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Abstract

In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a
certain weak singularity of kutðtÞkL2ðXÞ ¼ kutk2, for the discontinuous Galerkin finite element method for one-dimensional
parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic
time-step control method is also included.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Discontinuous Galerkin method; Parabolic equations

1. Introduction

In this paper, the following standard model problem of parabolic type is considered:
Find u such that

utðx; tÞ � uxxðx; tÞ ¼ f ðx; tÞ; x 2 X; t 2 Rþ;

uðx; tÞ ¼ 0; x 2 @X; t 2 Rþ;

uðx; 0Þ ¼ u0ðxÞ; x 2 X;

ð1:1Þ

where X is a closed and bounded set in R with boundary oX, R+ = (0,1), uxx = o2u/ox2, ut = ou/ot, and the
functions f and u0 are given data.

In this paper, we take advantage of a certain regularity of kutk2 to discretize the time variable in a way that
the optimal convergence rate of the discontinuous Galerkin (DG) method is obtained. In a series of papers
[1–4], Eriksson and Johnson presented adaptive DG finite element methods in which time and space variables
are adjusted using a posteriori estimates of the error. The current method is concerned with establishing a
priori error estimate for the DG method which is optimal.
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The following conditions will be assumed. Let (h,T,S) denote a finite element discretization satisfying

1. h is a positive function in C1ð�XÞ such that

jrhðxÞj 6 M for all x 2 �X and for some M > 0:

2. T = {K} is a set of triangular subdomain of X with each triangular element having diameter hK such that

c1h2
K 6

Z
K

dK for all K 2 T ;

and associated with the function h through

c2hK 6 hðxÞ 6 hK for all x 2 K; K 2 T ;

where c1 > 0, c2 > 0.
3. S is the set of all continuous functions on �X which are polynomials of order r in x = (x1,x2) on each K 2 T

and vanish on oX.

For the DG method for (1.1), we partition R+ as 0 = t0 < t1 < � � � < tn < � � �, where we let In � (tn�1, tn] with
kn � tn � tn�1. For each time interval, with q a nonnegative integer, define

W hk � fv : Rþ ! V m : vjIn
2 P qðInÞ; n ¼ 1; . . . ;Ng;

where

V m ¼
the space of piecewise linear splines defined over X ¼ ½0; L� with breakpoints

0 ¼ x0 < x1 < � � � < xm ¼ L and hm ¼ max
06i6m�1

xiþ1 � xi:

( )

and

P qðInÞ ¼ vðtÞ ¼
Xq

i¼0

viti : vi 2 V m

( )
:

Even though linear splines are used in the definition of Vm, splines of any order can be used to form Vm.
The DG method is defined as follows:
Find U such that for n = 1,2, . . ., U jX�In

2 W hk andZ
In

fðU t; vÞ þ aðU ; vÞgdt þ ð½U �n�1; v
þ
n�1Þ ¼

Z
In

ðf ; vÞdt for all v 2 W hk; ð1:2Þ

where ½w�n ¼ wþn � w�n , wþð�Þn ¼ lims!0þð�Þwðtn þ sÞ, U�0 ¼ u0, ðu; vÞ ¼
R

X uðxÞvðxÞdx and a(u,v) = ($U,$v).
As stated earlier, the approach here is to first estimate kutk2. For example, if u0(x) = p � x in (1.1) with

f(x, t) � 0 and X = (0,p), then the actual solution is given by

uðx; tÞ ¼
X1
j¼1

u0
j e�j2t sinðjxÞ; ð1:3Þ

where

u0
j ¼

2

p

Z p

0

ðp� xÞ sinðjxÞdx ¼ 2

p
p
j
� 1

j2
sin2 jp

� �
¼ O

1

j

� �
:
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In the following, C’s denote generic constants whose values change as they appear. From (1.3)

kutðtÞk2
2 ¼ kutðtÞk2

L2ðXÞ ¼
X1
j¼1

Cj2e�2j2t ¼ d

dt

X1
j¼1

Ce�2j2t: ð1:4Þ

The last equality in (1.4) is justified because of the uniform convergence in t of
P1

j¼1Ce�2j2t. Now using the fact
that

R1
0

e�x2
dx <1, a simple change of variables (say, y ¼ j

ffiffiffiffi
2t
p

) will show that the last expression in (1.4) is
d
dt Ct�1=2, which leads to

kutðtÞk2 ¼ Oðt�3=4Þ:

A similar argument shows that if u0
j ¼ Oð 1

j2Þ for some initial value function u0(x), then kut(t)k2 = O(t�1/4). This
case arises when u0(x) = min(x,p � x) for x 2 (0,p). If u0

j decays faster than j�2.5 as j!1, then kut(t)k2 will be
bounded as t! 0, and in this case, time interval can be partitioned uniformly. Before we present the current
method in the next section, one of the main theorems (theorem 2.3) from [2], which is pertinent to this paper, is
recalled below.

Theorem 1.1 (Eriksson and Johnson [2]). Let u be the solution of (1.1) and U that of (1.2). Assume that

Vm � Vm�1 and kn 6 ckn+1 for all n and for some c > 0. Then there exists constants C only depending on c1 and c2

(see condition 2 above) such that for q = 0,1, and N = 1,2,. . .,

ku� UkIn
6 CLN max

16n6N
EqnðuÞ;

and for q = 1,N = 1,2, . . . ,

kuðtN Þ � U�Nk2 6 CLN max
16n6N

E2nðuÞ;

where LN = (log(tN/kN) + 1)1/2,

Eqn ¼ min
j6qþ1

kj
nkuðjÞt kIn

þ kh2
nD2ukIn

; q ¼ 0; 1; 2 ð1:5Þ

with uð1Þt ¼ ut, uð2Þt ¼ utt, uð3Þt ¼ Dutt and kwkIn
¼ maxt2InkwðtÞk2.

The term minj6qþ1kj
nku

ðjÞ
t kIn

in (1.5) describes the error associated with discretization in time. Thus, if kuðjÞt kIn

is bounded for each n and j = 1,2,3, then the DG method is of the jth order accuracy in time. In many cases
where the initial condition is incompatible with the boundary conditions, kutkI1

is unbounded as t! 0+. We
demonstrate in Section 2 that the graded time partitions can be established to restore the optimal rates of con-
vergence even in the presence of non-smooth data. It should be pointed out that similar non-uniform graded
discretization schemes were used in capturing the solutions of a class of weakly singular integral equations,
e.g., [8], in capturing the solution of parabolic integro-differential equations with memory term, e.g., [9], in
capturing the solution of a class of initial value problems, e.g., [12] as well as in capturing the solution of linear
parabolic equations in the h-version of the DG finite element method, e.g., [11]. Some other notable papers in
this topic are, e.g., [5,10] and references cited therein. The recent paper by Schötzau and Schwab [11] is of par-
ticular interest here, since it also deals with the h-version of the DG method for parabolic problems with non-
smooth data, particularly the topic covered in Section 5.2 of [11]. Schötzau and Schwab derive a graded time
partition scheme by analyzing a function defining the initial condition. More specifically, u0 in (1.1) is exam-
ined by the K-method of interpolation as a function which belongs to an intermediate space between H2, the
Sobolev space, and L2 and the graded time partitions are chosen accordingly. In this paper, graded time par-
titions are derived in Section 2 by analyzing the regularity of kutk2. The difference between the current
approach and that of Schötzau and Schwab in [11] manifests itself in an example (Section 3) in which we dem-
onstrate that the current method gives rise to more relaxed time partitions. The paper [11] by Schötzau and
Schwab is a must-read for anyone who is interested in the DG finite element method for parabolic problems.
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The paper goes far beyond what are explored in this paper, which deals exclusively with the h-version of the
DG method. In Section 3, a numerical example is given to demonstrate the validity of our theory. Also
included in Section 3 is the discussion of automatic time step control algorithm which is based upon the results
presented in Section 2. The term kh2

nD2ukIn
in (1.5) describes the spatial discretization error and it is of the

second order due to the use of linear splines in defining the space Vm as long as kD2uðtÞkIn
is well behaved.

Unfortunately, for solutions of parabolic problems, this is not always the case. We investigate the behaviour
of D2u and establish in Section 2 the spatial discretization scheme that achieves the quadratic convergence in
space variable.

