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Abstract

A recent paper [Hideaki Kaneko, Kim S. Bey, Gene J.W. Hou, Discontinuous Galerkin finite element method for par-
abolic problems, preprint November 2000, NASA] is generalized to a case where the spatial region is taken in R3. The
region is assumed to be a thin body, such as a panel on the wing or fuselage of an aerospace vehicle. The traditional
h- as well as hp-finite element methods are applied to the surface defined in the x–y variables, while, through the thickness,
the technique of the p-element is employed. Time and spatial discretization scheme developed in Kaneko et al. (2000),
based upon an assumption of certain weak singularity of kutk2, is used to derive an optimal a priori error estimate for
the current method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, the discontinuous Galerkin method is applied to the following standard model problem of
parabolic type:

Find u such that

utðx; tÞ � Duðx; tÞ ¼ f ðx; tÞ; x 2 X; t 2 Rþ;

uðx; tÞ ¼ 0; x 2 oX; t 2 Rþ;

uðx; 0Þ ¼ u0ðxÞ; x 2 X;

ð1:1Þ

where X is a closed and bounded set in R3 with boundary oX, R+ = (0,1), Du = o2u/ox2 + o2/oy2 + o2u/oz2,
ut = ou/ot, and the functions f and u0 are given data.
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The discontinuous Galerkin method is a robust finite element method that can deliver high-order numerical
approximation using unstructured grids. In this paper, region X is assumed to be a thin body in R3, such as a
panel on the wing or fuselage of an aerospace vehicle. The traditional h- as well as hp-finite element approx-
imations are used in the x–y variables, whereas, the p-finite element method developed, e.g., in [5,15], is used in
the z variable which describes the region through the thickness. The application of the p-finite element method
through the thickness of thin structure, as compared to applying the h- or hp-finite element discretization to all
coordinate directions, enables us to avoid structuring elements in R3 that are too thin to satisfy the required
quasi-uniformity condition (e.g., see [7]) that is necessary to deliver stable numerical approximation. It should
be emphasized that the current technique is different from the technique commonly known as hierarchical
finite element approximation for plate problems. In the hierarchical finite element technique, a class of basis
functions are chosen that depend on the differential equation and subsequently numerical solution is obtained
by solving a hierarchy of two-dimensional problems. We are coining the term ‘modified hp’-finite element
method, as it differs from the traditional hp-finite element method which uses h- and p-finite elements on
the same domain where the h-finite element method provides a refinement of the region and the p-finite ele-
ment provides an enrichment. In Section 2, approximation power of the modified hp-finite element method
will be investigated. In Section 3, the discontinuous Galerkin method with the modified hp-finite element
approximation technique is established. Discontinuity is in time variable and time discretization is based upon
the degree of singularity of kutk2. The traditional h-finite element method is employed in time. The conver-
gence analysis given in [9] will be used. The reader is also reminded of recently published important paper
[16] by Schötzau and Schwab in which various time discretization techniques are discussed. For instance,
an exponential convergence rate in time of p-finite element method is obtained in [16] despite the presence
of singularity in the transient phase of the solution. Time discretization used there is geometric. Schötzau
and Schwab’s result extends the results in [3,4] in which no exponential convergence rate is reported. Also they
discuss the h-finite element technique in time using a class of radical mesh and obtain the algebraic conver-
gence rate which is optimal. The radical mesh was chosen by analyzing the incompatibility between initial
and boundary data. The present authors [1] established a similar time discretization technique for the discon-
tinuous Galerkin finite element method, h-version in time, which was based upon the singularity of kutk2.
Using this analysis, it is shown in [1] that the optimal algebraic convergence rate in time of the discontinuous
Galerkin method can be obtained under more dispersed, therefore more computationally stable, radical mesh
than the mesh used in [16]. Time discretization was extended to nonlinear problem in [14].

2. Approximation power of modified hp elements

Let x � R2 and C � R be convex regions. For simplicity, it is assumed that C � � d
2
; d

2

� �
where d = jCj. For

simplicity, the thickness, d, is assumed constant over the domain. The Sobolev space of order k defined on
x · C is denoted by Hk(x · C) with the norm

kuk2
k;x�C ¼

X
06jaj6k

Dauk k2
2;

where for each multi-integer a = (a1,a2,a3), we have let jaj = a1 + a2 + a3 and

Da ¼ ojaj

oxa1
1 oxa2

2 oxa3
3

:

We note that the Sobolev norm reduces to the usual L2 norm when k = 0. In this section, a best possible error
estimate is derived for approximating an element in Hk(x · C) by the finite element function spaces. Let Kn,g

denote the master triangular element defined by

Kn;g ¼ fðn; gÞ 2 R2 : 0 6 g 6 ð1þ nÞ
ffiffiffi
3
p
� 1 6 n 6 0 or 0 6 g 6 ð1þ nÞ

ffiffiffi
3
p

0 6 n 6 1g:

