You have 90 minutes to answer the following 5 (five) questions on 2 (two) pages. Show all your work. There is a total of 175 points on the test (including 10 extra credit points).

1. (20 + 20 = 40 points)
 For each of the following matrices, find the determinant

 \[
 \begin{bmatrix}
 2 & 0 & 2 & 2 \\
 1 & 0 & 2 & 2 \\
 1 & 2 & 2 & 2 \\
 1 & 0 & 1 & 2 \\
 \end{bmatrix}
 \quad \begin{bmatrix}
 1 & 9 & 8 & 7 \\
 0 & 2 & 9 & 6 \\
 0 & 0 & 3 & 5 \\
 0 & 0 & 0 & 4 \\
 \end{bmatrix}
 \]

2. (25 points)
 Use the determinant to find out for which values of the constant \(k \) the following matrix is invertible

 \[
 \begin{bmatrix}
 0 & 1 & k \\
 2 & 2k & 5 \\
 4 & 9 & 15 \\
 \end{bmatrix}
 \]
3. (20 + 20 = 40 points)
 For each of the following matrices
 a) Find all the eigenvalues and eigenvectors
 b) Determine whether an eigenbasis exists

 $\begin{bmatrix} 3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

4. (20 + 20 = 40 points)
 For each of the following A matrices
 a) Determine if A is diagonalizable
 b) If so, find an invertible S matrix and diagonal D matrix such that $D = S^{-1}AS$

 $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 3 & -4 & 0 \\ 2 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

5. (20 + 10 = 30 points)
 Given the matrix

 $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$

 Find a formula for A^t, where t is a positive integer

 (Extra Credit) Express A^t in terms of A