2. Discontinuous Galerkin method for parabolic problems

Consider one-dimensional parabolic problem (1.3). Even though the method will be outlined in one-dimen-
sional setting, extensions to higher dimensions are possible and straightforward.

For 0 < a < 1 and q a nonnegative integer, define an index of singularity Q � qþ1
1�a. For a positive integer N

and T > 0, let

t�n ¼
n
N

� �Q
; n ¼ 0; 1; . . . ;N

and

tn ¼ t�nT : ð2:1Þ

Define In = (tn�1, tn], n = 1,2, . . . ,N, and let kn denote the length of In so that

kn ¼
n
N

� �Q
� n� 1

N

� �Q
" #

T ; n ¼ 1; 2; . . . N :

Note that

kn 6 Q
n
N

h iQ�1 1

N
T ð2:2Þ

by the mean value theorem.
The solution u(x, t) of (1.1) is then approximated in t over each In by a polynomial of degree q. For instance,

with q = 1, let P1w denote the linear interpolatory projection of w 2 H 2
0 ¼ fv : DðjÞv 2 L2; j ¼ 0; 1; 2; v � 0 on

oX} in time onto Whk, viz,

P 1wðx; tÞ ¼ tn � t
kn

wðx; tn�1Þ þ
t � tn�1

kn
wðx; tnÞ; for each t 2 In:

Note that P1 is bounded with respect to the norm k � k1;In
where

kwðtÞk1;In
� max

t2In
kwðtÞkL1ðXÞ:

Since X is assumed to be bounded, P1 is bounded with respect to k � kIn
also. Since P1 equals the identity on

polynomials of degree 61, examining the error terms in the Taylor expansion of order 0 and 1, respectively, we
obtain, for each n = 1,2, . . . ,N,

ku� P 1ukIn
6

Z
In

kutðtÞk2 dt; ð2:3Þ

and

ku� P 1ukIn
6 Ck2

nkuttkIn
: ð2:4Þ

H. Kaneko et al. / Applied Mathematics and Computation 182 (2006) 388–402 391
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For higher values of q, carrying out the Taylor expansion to the order q, the best possible estimate that can
be achieved for the projection P q : H 2

0 ! W hk is given by

ku� P qukIn
6 min

Z
In

utðtÞk k2 dt; Ckqþ1
n

oqþ1

otqþ1
u

				
				

In

( )
: ð2:5Þ

The type of estimate obtained in (2.5) plays a useful role in bounding the error in time variable for the DG
finite element method for parabolic equations. The first term on the right of (2.5) is used to capture the error
during the transient phase of the solution, while the second term is used for the solution later in time, upon
which kutk2 is expected to be smooth. The following lemma examines the first term on the right hand of (2.5).
In [9], for integro-differential parabolic equations with memory, a similar singular behaviour in solution is
treated. However, the analysis used in [9] restricts the construction of graded time partitions to constant
and linear cases only.

Lemma 2.1. Let 0 < a < 1, q a nonnegative integer and T > 0, we assume that tn, n = 1, . . .,N are defined by

(2.1). ThenZ
I1

s�a ds 6 C
1

Nqþ1
;

where C is a constant independent on N and for n > 1,

max
1<n6N

Z
In

s�a ds 6 C
1

N
;

where C is a constant independent on N.

Proof. For n = 1,Z
I1

s�a ds ¼
Z 1

Nð ÞQT

0

s�a ds ¼ 1

1� a
1

N

� �Q

T

" #1�a

¼ O
1

N

� �qþ1
 !

:

For 1 < n 6 N, we obtainR
In

s�a ds 6

R
In

n�1
N


 �Q
T

h i�a
ds as s�a is decreasing over In;

¼ T�a n�1
N


 ��aQ n
N


 �Q � n�1
N


 �Q
h i

6 C n�1
N


 ��aQ n
N


 �Q�1 n
N � n�1

N


 �
by the mean value theorem

¼ C 1
N


 �Q�aQ nQ�1

ðn�1ÞaQ ¼ C 1
Nqþ1

n
n�1


 �aQ
nQ�1�aQ

¼ C nq

Nqþ1 6 C Nq

Nqþ1 ¼ C 1
N : �

Using Lemma 2.1 with n = 1 and q = 1, the first term on the right of inequality (2.5) is of order Oð 1
N2Þ, pro-

vided that kut(t)k2 = O(t�a) for some a 2 (0,1) and for t 2 I1. As stated earlier, it is reasonable to expect that
kuttkIn

