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Abstract

In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a
certain weak singularity of [|u,(?)||, o) = l[ul|,, for the discontinuous Galerkin finite element method for one-dimensional
parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic
time-step control method is also included.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, the following standard model problem of parabolic type is considered:
Find u such that

ut(xvt) - MXX(x? t) :f(x? t)a X € Qa re R+)
u(x,t) =0, x€0Q, teR’, (1.1)
u(x7 0) = uO(x)a x € Q,

where Q is a closed and bounded set in R with boundary 0Q, R" = (0, 00), ty, = 0%u/0x?, u, = Ou/dt, and the
functions f and u, are given data.

In this paper, we take advantage of a certain regularity of ||u,||, to discretize the time variable in a way that
the optimal convergence rate of the discontinuous Galerkin (DG) method is obtained. In a series of papers
[1-4], Eriksson and Johnson presented adaptive DG finite element methods in which time and space variables
are adjusted using a posteriori estimates of the error. The current method is concerned with establishing a
priori error estimate for the DG method which is optimal.
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The following conditions will be assumed. Let (4, T, S) denote a finite element discretization satisfying

1. & is a positive function in C'(Q) such that
|Vh(x)] < M forall x € Q and for some M > 0.

2. T={K} is a set of triangular subdomain of Q with each triangular element having diameter /g such that
clhig/dK forall KeT,
K

and associated with the function /4 through
chg < h(x) < hg forall xeK, KeT,

where ¢; >0, ¢5 > 0. -
3. Sis the set of all continuous functions on € which are polynomials of order r in x = (x;,x,) oneach K€ T
and vanish on 0Q.

For the DG method for (1.1), we partition R as 0 =#, <1, <---<t,<---, where we let I, = (t,,_1, 1,,] with
k,=1t,— t,_1. For each time interval, with ¢ a nonnegative integer, define

Wi={v:R" = Vy,:v|, €P,l,),n=1,...,N},

where
the space of piecewise linear splines defined over @ = [0, L] with breakpoints
Vin = O=xo<x<:-<x,=L andh, = max x,; —x.

0<i<m—1

and
P,(1,) = {U(t) = zq:v,»tf (v € Vm}.

Even though linear splines are used in the definition of V,,, splines of any order can be used to form V/,,.
The DG method is defined as follows:
Find U such that for n =1,2,..., Ul,,, € Wy and

/I{(Ut,v)~|—a(U,v)}dt+([U]n1,1):_1) :/(f,v)dt for all v € Wy, (1.2)

['7
where [w], =w —w,, wH) =lim_ .cow(t, +s), Uy = uo, (u,v) = [, u(x)o(x)dx and a(u,v) = (VU, V).

As stated earlier, the approach here is to first estimate ||u,||,. For example, if uo(x) = — x in (1.1) with
fix,t) =0 and Q = (0,m), then the actual solution is given by

u(x, 1) = Zuge‘jzt sin(jix), (1.3)
=1
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In the following, C’s denote generic constants whose values change as they appear. From (1.3)
N = cpe = 9§ e v 1.4
(D115 = (01170 Z je¥ =1 ; e 3, (1.4)

The last equahty in (1.4) is justified because of the uniform convergence in 7 of 3| Ce~%’". Now using the fact
that [~e e dx < oo, a simple change of variables (say, y = jv/2f) will show that the last expression in (1.4) is
4 Cz"192 which leads to

lus(0)]], = O(4).

A similar argument shows that if u} = O(4) for some initial value function uo(x) then ||u,(1)||» = O(+~"/*). This
case arises when ug(x) = min(x,t — x) for x € (0, n). If u° decays faster than j~ > as j — oo, then ||u,(¢)||, will be
bounded as # — 0, and in this case, time interval can be partitioned uniformly. Before we present the current
method in the next section, one of the main theorems (theorem 2.3) from [2], which is pertinent to this paper, is
recalled below.

