• The Gamma Function \(\Gamma (x) \)

For positive values of \(x \), the Gamma function is defined in terms of the improper integral,

\[
\Gamma (x) = \int_0^\infty t^{x-1}e^{-t}dt \quad x > 0.
\]

To ensure that the Gamma function is well defined, we must check to see that the improper integral converges for \(x > 0 \). Now,

\[
\int_0^\infty t^{x-1}e^{-t}dt = \int_0^1 t^{x-1}e^{-t}dt + \int_1^\infty t^{x-1}e^{-t}dt = I_1 + I_2
\]

\(I_1 \) is improper if \(x < 1 \), but for \(0 \leq t \leq 1, 0 < e^{-t} \leq 1 \Rightarrow 0 \leq t^{x-1}e^{-t} \leq t^{x-1} \). Therefore,

\[
I_1 = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{1} t^{x-1}e^{-t}dt \leq \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{1} \frac{e^{-t}}{x}dt = \lim_{\varepsilon \to 0^+} \frac{1}{x} \left(1 - \frac{1}{x^x}\right) = \frac{1}{x} \text{ if } x > 0. \text{ Thus } I_1 \text{ converges.}
\]

For \(I_2 \), if we let \(f(t) = t^{x+1}e^{-t} \Rightarrow f'(t) = e^{-t} [(x + 1)t^x - t^{x+1}] \)

\[
= t^x e^{-t} [x + 1 - t] \equiv 0 \text{ if } t = x + 1.
\]

\[
\begin{array}{c|c|c|c}
 t & x & x + 1 & x + 2 \\
 \hline
 f(t) & + & 0 & - \\
 f'(t) & \nearrow & \rightarrow & \searrow
\end{array}
\]

By the first derivative test, we see that \(f \) is maximized at \(t = x + 1 \). So,

\[
I_2 = \int_1^\infty t^{x-1}e^{-t}dt = \int_1^\infty f(t) \frac{d}{dt}dt \leq f(x + 1) \int_1^\infty \frac{1}{t}dt = f(x + 1). \text{ This shows that } I_2 \text{ also converges.}
\]

We have now shown that the Gamma function \(\Gamma(x) \) is well defined for \(x > 0 \) by

\[
\Gamma (x) = \int_0^\infty t^{x-1}e^{-t}dt \quad x > 0.
\]

1. \(\Gamma (x) > 0 \) for \(x > 0 \).
2. \(\Gamma (1) = 1, \Gamma (2) = 1, \Gamma (3) = 2; \Gamma (n) = (n - 1)! \) for \(n \in N \).
3. \(\Gamma (x) = (x - 1) \Gamma (x - 1) \) for \(x > 1 \).
4. \(\Gamma \left(\frac{1}{2} \right) = \sqrt{\pi} \)

Proofs: 1. Integrand is positive. 2., 3. Integrate by parts. 4. Let \(t = u^2 \) or see later.

Example 1 \(\int_0^\infty x^4e^{-3x}dx \quad = \quad \frac{1}{3} \int_0^\infty \left(\frac{u}{3} \right)^4 e^{-u}du = \frac{1}{3} \Gamma (5) = \frac{4!}{3^4} = \frac{8}{8!} \)

\[
\uparrow \quad u = 3x
\]

Example 2 \(\int_0^\infty x^2e^{-\frac{x^2}{2}}dx \quad = \quad \int_0^\infty \sqrt{2}u^{1/2}e^{-u}du = \sqrt{2} \Gamma (3/2) = \frac{\sqrt{2}}{2} \Gamma (1/2) = \sqrt{\pi} \)

\[
\uparrow \quad u = \frac{x^2}{2}
\]
Example 3 \(\int_0^\infty x^4 e^{-x^2} \, dx = \frac{1}{2} \int_0^\infty u^{2/3} e^{-u} \, du = \frac{1}{2} \Gamma \left(\frac{5}{3} \right) \) (Maple has this function built in—just like \(\exp \) or \(\sin \) or tangent.)

- The Beta Function \(B(m, n) \).