<1 for n > 1, so that (2.5) yields

ku� P 1ukIn
¼ O

1

N 2

� �
; for each n ¼ 1; . . . ;N : ð2:6Þ

Lemma 2.2. Let tn and kn be defined by (2.1). Then, with any positive integer N,

1þ log
tn

kn

� �1=2

6

ffiffiffi
2
p

; for each n ¼ 0; 1; . . . ;N :

392 H. Kaneko et al. / Applied Mathematics and Computation 182 (2006) 388–402
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Proof

1þ log
tn

kn

� �1=2

¼ 1þ log
ðn=NÞQ

ðn=NÞQ � ðn� 1=NÞQ

 !1=2

¼ 1þ log
1

1� ðn�1
n Þ

Q

 !1=2

¼ 1� log 1� n� 1

n

� �Q
 ! !1=2

6 1� log 1� N � 1

N

� �Q
 ! !1=2

6 1þ N � 1

N

� �Q
 !1=2

6

ffiffiffi
2
p

:

The second to the last inequality is obtained from log(1 � x) < �x for x < 1. h

Lemma 2.2 will be used in Theorem 1.1 to guarantee the stability of the DG method currently proposed.
For spatial discretization, let M be a positive integer and let xk for k = 0,1,. . .,2M denote the spatial knots

which will be defined precisely later in this section. Denote by uk(x) the linear spline over Xk = [xk�1,xk+1] for
k = 1,2, . . . , 2M � 1 and u0(x) and u2M ðxÞ are linear splines on [x0,x1] and ½x2M�1; x2M � respectively. Extensions
to higher order splines are straightforward. At each time level tn, we approximate u(tn,x) by

Un ¼ UnðxÞ ¼ Uðtn; xÞ ¼
X2M

i¼0

nn
i uiðxÞ; n ¼ 0; 1; . . . ;N ;

where n0
i ¼ u0ðxiÞ: Now, Eq. (1.2) can be restated as follows: For n = 1,2,. . .,N, given Un�1,�, find

U � U jIn
2 P qðInÞ such thatZ

In

½ðUt; vÞ þ aðU ; vÞ�dt þ ðU n�1;þ; vn�1;þÞ ¼
Z

In

ðf ; vÞdt þ ðUn�1;�; vn�1;þÞ ð2:7Þ

for all v 2 Pq(In) where U0,� = u0.
For demonstration, let us take a detour to see how Eq. (2.7) take specific forms for q = 0 and q = 1. First,

consider the case q = 0, i.e., constant in time. As Un = Un,� = Un�1,+ in this case, with U n ¼
P2M

i¼0n
n
i uiðxÞ, (2.7)

reduces to

X2M

i¼0

nn
i ½ðui;ujÞ � knaðui;ujÞ� ¼

X2M

i¼0

nn�1
i ðui;ujÞ þ ðf ;ujÞ; j ¼ 0; 1; . . . ; 2M : ð2:8Þ

For q = 1, we let U jIn
¼ �unðxÞ þ t�tn�1

kn

�wnðxÞ where �un ¼
P2M

i¼0n
�u;n
i uiðxÞ and �wn ¼

P2M

i¼0n
�w;n
i uiðxÞ. As U n�1;þ ¼ �un

and U n�1;� ¼ �un�1 þ �wn�1, (2.7) becomes

X2M

i¼0

n�u;n
i fðui;ujÞ þ knaðui;ujÞg þ

X2M

i¼1

n
�w;n
i ðui;ujÞ þ

kn

2
aðui;ujÞ

� �

¼
Z

In

ðf ðtÞ;ujÞ þ
X2M

i¼0

½n�u;n�1
i þ n

�w;n�1
i �ðui;ujÞ; j ¼ 0; 1; . . . ; 2M

X2M

i¼0

n�u;n
i

kn

2
aðui;ujÞ þ

X2M

i¼1

n
�w;n
i

1

2
ðui;ujÞ þ

kn

3
aðui;ujÞ

� �

¼ 1

kn

Z
In

ðt � tn�1Þðf ðtÞ;ujÞdt; j ¼ 0; 1; . . . ; 2M :

ð2:9Þ

The following theorem is a generalization of Theorem 1.1. A proof can be obtained by applying minor
changes in the proof of Theorem 2.3 [2].