Theorem 1.1 (Eriksson and Johnson [2]). Let u be the solution of (1.1) and U that of (1.2). Assume that
Vi C Vipo1 and k,, < yk,,41 for all n and for some y > 0. Then there exists constants C only depending on ¢, and ¢,
(see condition 2 above) such that for g= 0,1, and N=1,2,.. .,

Ju—Ull,, < CLy max Ey,(w),

NS

and for = 1,N=1,2,...,

lu(ty) — Uyll, < CLy masz,,()

1<n<

where Ly = (log(tylky) + 1),

Eyp = min k][], + 12D

., qg=0,1,2 (1.5)

n

with u,(l) = u,, u,(z) = Uy, u§3) = Auy,

w()][-

The term min;c 1k’ [u]| ;, in(1.5) descrlbes the error associated with discretization in time. Thus, if [|u!” | I
is bounded for each n and j = 1,2,3, then the DG method is of the jth order accuracy in time. In many cases
where the initial condition is incompatible with the boundary conditions, |||, is unbounded as ¢ — 0". We
demonstrate in Section 2 that the graded time partitions can be established to restore the optimal rates of con-
vergence even in the presence of non-smooth data. It should be pointed out that similar non-uniform graded
discretization schemes were used in capturing the solutions of a class of weakly singular integral equations,
e.g., [8], in capturing the solution of parabolic integro-differential equations with memory term, e.g., [9], in
capturing the solution of a class of initial value problems, e.g., [12] as well as in capturing the solution of linear
parabolic equations in the /-version of the DG finite element method, e.g., [11]. Some other notable papers in
this topic are, e.g., [5,10] and references cited therein. The recent paper by Schétzau and Schwab [11]is of par-
ticular interest here, since it also deals with the /-version of the DG method for parabolic problems with non-
smooth data, particularly the topic covered in Section 5.2 of [11]. Schétzau and Schwab derive a graded time
partition scheme by analyzing a function defining the initial condition. More specifically, uo in (1.1) is exam-
ined by the K-method of interpolation as a function which belongs to an intermediate space between H-, the
Sobolev space, and L, and the graded time partitions are chosen accordingly. In this paper, graded time par-
titions are derived in Section 2 by analyzing the regularity of ||u,|,. The difference between the current
approach and that of Schotzau and Schwab in [11] manifests itself in an example (Section 3) in which we dem-
onstrate that the current method gives rise to more relaxed time partitions. The paper [11] by Schétzau and
Schwab is a must-read for anyone who is interested in the DG finite element method for parabolic problems.
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The paper goes far beyond what are explored in this paper, which deals exclusively with the A-version of the
DG method. In Section 3, a numerical example is given to demonstrate the validity of our theory. Also
included in Section 3 is the discussion of automatic time step control algorithm which is based upon the results
presented in Section 2. The term ||/2D%ul| ;, in (1.5) describes the spatial discretization error and it is of the
second order due to the use of linear splines in defining the space V,, as long as |[D’u(z)|, is well behaved.
Unfortunately, for solutions of parabolic problems, this is not always the case. We investigate the behaviour
of D*u and establish in Section 2 the spatial discretization scheme that achieves the quadratic convergence in
space variable.

2. Discontinuous Galerkin method for parabolic problems

Consider one-dimensional parabolic problem (1.3). Even though the method will be outlined in one-dimen-
sional setting, extensions to higher dimensions are possible and straightforward.

For 0 <o <1 and ¢ a nonnegative integer, define an index of singularity Q = %. For a positive integer N
and T> 0, let
o
¢ = (1) . n=0,1,....N
N
and
t,=tT. (2.1)
Define 1, = (t,_1,t,], n=1,2,...,N, and let k, denote the length of I, so that
n\@ n—1\¢
k, = (—) . T, n=12,...N.
@) ]
Note that
nio-11
k, < [ﬁ] .y 22
ofx]" < (22)

by the mean value theorem.