Although the integral \(\int_0^1 x^{m-1} (1-x)^{n-1} \, dx \) is improper at \(x = 0 \) if \(m < 1 \) and improper at \(x = 1 \) if \(n < 1 \), by considering the integral in the form

\[
\int_0^1 x^{m-1} (1-x)^{n-1} \, dx = \int_0^a + \int_a^b + \int_b^1 x^{m-1} (1-x)^{n-1} \, dx
\]

where \(0 < a < b < 1 \), the improper integrals will converge if \(m, n > 0 \). Therefore, we define the Beta function \(B(m, n) \) by

\[
B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, dx, \quad m, n > 0.
\]

By making the change of variable \(y = 1 - x \), we can see that \(B(m, n) = B(n, m) \). An alternative form for the Beta function is obtained via the substitution \(x = \sin^2 \theta \Rightarrow

\[
B(m, n) = 2 \int_0^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta \, d\theta, \quad m, n > 0.
\]

Relationship between the Beta and Gamma Functions.

The very important result that relates the Beta and Gamma Functions is:

\[
B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \quad \text{for any } m, n > 0
\]

Proof:

Consider the double integral \(I = \iint_A f(x, y) \, dA \) where \(f(x, y) = x^{m-1} y^{n-1} e^{-(x^2+y^2)} \) and \(A \) is the first quadrant \(A = \{(x, y) : x > 0, y > 0\} \). Then, \(I = \left(\int_0^\infty x^{2m-1} e^{-x^2} \, dx \right) \left(\int_0^\infty y^{2n-1} e^{-y^2} \, dy \right) \).

Let \(x = \sqrt{7} \), then \(\int_0^\infty x^{2m-1} e^{-x^2} \, dx = \frac{1}{2} \int_0^\infty t^{m-1} e^{-t} \, dt = \frac{1}{2} \Gamma(m) \).

Similarly, \(\int_0^\infty y^{2n-1} e^{-y^2} \, dy = \frac{1}{2} \Gamma(n) \).

Thus,

\[
I = \frac{1}{4} \Gamma(m) \Gamma(n).
\]

Alternatively, if we switch to polar coordinates, we find

\[
I = \int_0^{\pi/2} \int_0^\infty (r \cos \theta)^{2m-1} (r \sin \theta)^{2n-1} e^{-r^2} \, r \, dr \, d\theta
= \left(\int_0^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta \, d\theta \right) \left(\int_0^\infty r^{2m+2n-2} e^{-r^2} \, dr \right) = \left(\frac{1}{4} B(m, n) \right) \left(\frac{1}{2} \Gamma(m+n) \right), \quad \text{i.e.}
\]

\[
I = \frac{1}{4} B(m, n) \Gamma(m+n).
\]

Equating these results gives the result:

\[
B(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}
\]
Example 4 If we put \(m = n = 1/2 \) in trig. form of Beta function, we get
\[
B \left(\frac{1}{2}, 1/2 \right) = 2 \int_0^{\pi/2} \sin^{1-1}(\theta) \cos^{0} \theta d\theta = 2 \int_0^{\pi/2} \sin^0 \theta d\theta = \pi \Rightarrow \left\{ \Gamma \left(\frac{1}{2} \right) \right\}^2 = \Gamma \left(\frac{1}{2} \right) B \left(1/2, 1/2 \right) = \pi \\
\Rightarrow \Gamma \left(\frac{1}{2} \right) = \sqrt{\pi}
\]

The trigonometric form of the Beta function, and the relationship with the Gamma functions allows us to evaluate integrals of the form \(\int_0^{\pi/2} \sin^m \theta \cos^n \theta d\theta \) without integrating. For example,

Example 5 \(\int_0^{\pi/2} \sin^3 \theta \cos^4 \theta d\theta = \frac{1}{2} \left(\frac{1}{2} \right) \frac{\Gamma \left(2 \right) \Gamma \left(\frac{5}{2} \right)}{\Gamma \left(\frac{9}{2} \right)} = \frac{1}{2} \frac{\Gamma \left(2 \right) \Gamma \left(\frac{5}{2} \right)}{\Gamma \left(2 \right) \Gamma \left(\frac{5}{2} \right)} = \frac{2}{35} \)

Using the symmetry in the functions \(\sin \) and \(\cos \) over the four quadrants, we can actually use the above result for integrals over an interval which is a multiple of \([0, \pi/2]\). As an example, look at how \(\sin^3 x \) and \(\cos^4 x \) look like over \([0, 2\pi]\).