Let Sp(Kn,g) denote the space of polynomials of degree 6p on Kn,g, i.e.,

SpðKn;gÞ ¼ spanfnigj : i; j ¼ 0; 1; . . . ; p; iþ j 6 pg:
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First, the shape functions for the master element Kn,g are formed. To accomplish this, the barycentric coor-
dinates are introduced via

k1 ¼ 1� n� g=
ffiffiffi
3
p� �

=2; k2 ¼ 1þ n� g=
ffiffiffi
3
p� �

=2; k3 ¼ g=
ffiffiffi
3
p

: ð2:1Þ

ki’s form a partition of unity and ki is identically equal to one at a vertex of Kn,g and vanishes on the opposite
side of Kn,g. The hierarchical shape functions on Kn,g consists of internal as well as external functions. The
normalized antiderivatives of the Legendre polynomials are defined by

�wiðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2iþ 1

2

r Z f

�1

P iðtÞdt; i ¼ 1; 2; 3; . . . ð2:2Þ

Now, the external shape functions consist of three nodal shape functions

Niðn; gÞ ¼ ki; i ¼ 1; 2; 3; ð2:3Þ
and 3(p � 1) side shape functions N ½j�i ðn; gÞ; i ¼ 1; . . . ; p � 1; j ¼ 1; 2; 3. The index j indicates one of three sides
of kn,g. Noting that �wið�1Þ ¼ 0,

�wiðgÞ ¼
1

4
ð1� g2ÞuiðgÞ; i ¼ 1; 2; 3; . . . ; ð2:4Þ

where ui(g) is a polynomial of degree i � 1. For instance, u1ðgÞ ¼ �
ffiffiffi
6
p

, u2ðgÞ ¼ �
ffiffiffiffiffi
10
p

g and u3ðgÞ ¼ffiffiffiffi
14
p

4
ð1� 5g2Þ, etc. The side shape functions are constructed as follows:

N ½1�i ðn; gÞ ¼ k2k3uiðk3 � k2Þ;
N ½2�i ðn; gÞ ¼ k3k1uiðk1 � k3Þ; i ¼ 1; . . . ; p � 1:

N ½3�i ðn; gÞ ¼ k1k2uiðk2 � k1Þ;

ð2:5Þ

From (2.4) and (2.5), there are 3 + 3(p � 1) shape functions. As dimðSpðKn;gÞÞ ¼ ðpþ1Þðpþ2Þ
2

, the remaining
ðp�1Þðp�2Þ

2
basis elements are constructed in terms of internal shape functions. Clearly, nontrivial internal shape

functions on Kn,g exists only if p P 3. For p = 3, the bubble function on Kn,g below serves as the internal
function;

bKn;g
ðn; gÞ ¼ k1k2k3 ¼

g

4
ffiffiffi
3
p 1� gffiffiffi

3
p

� �2

� n2

 !
: ð2:6Þ

Moreover, the collection Ip(Kn,g) of higher-order internal shape functions can be constructed from

IpðKn;gÞ ¼ fbKn;g
v : v 2 Sp�3ðKn;gÞg ¼ fbKn;g

g � Sp�3ðKngÞ; p P 3:

Let Th, h > 0, be a triangulation of x. Let x ¼ Ql
xðL1; L2; L3Þ and y ¼ Ql

yðL1; L2; L3Þ be the element mappings
of the standard triangle Kn,g to the lth triangular element Kl 2 Th, e.g., the linear mapping onto Kl with vertices

xl
i ; y

l
i

	 
� �3

i¼1
,

Ql
xðL1; L2; L3Þ ¼

X3

i¼1

xl
i Li; Ql

yðL1; L2; L3Þ ¼
X3

i¼1

yl
i Li:

The space of all polynomials of degree 6p on Kl is denoted by Sp(Kl) and its basis can be formed from the
shape functions of Sp(Kn,g) described above by transforming them under Ql

x and Ql
y . The finite element space

Sp,l(x,Th) is now defined. For x,p P 0 and k P 0,

Sp;kðx; T hÞ ¼ fu 2 Hkðx : ujK 2 SpðKÞ; K 2 T hÞg: ð2:7Þ

Assume that a triangulation {Th}, h > 0, of x consists of fKl
hg

MðhÞ
l¼1 and that hl ¼ diamðKl

hÞ, for l = 1, . . . ,M(h).
In the z-variable for through the thickness approximation, the local variable s is defined in the reference

element [�1,1] and C is mapped onto the reference element by Qz, i.e.,

C ¼ Qzð½�1; 1�Þ; z ¼ QzðsÞ:

H. Kaneko et al. / Applied Mathematics and Computation 182 (2006) 1405–1417 1407
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Clearly, Qz is a linear function defined by

z ¼ QzðsÞ ¼
1

2
ð1� sÞ � d

2

� �
þ 1

2
ð1þ sÞ d

2
; s 2 ½�1; 1�:

The Jacobian of Qz is constant

dz
ds
¼ d

2
:

In this paper, the basis functions of Pp([�1,1]) are taken to be the one-dimensional hierarchical shape func-
tions. See [15] for a complete discussion of the basis elements used in the p and hp-finite element methods.