The solution u(x, ) of (1.1) is then approximated in ¢ over each 7, by a polynomial of degree ¢. For instance,
with ¢ = 1, let P;w denote the linear interpolatory projection of w € Hy = {v: DVv € L,,j=0,1,2;0 =0 on
0€2} in time onto W), viz,

w(x, t,-1) +

n n

n—1

In
Piw(x,t) =

w(x,t,), foreachtel,.
Note that Py is bounded with respect to the norm || - ||, where
W), = max fhw(@)ll,. o)
Since Q2 is assumed to be bounded, P, is bounded with respect to || - [|, also. Since Py equals the identity on

polynomials of degree <1, examining the error terms in the Taylor expansion of order 0 and 1, respectively, we
obtain, for each n=1,2,..., N,

\w—ﬂwhszwm@mw, (23)

and

lu — Piu

< Cka g, - (2.4)
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For higher values of ¢, carrying out the Taylor expansion to the order ¢, the best possible estimate that can
be achieved for the projection P, : Hy — Wy, is given by

}. (2.5)

The type of estimate obtained in (2.5) plays a useful role in bounding the error in time variable for the DG
finite element method for parabolic equations. The first term on the right of (2.5) is used to capture the error
during the transient phase of the solution, while the second term is used for the solution later in time, upon
which ||u,||, is expected to be smooth. The following lemma examines the first term on the right hand of (2.5).
In [9], for integro-differential parabolic equations with memory, a similar singular behaviour in solution is
treated. However, the analysis used in [9] restricts the construction of graded time partitions to constant
and linear cases only.

q-+1

atq+l

u

||u —Pqqun < min {/ ||u,(2)||, dt, CkZH
[n

Lemma 2.1. Let 0 <a <1, g a nonnegative integer and T > 0, we assume that t,, n=1,...,N are defined by
(2.1). Then

1
/SadS < Cﬁ,

where C is a constant independent on N and for n> 1,

1
max /s"ds <C—,
1

1<n<N N

where C is a constant independent on N.

Proof. Forn=1,

0

[roam [ e 0]

For 1 <n < N, we obtain

Jps7ds <) [("N;I)QT} Tds ass s decreasing over 1,

= TR @) )]

< C(ﬂ)f“g (2) ot (2 —=1) by the mean value theorem

N N
o 1\9—20 o1 1 vQ o_1—
- C(ﬁ) (,,n,l)aQ_CNq“ (n’Tll) no-1e
q q
- Mg CX¥—cL. O

Using Lemma 2.1 with 7 = 1 and ¢ = 1, the first term on the right of inequality (2.5) is of order O(;), pro-
vided that ||u,(7)||, = O(t™7) for some o € (0,1) and for 7 € I;. As stated earlier, it is reasonable to expect that
lluull;, < oo for n>1, so that (2.5) yields

2

1
lu— Pul|, =0O(— ), foreachn=1,... N. (2.6)
I, N

Lemma 2.2. Let t, and k,, be defined by (2.1). Then, with any positive integer N,

1/2
(1+10g/t€"> <V2, foreachn=0,1,...,N.

n
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Proof

(1) - (1 Floe (n/mQ(f/Z)f 1/N>Q> 1/2 (l ' m@) 1/2
o) (B
: (1 * (NT_1>Q>/ <2

The second to the last inequality is obtained from log(l — x) < —x for x <1. [O

Lemma 2.2 will be used in Theorem 1.1 to guarantee the stability of the DG method currently proposed.

For spatial discretization, let M be a positive integer and let x; for k =0,1,.. 2™ denote the spatial knots
which will be defined precisely later in this section. Denote by ¢,(x) the linear spline over Q, = [x;_1, X+1] for
k=1,2,...,2 — 1 and ¢¢(x) and ¢, (x) are linear splines on [xo, x;] and [x,»_,,x,] respectively. Extensions
to higher order splines are straightforward. At each time level #,, we approximate u(z,,x) by

U'=U"(x) = Ult,,x) = Zggo, ., n=0,1,...,N,

where df?:uo(xi). Now, Eq. (1.2) can be restated as follows: For n=1,2,...,N, given U ", find
U =U|, € P,,) such that

/[(U,,u)+a(U,v)]dt+(U"H,U"H) :/( ,0)dr + (U, 1) (2.7)

I I

for all v € P,(I,) where U~ = u,.