Theorem 2.3. Suppose that there is a constant c such that time steps kn satisfy kn 6 ckn+1, n = 1,. . .,N � 1 and

let Un denote the solution of (1.2) approximating u at tn. Here u is approximated by a polynomial of degree q P 0

H. Kaneko et al. / Applied Mathematics and Computation 182 (2006) 388–402 393
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over each In for n = 1,. . .,N � 1. Then there is a constant C depending only on c and a constant b, where

qK P bhK and qK is the diameter of the circle inscribed in K for all K 2 T, such that for n = 1,2,. . .,N,

kuðtnÞ � U nk2 6 C 1þ log
tn

kn

� �1=2

max
m6n
ku� P qukIm

þ kh2
nD2ukIn

� �
: ð2:10Þ

We proceed to examine the assumptions of Theorem 2.3 relative to the current time and space discretization
scheme. First of all, the condition kn 6 ckn+1 is satisfied with c = 1 as kn is increasing. Second, for one-dimen-
sional problem (1.1), hK = qK = jXKj so that qK

hK
¼ 1 for all XK. Hence the assumptions are fulfilled under the

current time discretization scheme. Lemma 2.2 guarantees the uniformly bounded property of ð1þ log tn
kn
Þ1=2,

establishing the stability of the current DG method.

By (2.5) along with Lemma 2.1, with any nonnegative integer q, we obtain, provided that kut(t)k2 = O(t�a)
for some 0 < a < 1,

ku� P qukIn
¼ O

1

Nqþ1

� �
: ð2:11Þ

It remains to examine the spatial discretization error term maxt6tnkh2
nD2uðtÞkIn

in (2.10) for the current prob-
lem. If kD2uðtÞkIn

is bounded for each n and for each t, then using the graded time partitions described in Lem-
ma 2.1, Theorem 2.3 transforms to the following:

Theorem 2.4. Consider the parabolic problem (1.1) and assume that the initial value u0(x) is defined in such a way

that kut(t)k2 = O(t�a), for 0 < a < 1. Denote by Un the solution of (1.2) approximating u at tn. Let time

discretization {tn} be defined by (2.1) and (0,p) is divided into 2M subintervals each of equal length. Also assume
kD2uðtÞkIn

is bounded for each n. If q denotes the degree of polynomials used in approximating u in time variable,

then for each n = 1,2,. . .,N,

kuðtnÞ � U nk2 ¼ O
1

Nqþ1
þ 1

22M

� �
:

In many practical problems, the assumption in the previous theorem that kD2uðtÞkIn
is bounded for each n

and t may not be possible, e.g., examine the solution of one-dimensional problem in (1.3). This topic is now
considered.

For elliptic problem,

� Du ¼ f in X

u ¼ 0 on C;

it is well known (cf. see [6], p. 92) that, for a smooth oX,

kukH2ðXÞ 6 Ckf k2: ð2:12Þ

Now for convenience, let us assume that f = 0 in (1.1). Then using the definitions of the respective norms and
from (1.1) and (2.12), we obtain

kD2uðtÞkIn
6 kuðtÞkH2ðXÞ 6 CkutðtÞk2: ð2:13Þ

If kut(t)k2 is bounded as t! 0+, then spatial discretization can be made arbitrarily with step size h and attain

max
t6tn

h2kutðtÞk2 ¼ Oðh2Þ; where h ¼ 2�M at each time level tn:

In the case, kut(t)k2 = O(t�a), (2.13) implies that we must select a set of knots {xk(t)} that depends upon t. The
approach here is similar to the adaptive strategy employed by Eriksson and Johnson [2] in which the spatial
increment hn is selected according to the size of kutðtÞk1;In