![Graph of sin^3 x and cos^4 x](image)

Because of trigonometric properties \((\sin (\pi - x) = \sin x, \cos (\pi - x) = -\cos x, \text{ etc.}) \) the function \(\sin^3 x \cos^4 x \) possesses symmetries (as can be seen graphically) so that \(\int_0^{\pi/2} \sin^3 x \cos^4 x dx = \int_{\pi/2}^{\pi} \sin^3 x \cos^4 x dx = -\int_0^{3\pi/2} \sin^3 x \cos^4 x dx = -\int_{3\pi/2}^{2\pi} \sin^3 x \cos^4 x dx \). The sign of the integrand in each quadrant is simply the product of the signs of \(\sin^3 x \) and \(\cos^4 x \) over the same quadrants. Once these signs have been determined, we can express a definite integral over several quadrants as a multiple of the integral over the first quadrant. For example,

Example 6 \(\int_0^{\pi} \sin^3 x \cos^4 x dx = (1 + 1) \int_0^{\pi/2} \sin^3 x \cos^4 x dx = 2 \left(\frac{2}{35} \right) = \frac{4}{35} \)

Example 7 \(\int_{3\pi/2}^{2\pi} \sin^3 x \cos^4 x dx = (1 + 1 - 1) \int_0^{\pi/2} \sin^3 x \cos^4 x dx = 1 \left(\frac{2}{35} \right) = \frac{2}{35} \)

Example 8 \(\int_{3\pi/2}^{2\pi} \sin^3 x \cos^4 x dx = (1 + 1 - 1) \int_0^{\pi/2} \sin^3 x \cos^4 x dx = 0 \)

The procedure outlined here applies to all integrals of the form
\[
\int_{i\pi/2}^{j\pi/2} \sin^m x \cos^n x dx
\]

where \(i, j, m, n \) are integers and \(m, n \geq 0 \). Since all we need is the sign of the integrand, we do not need to sketch \(\sin^m x \cos^n x \); a simple table of signs will be sufficient - as seen in this example.
Example 9 \(\int_0^{3\pi/2} \sin^2 x \cos^5 x \, dx = K \int_0^{\pi/2} \sin^2 x \cos^5 x \, dx \). To obtain \(K \), we see that

<table>
<thead>
<tr>
<th>(x)</th>
<th>(0, \pi/2)</th>
<th>(\pi/2, \pi)</th>
<th>(\pi, 3\pi/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin^2 x)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(\cos^5 x)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\sin^2 x \cos^5 x)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[\Rightarrow K = (1 - 1) = -1. \text{ Therefore,} \]

\[\int_0^{3\pi/2} \sin^2 x \cos^5 x \, dx = -\int_0^{\pi/2} \sin^2 x \cos^5 x \, dx = -\frac{1}{2} B \left(\frac{3}{2}, 3 \right) = -\frac{1}{2} \frac{\Gamma \left(\frac{3}{2} \right) \Gamma (3)}{\Gamma \left(\frac{3}{2} \right)} = -\frac{8}{105}. \]

It must be stated that the procedure outlined does not apply to integrals like \(\int_0^{\pi/3} \sin^2 x \cos^5 x \, dx \) - a non integer multiple of \(\pi/2 \). In this case, the usual integration techniques must be used.

Exercises

1. Evaluate the following:
 - (a) \(\Gamma (6) : \frac{120}{1} \)
 - (b) \(\Gamma (3/2) : \frac{1}{\sqrt{\pi}} \)
 - (c) \(\frac{\Gamma (9/2)}{\Gamma (5/2)} : \frac{35}{12} \)
 - (d) \(B (3, 2) : \frac{1}{12} \)
 - (e) \(B (4, 1/2) : \frac{32}{35} \)

2. Use symmetry and the Beta function to evaluate:
 - (a) \(\int_0^{\pi/2} \sin^3 x \cos^2 x \, dx : \frac{2}{15} \)
 - (b) \(\int_0^{\pi} \sin^3 x \cos^2 x \, dx : \frac{4}{15} \)
 - (c) \(\int_0^{\pi} \sin^5 x \, dx : \frac{16}{15} \)
 - (d) \(\int_0^{\pi} \sin^7 x \cos^3 x \, dx : 0 \)
 - (e) \(\int_0^{\pi} \cos^5 x \, dx : 0 \)
 - (f) \(\int_0^{2\pi} \sin^5 x \cos^2 x \, dx : 0 \)
 - (g) \(\int_0^{2\pi} \sin^4 x \cos^2 x \, dx : \frac{1}{8\pi} \)