For demonstration, let us take a detour to see how Eq. (2.7) take specific forms for ¢ = 0 and ¢ = 1. First,
consider the case ¢ = 0, i.e., constant in time. As U" = U™~ = U"~ " in this case, with U" = 37 Oé”(p,( x), (2.7)
reduces to

2M
> &M@ 0) — kua(e;, 0))] Z & pne)+ (fre), j=0,1,...,2" (2.8)

i=0

For g = 1, we let U, = §,(x) + =), (x) where §, = 31 (& ¢;(x) and , = 31,/ 0,(x). As U™+ = g,
and U = @, + V1, (2.7) becomes

M oM k,
N (g 0) +kua(one)} + > 52-”’"{(% ;) +5 ale;, 9"1)}
i=0 i=1

2% B
— [ O0) Yl + & pnw). J= 012"
Iy i=0 (29)
l’l N k
Zé‘” > el 0)) +Zé‘” { (01, 0,) + 3a(coi’coj)}
:_/t_tnl (p])dt7 j20717“'72M'

The following theorem is a generalization of Theorem 1.1. A proof can be obtained by applying minor
changes in the proof of Theorem 2.3 [2].

Theorem 2.3. Suppose that there is a constant y such that time steps k, satisfy k, < yk,+1, n=1,....,N — 1 and
let U, denote the solution of (1.2) approximating u at t,. Here u is approximated by a polynomial of degree ¢ = 0
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over each I, for n=1,....,N — 1. Then there is a constant C depending only on vy and a constant f3, where
px = Phg and pk is the diameter of the circle inscribed in K for all K € T, such that for n=1,2,...,N,

In

12
&) {maxt— Pl + 10l ). 2.10)

luts) = Ul < c(l tlog

We proceed to examine the assumptions of Theorem 2.3 relative to the current time and space discretization
scheme. First of all, the condition k,, < yk,,+, is satisfied with y =1 as k,, is increasing. Second, for one-dimen-
sional problem (1.1), hgx = pgx = |Qk| so that Z—If =1 for all Q. Hence the assumptions are fulfilled under the
current time discretization scheme. Lemma 2.2 guarantees the uniformly bounded property of (1 + log,‘{—:)l/ 2
establishing the stability of the current DG method.

By (2.5) along with Lemma 2.1, with any nonnegative integer ¢, we obtain, provided that ||u,(7)|, = O(z™%)
for some 0 <o <1,

1
| — Pyul],, :O<W>' (2.11)

It remains to examine the spatial discretization error term max,«,, ||2-D*u(?)|| ;, in (2.10) for the current prob-
lem. If | D*u(r)||, is bounded for each n and for each ¢, then using the graded time partitions described in Lem-
ma 2.1, Theorem 2.3 transforms to the following:

Theorem 2.4. Consider the parabolic problem (1.1) and assume that the initial value uy(x) is defined in such a way
that ||u(t)|l,= O™ *), for 0 <o <1. Denote by U, the solution of (1.2) approximating u at t, Let time
discretization {t,} be defined by (2.1) and (0, 7) is divided into 2™ subintervals each of equal length. Also assume
| D?u(t)|| 1, is bounded for each n. If q denotes the degree of polynomials used in approximating u in time variable,
then for each n=1,2,...,N,

1 1
() — Un”z = O<W+22—M>

In many practical problems, the assumption in the previous theorem that |[D?u(z)||, is bounded for each n

and ¢ may not be possible, e.g., examine the solution of one-dimensional problem in (1.3). This topic is now
considered.

For elliptic problem,
—Au=f inQ
u=0 onl,
it is well known (cf. see [6], p. 92) that, for a smooth 0€Q,
ull2 (o) < CIIf Il (2.12)

Now for convenience, let us assume that f= 0 in (1.1). Then using the definitions of the respective norms and
from (1.1) and (2.12), we obtain

ID*u(®)1l;, < Ju(®) i) < Cllu(@)]],- (2.13)