. Let hðtÞ ¼ max16k62M ðxkðtÞ � xk�1ðtÞÞ for each
t 2 (0,T]. Then h(t) is determined from the condition that h(t)2t�a = O(t2) as t! 0 + . In terms of N, we re-
quire that hðtÞ2t�a ¼ Oð 1

N2Þ. For t ¼ tj ¼ ð j
N Þ

qþ1
1�aT , j = 1,. . .,N, we have, for some C > 0,

394 H. Kaneko et al. / Applied Mathematics and Computation 182 (2006) 388–402
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h2ðtjÞ
j
N

� �qþ1
1�a

T

" #�a

¼ C
1

N 2
: ð2:14Þ

Solving (2.14) for h(tj) with C = 1 for convenience,

hðtjÞ ¼
jaQ

N 2þaQ � T
a

� 
1=2

: ð2:15Þ

Finally, select M so that

2M >
L

hðtjÞ
ð2:16Þ

for each time level tj, j = 1,. . .,N, and xkðtjÞ ¼ kL
2M (note that M depends upon j), for k = 1,. . .,2M � 1 to form

the spatial partition points. Reflecting on what was just discussed, we finally have the following theorem which
characterizes the convergence of the DG method both in time and in space variables in terms of N.

Theorem 2.5. Consider the parabolic problem (1.1) and assume that the initial value u0(x) is defined in such a way

that kut(t)k2 = O(t�a), for 0 < a < 1. Denote by Un the solution of (1.2) approximating u at tn. Let time

discretization {tn} be defined by (2.1) and (0,p) is divided into 2M subintervals each of equal length, where M is

defined by (2.16). If q denotes the degree of polynomials used in approximating u in time variable, then for each

n = 1,2,. . .,N,

kuðtnÞ � U nk2 ¼ O
1

N qþ1
þ 1

N 2

� �
: ð2:17Þ

Note that equality (2.15) implies that less partition points in space would be required as j! N. This char-
acterizes the situation described previously typical of parabolic problems in which solutions become smoother
after certain transient periods. Also note that, at each time level tj particularly for t near 0, it is possible to
reduce computational cost by relaxing the size of spatial elements over the regions where u(Æ, tj) is well behaved.
This will be made more evident when a numerical example is discussed in the next section.

3. A numerical example and automatic time step control

In this section, the graded partitions described in the previous section is tested in the following standard
one-dimensional problem. Find u such that

utðx; tÞ � uxxðx; tÞ ¼ 0; 0 < x < p; t 2 Rþ;

uð0; tÞ ¼ uðp; tÞ ¼ 0; t 2 Rþ;

uðx; 0Þ ¼ p� x; 0 < x < p:

ð3:1Þ

The initial function is incompatible with the zero boundary conditions in (3.1). The exact solution is given in
(1.3) and kutðtÞkL2ðXÞ ¼ Oðt�3

4Þ. Thus, the indices of singularity Q ¼ qþ1
1�a are 4 and 8, respectively, for constant

and linear approximations in time variable. Schötzau and Schwab (example 7.1 [11]) discuss a similar situation
in which the initial function is taken to be u(x,0) = 1. For this case, the grading function h is selected as
h(t) = t3(2q+3) in [11]. With N denoting, as before, the number of partitions in time variable, Schötzau and
Schwab’s approach results in t1 ¼ ð1

N Þ
9 and t1 ¼ ð1

N Þ
15 for the constant and linear approximations, respectively

in [11]. In the present method, as kutðtÞkL2ðXÞ ¼ Oðt�3
4Þ with u(x,0) = 1, t1 ¼ ð1

N Þ
4 and t1 ¼ ð1

N Þ
8 for the con-

stant and linear approximations. This shows that the present method provides more relaxed time increments
at the beginning, which is critically important in order for numerical computation to proceed with a reason-
able cost.
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We select T = 5 and N = 10 so that the solution is sampled at each time level tj ¼ ð j
10
ÞQT , j = 1, . . ., 10. First,

the case for constant approximation in time, q = 0, is considered. The exact solution and the approximate
solutions are plotted in Appendix for tn, tn = 1, . . ., 9. For q = 0, the errors are dominated from the time dis-
cretization term which is of order Oð1

