)-(12.3). The PML equations (13.1)-(13.5) are then

applied to the "out-going" waves î�ó , ï�ó and ð8ó . Thus, in the inflow-PML domain, we solveô î óô�õ + ö8÷Vî ó = øêù ô îô�ú ø ô ðô�ú + ù ô î�ñ¯òô
ú +

ô ð8ñ¯òô
ú (14 û 1)ô ï ó1ô
õ = ø ô ðô�ü +

ô ð8ñ¯òô�ü (14 û 2)ô ï�ó2ô
õ + ö8÷Vï ó2 = øëù ô ðô
ú + ù ô ð8ñ¯òô
ú (14 û 3)ô ð ó1ô
õ + ö8÷pð ó1 = øêù ô ðô
ú ø ô îô
ú + ù ô ð8ñ¯òô
ú ø ô î�ñ¯òô
ú (14 û 4)ô ð ó2ô
õ = ø ô ïô�ü +

ô ï�ñ¯òô�ü (14 û 5)

Again, the right hand sides have been written in a way that the spatial derivatives can be readily

evaluated in finite difference schemes. The implementation of above is similar to that in section

3.2.

4.3 Sliding Zone Treatments

In problem 3, a sliding interface is added to the computational domain and the grids down-

stream of the sliding interface is moving vertically with a speed ýåþ , Figure 23. That is, after each

time step, the grids in the sliding zone advance vertically by ýåþ ∆ õ . Due to this movement, the

grids in the two zones are not necessary aligned in the horizontal direction. This will obviously

give rise to difficulties in finite difference schemes when the stencils extend across the interface.

Extra grid points are created as shown in Figure 24. In the present paper, values of variables on

these points are obtained by interpolation using Fourier expansions in the vertical direction. For

instance, let the values of pressure ð on the regular grids be denoted as ð (ÿ ∆ ú���� ∆
ü

). Then the

values of ð on a point (ÿ ∆ ú���ü ), not on a regular grid point, will be computed asð (ÿ ∆ ú���ü ) =

���
2 � 1�ò = � ��� 2 ˆð
	6ò�� ñ 2 
�����
���



where ˆ�
��� is the Fourier transform of � (� ∆ ����� ∆ � ) in the � direction and � is the number of

grid points ( � = � � ∆ � ). The Fourier expansions are implemented efficiently using FFT. It is

well known that Fourier interpolation is highly accurate, better than any polynomial interpolations.

Indeed, we found that, using Fourier interpolation, the results with sliding zone (Problem 3) are

virtually identical to those without a sliding interface (Problem 2).

4.4 Numerical Results

Since solutions of all three problems in this category are similar, we will concentrate on nu-

merical results of Problem 2 in particular and present the results of Problems 1 and 3 as references.

4.4.1 Effectiveness of the inflow-PML boundary condition

We first demonstrate the validity and effectiveness of the inflow-PML boundary condition

described in section 4.2 by a numerical example plane wave simulation. In this example, a plane

vorticity wave, convecting with the mean flow, will be simulated. The computational domain is

the same as that of problem 2 except that now no plate is present. The flow field is initialized as

follows :

At ! = 0 : "
= #%$'&)(* cos( * � + ( �+#-,.! ) / ( � + 1)0 = $1& cos( * � + ( �2#3,.! ) / ( � + 1)� = 0

where / ( � ) is a step function which has a value of zero for �54 0 and unity for �56 0.

Figure 25 shows instantaneous pressure contours at the initial state ! = 0 and subsequent

moments at ! = 4 7 8 and 14 7 4. The inflow-PML domain described in 4.2 is applied at the inflow

boundary. It is seen that a plane vorticity wave is established. Figure 26 shows the 0 -velocity

and pressure as functions of time at a point ( ���8� ) = ( # 2 � 0). Notice that while the velocity is

periodic, the pressure is not exactly zero as a plane vorticity wave should behave. This is due to

our initial flow field being not exact along the cut-off line � = # 1 which generates small pressure

waves. Although these pressure waves are eventually absorbed by the PML domains at both the

inflow and out-flow boundaries, the decay of the pressure is slow due to periodicity of the top and

bottom boundaries. However, the magnitude of these pressure waves is small as shown in Figure

25.

Simulation of a plane acoustic wave has also been performed with similar results.

4.4.2 Low frequency gust

For the low frequency case, , = 5 9:� 4, * = ( = 5 9:� 2. The computational domain is

[ # 3 7 5 � 4 7 5] ; [0 � 4]. A uniform grid with ∆ � = ∆ � = 0 7 05 is used and time step used is ∆ ! = 0 7 044.

The PML domains contain 20 points in the � -direction. Thus the interior domain in which the

Euler equations are applied is [ # 2 7 5 � 3 7 5] ; [0 � 4]. Figure 27 shows the instantaneous pressure<8=



and > -velocity contours. In the velocity contours, also visible is the trailing vorticity waves from

the plates due to numerical viscosity in the finite difference scheme. The pressure intensity along? = @ 2 and ? = 3 are shown in Figure 28, along with the results of Problems 1 and 3. Close

agreement is found. Especially, results of Problems 2 and 3 are identical.