If ||u/1)||, is bounded as  — 0, then spatial discretization can be made arbitrarily with step size / and attain

max R2|u,(¢)|l, = O(h*), where h =27 at each time level ¢,.
1<ty

In the case, ||u(?)||> = O(¢ %), (2.13) implies that we must select a set of knots {x,(7)} that depends upon z. The
approach here is similar to the adaptive strategy employed by Eriksson and Johnson [2] in which the spatial
increment /1, is selected according to the size of [ju,()||,., . Let h(t) = max,m(xi(¢) — x;-1(¢)) for each
t € (0,T]. Then A(t) is determined from the (q:gndition that h(r)*t* = O(¢*) as t — 0+ . In terms of N, we re-
quire that h(¢)t* = O(g:). For t = t; = (L) T, j=1,...,N, we have, for some C >0,
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[N
Solving (2.14) for A(t;) with C =1 for convenience,

o) 1/2
J o

Finally, select M so that

L
h(t;)

for each time level ¢;, j = 1,...,N, and x(¢;) = é‘—ﬁ (note that M depends upon j), for k =1,....2" — 1 to form
the spatial partition points. Reflecting on what was just discussed, we finally have the following theorem which
characterizes the convergence of the DG method both in time and in space variables in terms of N.

M > (2.16)

Theorem 2.5. Consider the parabolic problem (1.1) and assume that the initial value uo(x) is defined in such a way
that ||u(t)|l,= O™ ), for 0 <o <1. Denote by U, the solution of (1.2) approximating u at t, Let time
discretization {t,} be defined by (2.1) and (0,r) is divided into 2™ subintervals each of equal length, where M is
defined by (2.16). If q denotes the degree of polynomials used in approximating u in time variable, then for each
n=1.2,...,N,

1 1
Ju(ta) — Ul = o(N—+N—) 2.17)

Note that equality (2.15) implies that less partition points in space would be required as j — N. This char-
acterizes the situation described previously typical of parabolic problems in which solutions become smoother
after certain transient periods. Also note that, at each time level ¢; particularly for 7 near 0, it is possible to
reduce computational cost by relaxing the size of spatial elements over the regions where u(-, ¢;) is well behaved.
This will be made more evident when a numerical example is discussed in the next section.

3. A numerical example and automatic time step control

In this section, the graded partitions described in the previous section is tested in the following standard
one-dimensional problem. Find « such that

u(x,t) —un(x,0) =0, 0<x<mn, teR",
u(0,¢) = u(n,t) =0, ¢€R, (3.1)

u(x,0)=n—x, 0<x<m

The initial function is incompatible with the zero boundary conditions in (3.1). The exact solution is given in
(1.3) and [Ju,(t) ||, 0) = O(r 7). Thus, the indices of singularity O = 21 are 4 and 8, respectively, for constant
and linear approximations in time variable. Schétzau and Schwab (example 7.1 [11]) discuss a similar situation
in which the initial function is taken to be u(x,0) = 1. For this case, the grading function / is selected as
h(f) =373 in [11]. With N denoting, as before, the number of partitions in time variable, Schétzau and
Schwab’s approach results in #; = (3, )9 and f; = (1 )15 for the constant and linear approximations, respectively
in [11]. In the present method, as |[u,(¢)||,0) = O(r %) with u(x,0)=1, t;, = (+ )" and 1, = (%)8 for the con-
stant and linear approximations. This shows that the present method provides more relaxed time increments
at the beginning, which is critically important in order for numerical computation to proceed with a reason-

able cost.
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3.5 T T T T T T

n=1

2.5 Error=0.0133 1

approx

exact: Dotline=

Solidline

0 0.5 1 15 2 25 3 3.5

Fig. 1. Temp. at time ;.

