The answer to a 200 year old mathematical question.

Charles F. Touron

16 Feb 2006
Introduction

The Question
Timeline

Minimal Surfaces (MS)
Examples
Minimal Surface (MS) Definitions
Back to the 200 year old question
Enneper-Weierstrass(EW) Representation Formula

Costa’s Surface
Costa’s Theorem
Pictures
Explicit Parametric Representation of Costa’s Surface
Symmetry and Embedded

The Costa-Hoffman-Meeks Family of surfaces

References
The Question

Besides the plane, catenoid and helicoid are there any other minimal surfaces that are complete, embedded and have finite topology (finite total curvature?).
Timeline: Page 1

- Plane
- Catenoid (Euler 1740)
- Helicoid (Meusnier 1776)
- Plateaus Problem (J. Plateau 1800s)
 Does a minimal surface exist given a boundary?
- Scherks minimal surfaces (1830s)
 First minimal surfaces found since Helicoid.
Timeline: Page 2

- Enneper-Weierstrass Formula (1863)
- Existence of Plateau Problem solutions (Douglas 1930s)
- Costas Minimal Surface (C. Costa 1982)
 A complete genus one minimal surface with three ends and finite topology.
 Symmetries and embedded.

Charles F. Touron

The answer to a 200 year old mathematical question.
Timeline: Page 3

- Explicit parametric representation (A. Gray 1996) Mathematica is used to visualize CHM minimal surfaces.

- Current work (1990’s - today) Many other minimal surfaces and surfaces of constant mean curvature are created by using the tools developed by Hoffman, Meeks, Gray, Osserman, Bers, and others.
The Plane
The Catenoid
The Helicoid
Scherks First Surface

The answer to a 200 year old mathematical question.
Scherks Second Surface
MS Definition - Neighborhood

Each point on the surface has a neighborhood which is the surface of least area with respect to its boundary.
MS Definition - Experimentalist

A sufficiently small piece of the surface may be modeled by a soap film spanning a contour which coincides with the boundary of the piece.
The mean curvature H is defined as $H = \frac{1}{2} \{k_{\text{max}} + k_{\text{min}}\}$, where k_{max} and k_{min} are the maximum and minimum principle curvatures.

The mean curvature H of a minimal surface vanishes identically, $H = 0$.
MS Definition - Calculus of Variations

Euler-Lagrange equation for the area functional of a graph:

If a surface is locally written as a graph of a real-valued function $z = f(x, y)$ then f satisfies the following nonlinear PDE:

$$f_{xx}(1 + f_y^2) - 2f_{xy}f_xf_y + f_{yy}(1 + f_x^2) = 0$$
The Question

Besides the plane, catenoid and helicoid are there any other minimal surfaces that are complete, embedded and have finite topology (finite total curvature?).
Complete Minimal Surface

A Complete Minimal Surface is a minimal surface without boundary.
Embedded Minimal Surface

An Embedded Minimal Surface is any minimal surface that is free of self-intersections.
A Surface with Finite Topology

- A surface is of finite topology if it is homeomorphic to a compact surface of genus n with m points removed.
- The Gaussian curvature, $K = k_{\text{max}} \cdot k_{\text{min}}$.
- The total curvature, C, is given by $C = \int_S KdA$.
- Theorem: The total curvature of a complete minimal surface with finite total curvature is given by
 \[C = 2\pi(2 - 2n - 2m) \]

where n is the genus of the surface and m is the number of ends.
Examples of Finite Topology/Finite Total Curvature

<table>
<thead>
<tr>
<th>Surface</th>
<th>Topology</th>
<th>Total Curvature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>sphere with 1 end</td>
<td>0</td>
</tr>
<tr>
<td>Catenoid</td>
<td>sphere with 2 ends</td>
<td>-4π</td>
</tr>
<tr>
<td>Helicoid</td>
<td>sphere with 1 end</td>
<td>$-\infty$</td>
</tr>
<tr>
<td>Costa</td>
<td>torus with 3 ends</td>
<td>-12π</td>
</tr>
</tbody>
</table>

Note:

- The sphere has a topological genus = 0,
- the torus has topological genus = 1.
Enneper-Weierstrass (EW) Representation Formula

Given the two functions f and g, the function defined by

$$X(z) = \Re \int_{z_0}^{z} \Phi \, dz,$$

where

$$\Phi = (\phi_1, \phi_2, \phi_3) = [(1 - g^2)f, i(1 + g^2)f, 2fg]$$

defines a regular conformal minimal immersion.
Examples Minimal Surfaces using the EW Representation Formula

<table>
<thead>
<tr>
<th>Surface</th>
<th>Domain</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>\mathbb{C}</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Enneper’s surface</td>
<td>\mathbb{C}</td>
<td>1</td>
<td>z</td>
</tr>
<tr>
<td>Catenoid</td>
<td>$\mathbb{C} - {0}$</td>
<td>1</td>
<td>$\frac{1}{z}$</td>
</tr>
<tr>
<td>Bour’s surface</td>
<td>\mathbb{C}</td>
<td>1</td>
<td>$\sqrt{2}$</td>
</tr>
<tr>
<td>Helicoid</td>
<td>$\mathbb{C} - {0}$</td>
<td>$\frac{dz}{z^2}$</td>
<td>z</td>
</tr>
<tr>
<td>Scherk’s 1st Surface</td>
<td>$\hat{\mathbb{C}} - {\lambda : \lambda^4 = 1}$</td>
<td>$\frac{dz}{z^4-1}$</td>
<td>z</td>
</tr>
<tr>
<td>Scherk’s 2st Surface</td>
<td>$\hat{\mathbb{C}} - {\lambda : \lambda^4 = 1}$</td>
<td>$\frac{idz}{z^4-1}$</td>
<td>z</td>
</tr>
</tbody>
</table>

Note: $\hat{\mathbb{C}}$ denotes $\mathbb{C} \cup \infty$.