For example, in approximating an element in Hl[�1,1], with l = 0, wi(s) = Pi�1(s), 1 6 i 6 p + 1, where
Pi�1 is the Legendre polynomial of degree i � 1, form the hierarchical basis functions. With l = 1, the external
(w1 and w2) and internal (wi, i P 3) shape functions are defined by

w1ðsÞ¼
1� s

2
; w2ðsÞ¼

1þ s
2

;

wiðsÞ ¼
2i� 3

2

� �1=2 Z s

�1

P i�2ðtÞdt; 3 6 i 6 p þ 1:

ð2:8Þ

Note that wi’s form an orthogonal family with respect to the energy inner product (Æ, Æ)E,

ðwi;wjÞE �
Z 1

�1

w0iðtÞw
0
jðtÞdt ¼

Z 1

�1

P iðtÞP jðtÞdt ¼ dij:

Also note that the internal shape functions satisfy

wið�1Þ ¼ 0 for 3 6 i 6 p þ 1:

For the case l = 2 and p P 3, the four nodal shape functions and the remaining p � 3 internal shape functions
given by

w1ðsÞ ¼
1

4
ð1� sÞ2ð1þ sÞ; w2ðsÞ ¼

1

4
ð1� sÞ2ð2þ sÞ;

w3ðsÞ ¼ �
1

4
ð1þ sÞ2ð1� sÞ; w4ðsÞ ¼

1

4
ð1þ sÞ2ð2� sÞ;

wiðsÞ ¼
2i� 5

2

� �1=2 Z s

�1

ðs� gÞP i�3ðgÞdg; i ¼ 5; . . . ; p þ 1:

ð2:9Þ

In this case, the internal shape functions satisfy

djwi

dsj
ð�1Þ ¼ 0 for 5 6 i 6 p þ 1 and j ¼ 0; 1: ð2:10Þ

The nodal basis functions, wi, i = 1,2,3,4, in (2.9) also satisfy three of the four conditions in (2.10). For exam-
ple, using the shape functions in (2.8), any element u 2 L2[�1,1] can be approximated by up 2 Pp([�1,1]), in
the form

upðsÞ ¼
1� s

2
uð�1Þ þ 1þ s

2
uð1Þ þ

Xpþ1

i¼3

aiwiðsÞ: ð2:11Þ

For approximating the solutions of parabolic problems with the homogeneous Dirichlet boundary condition,
the first two terms will be dropped, as u(�1) = u(1) = 0. A sequence of triangulations {Th}h>0 is called the
quasiuniform mesh if

h
diamðKÞ 6 c for all h > 0; ð2:12Þ
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with h ¼ maxK2T h diamðKÞ, and for some c > 0. Pp(C) denotes the space of all polynomials of degree 6p de-
fined on C. The following is proved by Babuška et al. in [5]. See also [6] by Babuška and Suri on a related
discussion. Here X0 denotes a bounded polygonal domain in R2.

Theorem 2.1. Let u 2 Hk(X0). Then there exists a sequence zp 2 Pp(X0), p = 1,2, . . ., such that, for any 0 6 l 6 k,

ku� zpkl;X0
6 Cp�ðk�lÞkukk;X0

;

where C is independent of u and p.

The parameters k and l are not necessarily integral. Their proof relies heavily on the approximation power
of the trigonometric polynomials.

With l = 0 in Theorem 2.1 and using the usual duality argument, the results in Theorem 2.1 are further
improved by Babuška and Suri in [6] (Theorem 2.9), (see also a series of papers by Gui and Babuška [13]),
to the hp-finite element setting as follows:

Theorem 2.2. Let Th be a quasiuniform partition of X0. Then for k P 1, u 2 Hk(X0),

inf
v2Sp;kðx;T hÞ

ku� vkL2ðX0Þ 6 Chmp�kkukHkðX0Þ;

where m = min(k,p + 1).

The corresponding error estimate in the k 	 kHkðX0Þ is also available in [6].
h-version in the x–y surface variables: First, the h-finite element approximation is considered in the x–y vari-

ables. Let z ¼ sðsÞ ¼ d
2
s be the linear transformation of [�1,1] onto C. Now consider the problem of approx-

imating a function u 2 Hk(x · C) by a function from the tensor product space Sr
hðxÞ � P pðCÞ, where

Sr
hðxÞ ¼ Sr

hðx; T hÞ ¼ fu 2 L2ðxÞ : ujK 2 SrðKÞ; K 2 T hg: ð2:13Þ

For error analysis of h-version of the finite element method, the space Sp,k(x,Th) defined in (2.7) is not nec-
essary, and the space Sr

hðxÞ of lower dimension can be used to attain the optimal convergence rate. Let
P r

h : H 2ðxÞ ! Sr
hðxÞ denote the interpolation projection defined by

ðP r
huÞðx; yÞ ¼

Xr

i¼1

u xl
i ; y

l
i

	 

ul

iðx; yÞ for all ðx; yÞ 2 Kl and u 2 H kðxÞ; ð2:14Þ

where Th is a triangulation of x with Kl 2 Th and fðxl
i ; y

l
iÞg

r
i¼1 is a set of nodes on Kl with ul

i xl
j; y

l
j

� �
¼ dij. Also,

denote by Qp : Hk(C)! Pp(C) a projection defined by

ðQpuÞðzÞ ¼
Xpþ1

i¼1

aiWiðzÞ for all z 2 C; ð2:15Þ

where Wi(z) = wi(s
�1(z)) for each i P 1 where wi are defined, e.g., in (2.8) or (2.9). Recall that for k = 1, the

constants a1 and a2 are known in case of parabolic problems with Dirichlet condition, and it is assumed that
ai, i P 3, in (2.15) are determined byZ

