Basis

If a set of vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) in \(\mathbb{R}^m \) span \(\mathbb{R}^m \) and are linearly independent, then they form a basis of \(\mathbb{R}^m \).

\[\therefore \text{the set of vectors } \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \text{ in } \mathbb{R}^m \text{ will form a basis of } \mathbb{R}^m \text{ if rank}(A) = m \text{ and rank}(A) = n, \text{ where } A \text{ is the } m \times n \text{ matrix} \]

\[
A = \begin{bmatrix}
\vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n
\end{bmatrix}
\]

The only way that rank\((A) = m \text{ and rank}(A) = n \) is when \(m = n \) and \(\text{rref}(A) = I_m = I_n \).

\[\therefore \text{the set of } m \text{ vectors } \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m \text{ in } \mathbb{R}^m \text{ will form a basis of } \mathbb{R}^m \text{ only if } \text{rref}(A) = I_m, \text{ where } A \text{ is the square } m \times m \text{ matrix} \]

\[
A = \begin{bmatrix}
\vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_m
\end{bmatrix}
\]
Claim: Given a basis of \(\mathbb{R}^m \), any vector \(\vec{v} \) in \(\mathbb{R}^m \) can be expressed uniquely as a linear combination of the \(m \) basis vectors.

Proof: Suppose the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m \) form a basis of \(\mathbb{R}^m \), and consider a vector \(\vec{v} \) in \(\mathbb{R}^m \). Since the basis vectors span \(\mathbb{R}^m \), the vector \(\vec{v} \) can be written as a linear combination of the \(\vec{v}_i \). We have to demonstrate that this representation is unique. To do so, we consider two representations of \(\vec{v} \), namely,

\[
\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_m \vec{v}_m = d_1 \vec{v}_1 + d_2 \vec{v}_2 + \cdots + d_m \vec{v}_m
\]

By subtraction, we find

\[
(c_1 - d_1)\vec{v}_1 + (c_2 - d_2)\vec{v}_2 + \cdots + (c_m - d_m)\vec{v}_m = \vec{0}
\]

which is a relation among the \(\vec{v}_i \). Since the \(\vec{v}_i \) are linearly independent, we have \(c_i - d_i = 0 \), or \(c_i = d_i \), for all \(i \): The two representations of \(\vec{v} \) are identical, as claimed.

The number of vectors in a basis of any space is called the dimension of that space. As shown above, there must be \(m \) vectors in a basis of \(\mathbb{R}^m \). Therefore, the dimension of \(\mathbb{R}^m \) will always be \(m \), written \(\dim(\mathbb{R}^m) = m \).

Consider the space \(\mathbb{R}^m \) with \(\dim(\mathbb{R}^m) = m \).

a. We can find at most \(m \) linearly independent vectors in \(\mathbb{R}^m \).

b. We need at least \(m \) vectors to span \(\mathbb{R}^m \).

c. If \(m \) vectors in \(\mathbb{R}^m \) are linearly independent, then they form a basis of \(\mathbb{R}^m \).

d. If \(m \) vectors span \(\mathbb{R}^m \), then they form a basis of \(\mathbb{R}^m \).
Coordinates

Consider a basis β of a subspace V of \mathbb{R}^m, consisting of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ in \mathbb{R}^m. Any vector \vec{x} in V can be written uniquely as

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n$$

The scalars c_1, c_2, \ldots, c_n are called the β-coordinates of \vec{x}, and the vector

$$\begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_n
\end{bmatrix}$$

is called the β-coordinate vector of \vec{x}, denoted by $[\vec{x}]_\beta$.

Note that

$$\vec{x} = S [\vec{x}]_\beta$$

where S is the $m \times n$ matrix

$$S = \begin{bmatrix}
 \vert & \vert & \cdots & \vert \\
 \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \\
 \vert & \vert & \cdots & \vert
\end{bmatrix}$$
The standard basis of \mathbb{R}^m will be defined as the vectors \vec{e}_i, where

$$\vec{e}_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \leftarrow \text{i'th component}$$

The coordinate vector of any \vec{x} in \mathbb{R}^m with respect to the standard basis of \mathbb{R}^m is just \vec{x}. This follows directly from the equation

$$\vec{x} = S \begin{bmatrix} \vec{x} \end{bmatrix}_\beta$$

where in the case of $\beta =$ standard basis, $S = I_m$.
The vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ are called orthonormal if they are all unit vectors and orthogonal to one another:

$$\vec{u}_i \cdot \vec{u}_j = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Properties of orthonormal vectors:

1. Orthonormal vectors are linearly independent
2. Orthonormal vectors $\vec{u}_1, \ldots, \vec{u}_n$ in \mathbb{R}^n form a basis of \mathbb{R}^n (called an orthonormal basis).

Consider an orthonormal basis $\vec{u}_1, \ldots, \vec{u}_n$ of \mathbb{R}^n. Then

$$\vec{x} = (\vec{u}_1 \cdot \vec{x}) \vec{u}_1 + \cdots + (\vec{u}_n \cdot \vec{x}) \vec{u}_n$$

for all \vec{x} in \mathbb{R}^n.

Therefore, when dealing with an orthonormal basis, it is much easier to find the coordinates c_i of any vector \vec{x}, since $c_i = \vec{u}_i \cdot \vec{x}$.