4.4.3 High frequency gust

For the high frequency case, A = 13 B:C 4, D = E = 13 B:C 2. The computational domain is

[ @ 3 F 5 G 4 F 5] H [0 G 4] and ∆ ? = ∆ I = 0 F 03125. Time step ∆ J = 0 F 028.

Pressure and > -velocity contours are shown in Figure 29. We point out that it appears that

the out-going waves are not absorbed as efficiently as in the low frequency case as they enter

the out-flow PML domain. However, the waves reflected from the end of the PML domain are

absorbed more effectively so the solutions in the interior domain are not affected. Results for

sound intensity are shown in Figure 30.

5. CONCLUSIONS

Problems in Categories 1, 2 and 3 have been solved by a finite difference method. Numerical

schemes have been optimized for accuracy and efficiency. Perfectly Matched Layer technique for

Euler equations have been successfully applied to all the problems as a general treatment for non-

reflecting boundaries. It is demonstrated that the proposed PML technique is applicable to radiation

boundaries as well as out-flow and inflow boundaries and can be effective for non-Cartesian grids.

The accuracy and efficiency of the PML absorbing boundary conditions are also addressed.
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Figure 1. Schematic of the computational domain in cylindrical coordinates. A PML domain is

introduced at outer boundary.
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Figure 2. A schematic showing variable spacing in P direction in sub-domains.

Figure 3. Extra values near the interface of sub-domains.
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Figure 4. Instantaneous pressure contours. Problem 1.
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Figure 5a. Pressure as a function of time at U = 11 V 6875, W = 0.

Figure 5b. Pressure as a function of time at U = 11 V 6875, W = X:Y 2.
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Figure 5c. Pressure as a function of time at ] = 11 ^ 6875, _ = `

Figure 6. Directivity computed at ] = 11 ^ 6875. ——— computed, - - - - exact.
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Figure 7a.

Figure 7b.
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Figure 7c

Figure 7d.

Figure 7 Instantaneous Pressure contours. Problem 2. (a) e = 3; (b) e = 5; (c) e = 7; (d) e = 9.
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Figure 8. Pressure history at three chosen locations. h = 5.
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Figure 9. Maximum umerical reflection error as compared to a reference solution. The reference

solution is obtained using a larger computational domain. Indicated are the width of PML domain.
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Figure 10. Schematic of the computational domain for Category 2, Problem 2. PML absorbing

domains are introduced at the far field, as well as an inflow-PML domain at the inlet.
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Figure 11. Schematic of absorbing coefficients in the interior and PML domains.
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Figure 12. At the duct inlet, incoming and out-going waves co-exist. An inflow-PML domain is

introduced inside the duct at the inlet to absorb the out-going wave only.
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Figure 13. Pressure contours at m = 87 n 2, o = 7 n 2.

Figure 14. Pressure history at four locations, o = 7 n 2, (a) ( p�q\r ) = (8 q 0), (b) (0 q 8), (c) ( s 2 q 0), (d)

( s 4 n 5 q 0).
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Figure 15. Maximum reflection error on the far field boundaries. The reference solution is obtained

by using a larger computational domain. v indicates the width of the PML domain used.
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Figure 16. Directivity of radiated sound. z = 7 { 2.
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Figure 17. Pressure envelopes inside the duct at indicated values of | . z = 7 { 2
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Figure 18. Pressure contours at � = 87 � 2, � = 10 � 3.

Figure 19. Pressure history at four locations, � = 10 � 3, (a) ( ���8� ) = (8 � 0), (b) (0 � 8), (c) ( � 2 � 0),

(d) ( � 4 � 5 � 0).
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Figure 20. Directivity of radiated sound. � = 10 � 3.
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Figure 21. Pressure envelopes inside the duct at indicated values of � . � = 10 � 3
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Figure 22. Schematic of the computational domain for Category 3.
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Figure 23. Sliding zone.

Figure 24. Extra grid points near the sliding interface for a central difference scheme.
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Figure 25. Instantaneous velocity contours at indicated moments, simulating a plane vorticity wave

convecting with the mean flow.

Figure 26. Velocity and pressure history at ( ���8� ) = ( � 2 � 0).
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Figure 27. Instantaneous � -velocity and pressure contours. Probelm 2, low frequency case.
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Figure 28. Sound intensity. Low frequency case. (a) � = � 2, (b) � = 3. - - - - Problem 1,

———, Problem 2, o Problem 3.
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Figure 29. Instantaneous pressure (top) and � -velocity (bottom) contours. High frequency case.
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Figure 30. Sound intensity. High frequency case. (a)   = ¡ 2, (b)   = 3. - - - - Problem 1,

———, Problem 2, o Problem 3.
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