C
uðzÞ �

Xpþ1

j¼3

ajWjðzÞ













2

dz ¼ min
bj2R

Z
C

uðzÞ �
Xpþ1

j¼3

bjWjðzÞ













2

dz: ð2:16Þ

From approximation theory [17],

I � P r
h

�� ��
L2ðXÞ
¼ OðhrÞ: ð2:17Þ

Also Qp : L2(C) =!Pp(C), from being the orthogonal projection in the sense described in (2.16) and from
Theorem 2.1 that

kI � QpkL2ðCÞ ¼ Oðp�kÞ: ð2:18Þ

H. Kaneko et al. / Applied Mathematics and Computation 182 (2006) 1405–1417 1409



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Let

P r
h � Qp

�� ��
2
� P r

h � Qp

�� ��
L2ðx�CÞ � sup

kuk2¼1

ðP r
h � QpÞu

�� ��
L2ðx�CÞ:

For u 2 L2(x · C),

P r
h � I

	 

uðx; y; zÞ ¼

X
l

Xr

i¼1

u xl
i ; y

l
i ; z

	 

ul

iðx; yÞ;

and

ðP r
h � QpÞuðx; y; zÞ ¼

Xpþ1

j¼1

X
l

Xr

i�1

ul
iðx; yÞ

( )
ajWjðzÞ;

where aj depends upon u and obtained according to (2.16). First, approximation order under L2 operator
norm of P r

h � Qp for P r
h � I is established.

Lemma 2.3. For P r
h : HkðxÞ ! Sr

hðxÞ; 0 6 r 6 k, and Qp : Hk(C)! Pp(C) defined respectively in (2.14) and

(2.15),

kP r
h � I � P r

h � Qpk2 6 Cp�k;

where C is independent of p.

Proof

P r
h � I � P r

h � Qp

�� ��
2
� sup
kuk2¼1

P r
h � I � P r

hQp

	 

u

�� ��
2

¼ sup
kuk2¼1

X
l

Z
Kl

Z
C

Xr

i¼1

u xl
i ; y

l
i ; z

	 

ul

iðx; yÞ �
Xpþ1

j¼1

Xr

i¼1

ul
iðx; yÞajWjðzÞ












dzdxdy

( )1=2

6 sup
kuk2¼1

X
l

Z
Kl

Z
C







Xr

i¼1

ul
iðx; yÞ u xl

i ; y
l
i ; z

	 

�
Xpþ1

j¼1

ajWjðzÞ
 !( 






2

dzdxdy

9=
;

1=2

6 sup
kuk2¼1

Xr

i¼1

X
l

Z
Kl

Z
C






ul
iðx; yÞ







2






u xl

i ; y
l
i ; z

	 

�
Xpþ1

j¼1

ajWjðzÞ








2

dzdxdy

8<
:

9=
;

1=2

by Minkowski inequality

6 sup
kuk2¼1

r max
16i6r

X
l

Z
Kl






ul
iðx; yÞ







2






u xl

i ; y
l
i ; z

	 

�
Xpþ1

j¼1

ajWjðzÞ








2

dzdxdy

8<
:

9=
;

1=2

6 C sup
kuk2¼1

max
16i6r

Z
C





u xl
i ; y

l
i ; z

	 

�
Xpþ1

j¼1

ajWjðzÞ






2

dz

8<
:

9=
;

1=2

where M �
X

l

Z
Kl






ul
iðx; yÞ







2

dxdy

6 Cp�k; by Theorem 2:1: �

Similarly, the following lemma will be useful.

Lemma 2.4. Let P r
h : HkðxÞ ! Sr

h, with 0 6 r 6 k and Qp : Hk(C)! Pp(C). Then

I � Qp � P r
h � Qp

�� ��
2
6 Chr;

where C is independent of r.