Table 1

Error for constant (¢ = 0) and linear (¢ = 1) approximations

n q=0 qg=1
1 0.0133 0.0037
2 0.0571 0.0020
3 0.0673 0.0089
4 0.0729 0.0087
5 0.0763 0.0086
6 0.0780 0.0081
7 0.0878 0.0076
8 0.0933 0.0072
9 0.0702 0.0059

10 0.0850 0.0073

We select 7= 5 and N = 10 so that the solution is sampled at each time level ¢; = (% )QT, j=1,...,10. First,
the case for constant approximation in time, ¢ = 0, is considered. The exact solution and the approximate
solutions are plotted in Appendix for ¢,, t,=1,...,9. For ¢ =0, the errors are dominated from the time dis-
cretization term which is of order O(3). In Fig. 1 with 7, from (2.15), (1) ~ .0058. Hence, we take M ~ 9 in
(2.16) to guarantee the convergence rates in Theorem 2.4 It is interesting to note that, for the example under
consideration, we can relax M significantly while maintaining an overall quality of the numerical solution.
Also recall that the size of spatial discretization can be relaxed over the region away from x = 0 in this case
where u(x,?;) is well-behaved, but, of course, this requires a priori knowledge of u(x,t;). For ¢g=1,
h(t;) ~ .0002 from (2.15) so that choose M = 14. In this case, (2.17) gives

Jute) - U1l =0 ()

Table 1 lists L, errors at each time level ¢,, n =1,2,...,10.
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We close this paper by considering an automatic time step control scheme for the DG method for parabolic
problems having non-smooth data. Johnson considered a similar automatic time step control method for a
class of stiff ordinary differential equations in [7]. The result was extended to an automatic time control
method for a nonlinear parabolic problem in [1]. Let us recall the following algorithm in [1] for choosing
the time step size k,;:

Algorithm. [1] Given a tolerance 6 > 0,

1. Choose k,=k,,_;.
2. Given k,, compute the corresponding approximate solution U(z,).
3. If
0 0
C S 1U() = Ult-)ll> < &
where 7 is a suitable constant, y ~ 2 or 3, then stop and accept the time step k,,. Otherwise, decrease or in-
crease k, by a factor of, say, 2 and return to step 2.

To demonstrate that the algorithm above may become expensive in the presence of a singular transient
phase, consider the following: Suppose that 6 = 107> and ||u,(7)||» = O(t_l/z). Approximating || U(t,) — U(ty)|»
by t}/ 2, and decreasing the time step size by a factor of 2 beginning with k; = %, it would take 8 steps to find k;
which produces the numerical solution within the prescribed tolerance. The current approach is to estimate the
parameter o in |lu,(7)|» = O(¢*). The following algorithm contains a process of adjusting each time step (step
4), if necessary, as computation progresses, but, in principle, if « is estimated accurately in step 1, the amount
of adjustments would be minimal.

Algorithm. Given a tolerance 6 > 0,
1. Choose t; = k; small. Compute ||U(¢;) — U(0)||,. As

U(n) - U(0) —
ety = N == [l = Chk%,

3.5 T T T T T T

n=2
Error=0.0571 —

approx

exact: Dotline=

Solidline

3.5

Fig. 2. Temp. at time #,.
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so « is estimated by
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n=3

L Error=0.0673

Fig. 3. Temp. at time 3.

3.5

n=4

L Error=0.0729

Fig. 4. Temp. at time #4.

~Inf|U) — U )],

of =1

In Ckl

3.5

(3.2)
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n=5
25F Error=0.0763 B

approx

exact: Dotline=
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Fig. 5. Temp. at time ts.

3.5 T T T T T T

n=6
25F Error=0.0780 B
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Fig. 6. Temp. at time #.

2. Time discretization error is controlled by requiring

/ l|lu,(2)]],dt < 9.
I
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Fig. 7. Temp. at time ¢;.
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Fig. 8. Temp. at time fs.
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Fig. 9. Temp. at time t,.

t; is adjusted by

C 1_*
—l—oc*tl <0,

and subsequently choose the number N of time partitions from

+q
1 1—o*
tl ~ <—> T,
N

where ¢ is the degree of polynomials used in time approximation.
3. With 0" = {74, define

i\
tl:<> T, i:273,...,N7
N

to complete the partitions 0 <¢; <t, <---txy=T.
4. For i = 2, compute U(z;) and check an accuracy requirement

1U(#) = Uty < 0.

If this inequality is satisfied, then proceed to compute U(f4;). If not, adjust 7,11 by decreasing k;1; =
tir1 — t; by the factor of, say, 2.
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Appendix
See Figs. 2-9.
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