Charles F. Touron

The answer to a 200 year old mathematical question.
Bour’s Minimal Surface
Enneper’s Minimal Surface
Costa’s Theorem

The conformal minimal immersion $X : D \to \mathbb{R}^3$ defined by the Enneper-Weierstrass representation formula with

- $D : \mathbb{T}^2 - \{0, \frac{1}{2}, i\}$,
- $f = \wp$,
- $g = \frac{2\sqrt{2\pi}\wp(\frac{1}{2})}{\wp'}$,

where

- $\mathbb{T}^2 = \mathbb{C}/L$ is the square torus,
- $L = \{n + im|n, m \in \mathbb{Z}\} \subset \mathbb{C}$,

defines a surface $M = X(D) \subset \mathbb{R}^3$ that is a complete minimal surface with total curvature $C_M = -12\pi$.
Costa’s Minimal Surface - by Jim Hoffmann using MESH
Costa’s Minimal Surface - by A. Gray using Mathematica

3D-XplorMath Costa Surface

Charles F. Touron The answer to a 200 year old mathematical question.
Explicit Parametric Representation of Costa’s Surface

\[
\begin{align*}
\text{x} &= \frac{1}{2} \Re \{-\zeta(\diamond) + \pi u + \frac{\pi^2}{4e_1} + \frac{\pi}{2e_1} [\zeta(\diamond - \frac{1}{2}) - \zeta(\diamond - \frac{i}{2})]\} \\
\text{y} &= \frac{1}{2} \Re \{-i\zeta(\diamond) + \pi v + \frac{\pi^2}{4e_1} - \frac{\pi}{2e_1} [i\zeta(\diamond - \frac{1}{2}) - i\zeta(\diamond - \frac{i}{2})]\} \\
\text{z} &= \frac{1}{4} \sqrt{2\pi} \ln \left| \frac{(\wp(\diamond) - e_1)}{(\wp(\diamond) + e_1)} \right|
\end{align*}
\]

where

- \(\diamond = u + iv\),
- \(\zeta(\hat{z})\) is the Weierstrass zeta function,
- \(\wp(g_2, g_3; z)\) is the Weierstrass elliptic function,
- \((g_2, g_3) = (189.072772..., 0)\) are the invariants corresponding to the half-periods 1/2 and \(i/2\),
- \(e_1 \approx 6.87519\) is the first root.
The Symmetries of Costa’s Surface (Hoffman & Meeks)

The symmetries of Costa’s Surface are the result of the symmetries of the function \wp. To construct the Weierstrass \wp function:

- Use a Schwarz-Chistoffel transformation t to map the upper half complex plane into a triangular domain I in the positive quadrant such that:
 - $t(0) = \omega_3$,
 - $t(e_1) = \omega_1$,
 - $t(\infty) = 1$.

- Define a function f such that $f(z) = \sqrt{t^{-1}(z)}$ with
 - $f(\omega_1) = e_1$,
 - $f(\omega_3) = 0$,
 - $f(1) = \infty$.

where $e_1 \approx 6.875185$

- Construct the rest of the Weierstrass \wp function by using Schwarz reflection to extend the function f.

Charles F. Touron

The answer to a 200 year old mathematical question.
The triangle I
The Square F

The answer to a 200 year old mathematical question.
The Dihedral group D_4

Theorem: (Hoffman and Meeks)

- The Dihedral group D_4 with 8 elements acts on the square F by reflections through the horizontal, vertical and diagonal lines through the point $\omega_3 = \frac{1}{2} + \frac{i}{2}$ and by rotations of integer multiples of $\frac{\pi}{2}$ about ω_3.
The Costa Surface Broken into 8 pieces
Parametrization of a single piece

Saddle

Planar end

Catenoid end

Saddle

Planar end

Catenoid end
The Surface Cut
CHM Family of Minimal Surfaces

XplorMath CHM picture

The answer to a 200 year old mathematical question.
References

References

Web-sites Page 1

- GANG The Center for Geometry, Analysis, Numerics & Graphics, Dept of Mathematics & Statistics at the University of Massachusetts, Amherst, Massachusetts.
 http://www.gang.umass.edu/

- The Scientific Graphics Project (SGP) at The Mathematical Sciences Research Institute (MSRI), Berkeley, CA.
 http://www.msri.org/about/sgp/SGP/index.html

- 3D-XplorMath Gallery.

- Helaman Ferguson, Mathematician and Artist.
 www.helasculpt.com
Web-sites Page 2

- Stewart Dickson, Artist, Engineer and Computer Scientist.
 http://emsh.calarts.edu/mathart/

- MathWorld
 http://mathworld.wolfram.com/CostaMinimalSurface.html

- Professor Alfred Gray Memorial Site
 http://math.cl.uh.edu/gray/

- Matthias Weber
 http://www.indiana.edu/minimal/toc.html

- Paul Nylander
 http://www.bugman123.com/index.html