1410 H. Kaneko et al. / Applied Mathematics and Computation 182 (2006) 1405–1417
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Proof

I�Qp�P r
h�Qp

�� ��
2
� sup
kuk2¼1

I�Qp�P r
h�Qp

	 

u

�� ��
2

¼ sup
kuk2¼1

X
Kl2T h

Z
Kl

Z
C








Xpþ1

j¼1

ajðx;yÞWjðzÞ�
Xpþ1

j¼1

Xr

i¼1

aj xl
i ;y

l
i

	 

uiðx;yÞ

!
WjðzÞ

 





2

dzdxdy

8<
:

9=
;

1=2

where
Xpþ1

j¼1

aiðx;yÞWjðzÞ is the best L2ðCÞ approximation of uðx;y; 	Þ

6 sup
kuk2¼1

X
Kl2T h

Z
Kl

Z
C








Xpþ1

j¼1

ajðx;yÞ�
Xr

i¼1

aj xl
i ;y

l
i

	 

uiðx;yÞ

( )
WjðzÞ








2

dzdxdy

8<
:

9=
;

1=2

6 sup
kuk2¼1

Xpþ1

j¼1

X
Kl2T h

Z
Kl

Z
C







ajðx;yÞ�
Xr

i¼1

aj xl
i ;y

l
i

	 

uiðx;yÞ








2

WjðzÞ








2

dzdxdy

8><
>:

9>=
>;

1=2

6C
X

Kl2T h

Z
Kl







ajðx;yÞ�
Xr

i¼1

aj xl
i ;y

l
i

	 

uiðx;yÞ








2





dxdy

8<
:

9=
;

1=2

6Chr; provided that aj 2H rðxÞ;

where the last inequality follows from a well-known result of the approximation power of piecewise polyno-
mials [17]. h

Using Theorems 2.1 and 2.2, we obtain the following theorem which provides an error estimate for approx-
imating an element in Hk(x · C) by elements from Sr

hðxÞ � P pðCÞ. The result will be used in the next section
when the formulation of error estimate of the modified h–p discontinuous Galerkin finite element method for
approximating the solution of the parabolic problem (1.1) is established.

Theorem 2.5. Let u 2 Hk(x · C). Then there exists u
 2 Sr
hðxÞ � P pðCÞ such that for 0 6 r 6 k,p > 0,

ku� u
kL2ðx�CÞ ¼ Oðhr þ p�kÞ:

Proof. Define u
 ¼ ðP r
h � QpÞu. Then, using Lemmas 2.3 and 2.4

ku� u
k2 ¼ ku� ðP r
h � QpÞuk2 ¼ ku� ðI � QpÞuþ ðI � QpÞu� ðP r

h � QpÞuk2

6 ku� ðI � QpÞuk2 þ kðI � QpÞu� ðP r
h � QpÞuk2 ¼ Oðhr þ p�kÞ: �

hp-version in the x–y surface variables: Now we incorporate the hp-version of approximation technique in
the x–y coordinates. The goal is to approximate a function u 2 Hk(x · C) from the tensor product space
Sp1;kðx; T hÞ � P p2ðCÞ for nonnegative integers p1 and p2. Analysis is similar to the one given in Lemmas 2.3
and 2.4 and therefore is not given. Using Theorem 2.2, it can be seen easily that

Theorem 2.6. Let u 2 Hk(x · C). Then there exists u
 2 Sp1;kðx; T hÞ � P 2
pðCÞ,

ku� u
kL2ðx�CÞ ¼ O hmp�k
1 þ p�k

2

	 

:

where m = min(k,p1 + 1) and h ¼ maxK2T h diamðKÞ, with Th a triangulation of x.

Remark. Let NðpÞ � ðpþ1Þðpþ2Þ
2

. Note that numbers of the degrees of freedom of Sp1;kðx; T hÞ and Pp2(C) are
M(h)N(p1) and N(p2) respectively. Since a single element through the thickness is used because of the specific
structural consideration in this paper, we cannot expect the total error to decrease by letting the diameter
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h! 0, i.e., by letting the size of surface elements decrease to 0. The second error term would quickly domi-
nates the overall performance of approximation in that case. In order for both of the error terms in Theorem
2.6 to decrease consistently, note that N(p) = O(p2) and h = O(M(h)�1). Thus the number of surface elements
M(h) and the corresponding degree p1 of polynomials should be selected so as to maintain

MðhÞ�kNðp1Þ
�k

2 ’ Nðp2Þ
�k

2: ð2:19Þ
Eq. (2.19) not only describes the consistent error estimates between the two terms but also indicates the con-
sistent workloads between the surface and the through the thickness approximations.

3. Discontinuous Galerkin method

In this section, the discontinuous Galerkin (DG) method for problem (1.1) is developed. The discontinuity
is introduced in time, which allows computation to march forward in time. This, when compared with the
standard continuous Galerkin method, presents an enormous saving in size of computation. The DG finite
element method for parabolic partial differential equations was studied in a series of papers by Erikson, John-
son and Larsson, [8–12]. In these papers, the convergence in time of h-finite element DG method is established
for solutions which are smooth. More specifically, when the solutions are approximated by polynomials of
degree r, then the algebraic error estimate of O(Dtr+1) as Dt! 0 is obtained. However, in many parabolic par-
tial equations, solutions exhibit singularities at t = 0 due to the initial conditions. In a recent paper [1], the
present authors established a graded time discretization scheme that captures the transient solution to optimal
precision. The graded time mesh is selected by assuming that kutk2 is weakly singular. A similar study of the
graded time meshes is reported recently by Schötzau and Schwab [16]. They derive a set of graded time par-
tition points by considering an incompatibility between initial and boundary conditions. It is demonstrated in
[1] that the time discretization based upon kutk2 provides more relaxed distribution of partition points. The
paper of Schötzau and Schwab goes on to describe the p-finite element in time and obtain an exponential
convergence in spite of a singular transient phase of the solution. We will not discuss the p-finite element
in time in this paper. It will be taken up in [2] in which the complete p-finite element for parabolic problems
is discussed.