NÞ. In Fig. 1 with t1, from (2.15), h(t1) ’ .0058. Hence, we take M 	 9 in
(2.16) to guarantee the convergence rates in Theorem 2.4 It is interesting to note that, for the example under
consideration, we can relax M significantly while maintaining an overall quality of the numerical solution.
Also recall that the size of spatial discretization can be relaxed over the region away from x = 0 in this case
where u(x, t1) is well-behaved, but, of course, this requires a priori knowledge of u(x, t1). For q = 1,
h(t1) ’ .0002 from (2.15) so that choose M = 14. In this case, (2.17) gives

kuðt1Þ � U 1k2 ¼ O
1

N 2

� �
:

Table 1 lists L2 errors at each time level tn, n = 1,2, . . ., 10.
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Fig. 1. Temp. at time t1.

Table 1
Error for constant (q = 0) and linear (q = 1) approximations

n q = 0 q = 1

1 0.0133 0.0037
2 0.0571 0.0020
3 0.0673 0.0089
4 0.0729 0.0087
5 0.0763 0.0086
6 0.0780 0.0081
7 0.0878 0.0076
8 0.0933 0.0072
9 0.0702 0.0059

10 0.0850 0.0073
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We close this paper by considering an automatic time step control scheme for the DG method for parabolic
problems having non-smooth data. Johnson considered a similar automatic time step control method for a
class of stiff ordinary differential equations in [7]. The result was extended to an automatic time control
method for a nonlinear parabolic problem in [1]. Let us recall the following algorithm in [1] for choosing
the time step size kn:

Algorithm. [1] Given a tolerance d > 0,

1. Choose kn = kn�1.
2. Given kn, compute the corresponding approximate solution U(tn).
3. If

d
cC
6 kUðtnÞ � Uðtn�1Þk2 6

d
C
;

where c is a suitable constant, c 
 2 or 3, then stop and accept the time step kn. Otherwise, decrease or in-
crease kn by a factor of, say, 2 and return to step 2.

To demonstrate that the algorithm above may become expensive in the presence of a singular transient
phase, consider the following: Suppose that d = 10�5 and kut(t)k2 = O(t�1/2). Approximating kU(t1) � U(t0)k2

by t1=2
1 , and decreasing the time step size by a factor of 2 beginning with k1 � 1

10, it would take 8 steps to find k1

which produces the numerical solution within the prescribed tolerance. The current approach is to estimate the
parameter a in kut(t)k2 = O(t�a). The following algorithm contains a process of adjusting each time step (step
4), if necessary, as computation progresses, but, in principle, if a is estimated accurately in step 1, the amount
of adjustments would be minimal.

Algorithm. Given a tolerance d > 0,

1. Choose t1 = k1 small. Compute kU(t1) � U(0)k2. As

kutðt1Þk2 ’ k
Uðt1Þ � Uð0Þ

k1

k2 ’ Ck�a
1 ;
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Fig. 2. Temp. at time t2.
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so a is estimated by

a� ¼ 1� ln kUðt1Þ � Uð0Þk2

ln Ck1

: ð3:2Þ
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Fig. 3. Temp. at time t3.
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2. Time discretization error is controlled by requiringZ
I1

kutðtÞk2 dt < d:
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Fig. 5. Temp. at time t5.
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t1 is adjusted by

C
1� a�

t1�a�

1 < d;

and subsequently choose the number N of time partitions from

t1 ’
1

N

� � 1þq
1�a�

T ;

where q is the degree of polynomials used in time approximation.

3. With Q� � 1þq
1�a�, define

ti ¼
i
N

� �Q�

T ; i ¼ 2; 3; . . . ;N ;

to complete the partitions 0 < t1 < t2 < � � �tN = T.
4. For i P 2, compute U(ti) and check an accuracy requirement

kUðtiÞ � Uðti�1Þk2 < d:

If this inequality is satisfied, then proceed to compute U(ti+1). If not, adjust ti+1 by decreasing ki+1 =
ti+1 � ti by the factor of, say, 2.
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Appendix

See Figs. 2–9.
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[11] D. Schötzau, C. Schwab, Time discretization of parabolic problems by the HP-version of the discontinuous Galerkin finite element
methods, SIAM J. Numerical Anal. 38 (2000) 837–875.
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