Inverse of a Linear Transformation

Invertible functions — a function f from X to Y is called invertible if the equation $y = f(x)$ has a unique solution x in X for each y in Y.

Consider the following example, where f, g, and h are functions from the finite set X to the finite set Y:

- f is invertible
- g is not invertible: The equation $y_2 = g(x)$ has two solutions, x_2 and x_3
- h is not invertible: There is no x such that $y_3 = h(x)$

If a function f from X to Y is invertible, then its inverse f^{-1} from Y to X is defined by $x = f^{-1}(y) = \text{(the unique } x \text{ in } X \text{ such that } y = f(x))$.
Now consider the case of a linear transformation (a function involving vectors instead of scalars) from \mathbb{R}^n to \mathbb{R}^m given by $\vec{y} = A\vec{x}$ where $\vec{x} \in \mathbb{R}^n$, $\vec{y} \in \mathbb{R}^m$, and A is an $m \times n$ matrix.

Invertible Linear Transformations — the linear transformation $\vec{y} = A\vec{x}$ is invertible if the linear system $A\vec{x} = \vec{y}$ has a unique solution $\vec{x} \in \mathbb{R}^n$ for all $\vec{y} \in \mathbb{R}^m$.

Consider the following example, where T, R, and S are linear transformations from the \mathbb{R}^n to \mathbb{R}^m:

$\vec{y} = T(\vec{x})$

$\vec{y} = R(\vec{x})$

$\vec{y} = S(\vec{x})$

T is invertible

R is not invertible: The equation $\vec{y}_2 = R(\vec{x})$ has two solutions, \vec{x}_2 and \vec{x}_3

S is not invertible: There is no \vec{x} such that $\vec{y}_3 = S(\vec{x})$

If a linear transformation T from \mathbb{R}^n to \mathbb{R}^m is invertible, then its inverse T^{-1} from \mathbb{R}^m to \mathbb{R}^n is defined by $\vec{x} = T^{-1}(\vec{y}) = \text{(the unique } \vec{x} \text{ in } \mathbb{R}^n \text{ such that } \vec{y} = T(\vec{x}))$.
A matrix A is called invertible if the linear transformation $\tilde{y} = A\tilde{x}$ is invertible. The matrix of the inverse transformation is denoted by A^{-1}. If the transformation $\tilde{y} = A\tilde{x}$ is invertible, its inverse is $\tilde{x} = A^{-1}\tilde{y}$.

The transformation $\tilde{y} = A\tilde{x}$ is invertible if the linear system

$$A\tilde{x} = \tilde{y}$$

has a unique solution \tilde{x} for all $\tilde{y} \in \mathbb{R}^m$.

When does the system $A\tilde{x} = \tilde{y}$ have a unique solution, where A is an $m \times n$ matrix?

Consider all the cases of A: $m < n$, $m = n$, and $m > n$:

$m < n$: The system $A\tilde{x} = \tilde{y}$ has fewer equations than unknowns, which means there must be a nonleading variable, which means that the system has either no solutions or infinitely many solutions.

$m = n$: The system $A\tilde{x} = \tilde{y}$ has a unique solution if and only if $\text{rref}(A) = I_n$.

$m > n$: We can find a vector $\tilde{y} \in \mathbb{R}^m$ such that the system is inconsistent, therefore the system does not have a unique solution $\tilde{x} \in \mathbb{R}^n$ for all $\tilde{y} \in \mathbb{R}^m$.

Therefore, an $m \times n$ matrix A is invertible if and only if

a. A is a square matrix (i.e., $m = n$), and

b. $\text{rref}(A) = I_n$.
If the matrix A is invertible, how can we find the inverse matrix A^{-1}?

Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$$

or, equivalently, the linear transformation $\vec{y} = A\vec{x}$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + x_3 \\ 2x_1 + 3x_2 + 2x_3 \\ 3x_1 + 8x_2 + 2x_3 \end{bmatrix}$$

To find the inverse transformation, we solve this system for the input variables x_1, x_2, and x_3 in terms of y_1, y_2, and y_3:

$$\begin{align*}
x_1 + x_2 + x_3 &= y_1 \\
2x_1 + 3x_2 + 2x_3 &= y_2 \\
3x_1 + 8x_2 + 2x_3 &= y_3
\end{align*}$$

We can write this in matrix form (and solve) as:

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 \\
2 & 3 & 2 & 0 & 1 & 0 \\
3 & 8 & 2 & 0 & 0 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 5 & -1 & -3 & 0 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 1 & 3 & -1 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & -1 & 7 & -5 & 1
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 1 & 10 & -6 & 1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & -7 & 5 & -1
\end{bmatrix}.$$
which says that

\[
\begin{align*}
 x_1 &= 10y_1 - 6y_2 + y_3 \\
 x_2 &= -2y_1 + y_2 \\
 x_3 &= -7y_1 + 5y_2 - y_3
\end{align*}
\]

or, equivalently,

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix} =
\begin{bmatrix}
 10y_1 - 6y_2 + y_3 \\
 -2y_1 + y_2 \\
 -7y_1 + 5y_2 - y_3
\end{bmatrix}
\]

To find the inverse of an \(n \times n \) matrix \(A \):

Form the \(n \times (2n) \) matrix \([A:I_n]\) and compute \(\text{rref}[A:I_n] \).

- If \(\text{rref}[A:I_n] \) is of the form \([I_n:B]\), then \(A \) is invertible, and \(A^{-1} = B \).

- If \(\text{rref}[A:I_n] \) is of another form (i.e., its left half fails to be \(I_n \)), then \(A \) is not invertible. (Note that the left half of \(\text{rref}[A:I_n] \) is \(\text{rref}(A) \).
Inverse and determinant of a 2×2 matrix

a. The 2×2 matrix

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

is invertible if (and only if) $ad - bc \neq 0$

The quantity $ad - bc$ is called the determinant of A, written $\det(A)$.

b. If

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

is invertible, then

\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
\]