We begin by recalling several results from [2] that are pertinent to the present paper. The following condi-
tions will be assumed. Recall from Section 2 that X = x · C. Let (h,T,S) denote a finite element discretization
satisfying

1. h is a positive function in C1ðXÞ such that

jrhðxÞj 6 M for all x 2 X and for some M > 0:

2. T = {K} is a set of triangular subdomain of x with each triangular element having diameter hK such
that

c1h2
K 6

Z
K

dx for all K 2 T ;

and associated with the function h through

c� 1hK 6 hðxÞ 6 c2hK for all x 2 K; K 2 T ;

where c1 > 0, c2 > 0.
3. S is the set of all continuous functions on X which are polynomials of order r in x = (x1,x2) on each K 2 T

and vanish on ox as well as which are polynomials of order p in the z-variable in C.

For the discontinuous Galerkin method for (1.1), we partition R+ as 0 = t0 < t1 < 	 	 	 < tn < 	 	 	 where we
let In � (tn�1, tn] with kn � tn � tn�1. For each time interval, with q a nonnegative integer, We let

W q
hp � fv : Rþ ! V hp : vjIn

2 P qðInÞ; n ¼ 1; . . . ;Ng;

1412 H. Kaneko et al. / Applied Mathematics and Computation 182 (2006) 1405–1417



Aut
ho

r's
   

pe
rs

on
al

   
co

py

where

V hp ¼

the space of all functions u
 2 Sr
hðxÞ � P pðCÞ

or u
 2 Sk
pðx; T hÞ � P pðCÞ such that

h ¼ max
K2T h

diamðKÞ where T h is a triangulation of x

8>><
>>:

9>>=
>>;

and

P qðInÞ ¼ vðtÞ ¼
Xq

i¼0

viti : vi 2 V hp

( )
:

The discontinuous Galerkin method is defined as follows:
Find U such that for n = 1,2, . . ., with X = x � C, U jX�In

2 W q
hp andZ

In

fðU t; vÞ þ aðU ; vÞgdt þ ½U �n�1; v
þ
n�1

	 

¼
Z

In

ðf ; vÞdt for all v 2 W q
hp; ð3:1Þ

where ½w�n ¼ wþn � w�n , wþð�Þn ¼ lims!0þð�Þwðtn þ sÞ, U�0 ¼ u0, ðu; vÞ ¼
R

X uðxÞvðxÞdx and a(u,v) = ($U,$v). The
smoothness of kutkL2ðXÞ is subject to the initial condition as well as to the boundary condition. For example, if
we take in (1.1), u0(x) = p � x, f(x, t) � 0 and X = (0,p), then the actual solution of the corresponding problem
is given by

uðx; tÞ ¼
X1
j¼1

u0
j e�j2t sinðjxÞ;

where

u0
j ¼

2

p

Z p

0

ðp� xÞ sinðjxÞdx ¼ 2

p
p
j
� 1

j2
sin2 jp

� �
¼ O

1

j

� �
:

In the following, C’s denote generic constants whose values change as they appear. Now,

kutðtÞk2
2 ¼ kutðtÞk2

L2ðXÞ ¼
X1
j�1

Cj2e�2j2t ¼ d

dt

X1
j¼1

Ce�2j2t: ð3:2Þ

The last equality in (3.2) is justified because of the uniform convergence of
P1

j¼1Cj2e�2j2t with respect to t. Now

using the fact that
R1

0
e�x2

dx <1, a simple change of variables (say, y ¼ j
ffiffiffiffi
2t
p

) will show that the last expres-
sion in (3.2) is d

dt Ct�1=2, which leads to

kutðtÞk2 ¼ Oðt�3=4Þ:
A similar argument shows that if u0

j ¼ Oð 1
j2Þ for some initial value function u0(x), then kut(t)k2 = O(t�1/4). This

case arises when u0(x) = min(x,p � x) for x 2 (0,p). If u0
j decays faster than j�2.5 as j!1, then kut(t)k2 will be

bounded as t! 0. An initial phase for small t is the well-known initial transient for parabolic problems. It is
the case that the smoothness of the solutions of parabolic problems vary significantly in space and time with
initial transients where highly oscillatory components of the solution are decaying rapidly. Therefore, in order
for numerical methods for parabolic problems to be successful, it is imperative that the methods take a careful
account of time and space discretization scheme so as to capture the transient solutions. An adaptive time step
control scheme was established by Eriksson and Johnson in [9]. Time steps kn are defined by controlling the
size of

min
j6qþ1

kj
n uðjÞt

�� ��
In
;

where q is the order of spline used in time and uð1Þt ¼ ut, uð2Þt ¼ utt, uð3Þt ¼ Dutt and kwkIn
¼ maxt2InkwðtÞk2. Note

that the method of Eriksson and Johnson requires some estimates concerning kuttkIn
and uð3Þt ¼ Dutt to achieve

the second and the third-order convergence in time. The approach given in [1] provides convergence of any
order in time for the discontinuous Galerkin method by examining only the behavior of kutk2.
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For 0 < a < 1 and q a nonnegative integer, define Q � qþ1
1�a. For a positive integer N and T > 0, define

t
n ¼
n
N

� �Q
n ¼ 0; 1; . . . ;N

and

tn ¼ t
nT : ð3:3Þ

We let In = (tn�1, tn], n = 1,2, . . . ,N. Let kn denote the length of In so that

kn ¼
n
N

� �Q
� n� 1

N

� �Q
" #

T ; n ¼ 1; 2; . . . ;N :

Note that

kn 6 Q
n
N

h iQ�1 1

N
T by the mean value theorem;

hence

kn 6 C
1

N qþ1
; ð3:4Þ

where C is a constant independent of n. The solution u(x, t) of (1.1) is then approximated in t over each In by a
polynomial of degree q. For example, with q = 1, let I i

nw denote the linear interpolatory projection of w 2 H 2
0

in time onto Whk, viz,

I i
nwðx; tÞ ¼ tn � t

kn
wðx; tn�1Þ þ

t � tn�1

kn
wðx; tnÞ for each t 2 In:

Note that I i
n, considered as an operator defined on H 2

0 is bounded with respect to the norm k 	 k1;In
where

kwðtÞk1;In
� max

t2In
kwðtÞkL1ðXÞ

:

Since X is assumed to be of bounded domain, I i
n is bounded with respect to k 	 kIn

also. As was the case with the
L2 projection, I i

n equals the identity on polynomials of degree 61. Expanding u(x, t) in Taylor series with re-
spect to t at tn to the first or to the second order, we obtain, respectively, for each n = 1,2, . . . ,N,

u� I i
nu

�� ��
In
6

Z
In

kutðsÞk2ds: ð3:5Þ

Lemma 3.1. Let 0 < a < 1, q a nonnegative integer and T > 0, we assume that tn, n = 1, . . . ,N are defined by (3.3).

Then

max
n6N

Z
In

s�ads 6 Cn
1

N qþ1
;

where Cn is a constant independent on N.

Lemma 3.2. Let tn and kn be defined by (3.3). Then

1þ log
tn

kn

� �1=2

6

ffiffiffi
2
p

for each n ¼ 0; 1; . . . ;N :

Lemma 3.2 is used to guarantee the stability of the discontinuous Galerkin method. In the remainder of this
paper, we illustrate the current ‘modified’ hp-finite element method by assuming the h-version in the surface x–
y variables using the linear splines. Also we illustrate the cases for constant as well as linear degree in time
approximation. Let fðxi; yiÞg

M
i¼1 is the set of nodal points which are the interior vertices of K in Th. Let uj
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be the linear spline basis element defined by uj(xi,yi) = dij, for i, j = 1, . . . ,M. The superscript l used in (2.2) will
be dropped. For application of higher-order spline basis, more nodal points are required over each K. The
solution u of (1.1) is approximated by (t > 0)

uðx; y; z; tÞ �
XM

j¼1

u xj; yj;�
D
2
; t

� �
1

2
� z

D

� �
þ u xj; yj;

D
2
; t

� �
z
D
� 1

2

� ��
þ
Xpþ1

i¼3

aj
iðtÞwiðzÞujðx; yÞ: ð3:6Þ

Note that u xj; yj;� D
2
; 0

	 

, for j = 1, . . . ,M are known from the initial condition. Also, for t > 0, the boundary

values u xj; yj;� D
2
; t

	 

are given. As uð�x; tÞ ¼ 0, for �x 2 oX, t 2 R+ in (1.1) and (3.6) simplifies to

uðx; y; z; tÞ �
XM

j¼1

Xpþ1

i¼3

aj
iðtÞwiðzÞujðx; yÞ: ð3:7Þ

At each time level tn, we approximate uðx; y; z; tnÞ ¼ uð�x; tÞ by

Un ¼ Unð�xÞ ¼ Uð�x; tnÞ ¼
XM

j¼1

Xpþ1

i¼3

aj
iðtnÞwiðzÞujðx; yÞ; n ¼ 0; 1; . . . ;N : ð3:8Þ

To start the DG finite element method, we first require aj
iðt0Þ and they are determined from u0ð�xÞ. More spe-

cifically, for each j = 1, . . . ,M, since u0ðxj; yj; z; t0Þ � U 0ðxj; yj; z; t0Þ ¼
Ppþ1

i¼3 aj
iðt0ÞwiðzÞ;Mðp � 1Þ many aj

iðt0Þ
are found by solving

Xpþ1

k¼3

Z D
2

�D
2

wkðzÞwiðzÞdz 	 aj
kðt0Þ ¼

Z D
2

�D
2

uðxj; yj; z; 0ÞwiðzÞdz for i ¼ 3; . . . ; p þ 1:

Now, Eq. (3.1) can be formulated as follows:
For n = 1,2, . . . ,N, given Un�1,�, find U � U jIn

¼2 P qðInÞ such thatZ
In

½ðUt; vÞ þ aðU ; vÞ�dt þ ðU n�1;þ; vn�1;þÞ ¼
Z

In

ðf ; vÞdt þ ðUn�1;�; vn�1;þÞ; ð3:9Þ

for all v 2 Pq(In) where U0,� = u0.
For a special case, consider q = 0, i.e., constant in time. As Un = Un,� = Un�1,+ in this case, (3.9) reduces to

ðUn � U n�1; vÞ þ knaðUn; vÞ ¼
Z

In

ðf ; vÞdt; ð3:10Þ

for all v 2 P0(In) and n = 1,2, . . . ,N. With (3.7) and (3.10) becomes for each n = 1,2, . . .

XM

j¼1

Xpþ1

i¼3

aj
iðtnÞ½ðwiuj;waubÞ � knaðwiuj;waubÞ� ¼

XM

j¼1

Xpþ1

i¼3

aj
iðtn�1Þðwiuj;waubÞ þ ðf ;waubÞ;

for each a = 3, . . . ,p + 1; b = 1, . . . ,M.
For q = 1, we let U jIn

¼ Unð�xÞ þ t�tn�1

kn
Wnð�xÞ where Un ¼

PM
j¼1

Ppþ1
i¼3 aU;j

i ðtnÞwiðzÞujðx; yÞ and Wn ¼PM
j¼1

Ppþ1
i¼3 aW;j

i ðtnÞwiðzÞujðx; yÞ. As Un�1+ = Un and Un�1,+ = Un�1 + Wn�1 (3.9) becomesZ
In

1

kn
ð �Wn; vÞ þ a Un þ

t � tn�1

kn
Wn; v

� �� �
dt þ Un; vn�1

þ
	 


¼
Z

In

ðf ; vÞdt þ ðUn�1 þWn�1; vn�1
þ Þ; ð3:11Þ

for all v 2 P1(In). By taking v = waub and t�tn
kn

waub, (3.11) reduces to the following linear equations for
2M(p � 1) unknowns aU;j

i ðtnÞ and aW;j
i ðtnÞ:

XM

j¼1

Xpþ1

i¼3

aU;j
i ðtnÞfðujwi;ubwaÞ þ knaðujwi;ubwaÞg þ

XM

j¼1

Xpþ1

i¼3

aW;j
i ðtnÞfðujwi;ubwaÞ þ knaðujwi;ubwaÞg

¼
Z

In

ðf ðtÞ;ubwaÞ þ
XM

j¼1

Xpþ1

i¼3

aU;j
i ðtn�1Þ þ aU;j

i ðtn�1Þ
� �

ðujwi;ubwaÞ; a ¼ 3; . . . ; p þ 1; b ¼ 1; . . . ;M ;
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XM

j¼1

Xpþ1

i¼3

aU;j
i ðtnÞ

kn

2
aðujwi;ubwaÞ þ knaðujwi;ubwaÞ

þ
XM

j¼1

Xpþ1

i¼3

aW;j
i ðtnÞ

1

2
ðujwi;ubwaÞ þ

kn

3
aðujwi;ubwaÞ

� �

¼ 1

kn

Z
In

ðt � tn�1Þðf ðtÞ;ubwaÞdt; a ¼ 3; . . . ; p þ 1; b ¼ 1; . . . ;M :

The following theorem can be proved by minor modifications to the proof of Theorem 1.1, [9] and by mak-
ing use of Theorem 2.5. The present theorem is described for X = x � C � R3.

Theorem 3.3. Suppose that there is a constant c such that the time steps kn satisfy kn 6 ckn+1, n = 1, . . . ,N � 1

and let Un denote the solution of (3.9) approximating u at tn. Here u is approximated by a polynomial of degree

q P 0 over each In for n = 1, . . . ,N � 1, and u(Æ, Æ, Æ, t) is approximated by an element from Sr
hðxÞ � P pðCÞ for

each t 2 R+, where x is a polygonal domain in R2. Then there is a constant C depending only on c and a constant

b, where qK P bhK and qK is the diameter of the circle inscribed in K for all K 2 Th, such that for n =

1,2, . . . ,N,

kuðtnÞ � U nk2 6 C 1þ log
tn

kn

� �1=2

max
m6n

u� I i
nu

�� ��
Im
þ h2 D2

xyu
��� ���

In

þ p�kkukIn;HkðCÞ

� �
; ð3:12Þ

where kwkIn;HkðCÞ ¼ maxt2InkwðtÞkHkðCÞ and D2
xy denotes the second-order derivative with respect to x and y

variables.

Lemma 3.2 guarantees that the current DG finite element method with the graded temporal meshes defined
in (3.3) is a stable scheme. Also Lemma 3.1 provides a bound for the term maxn6m u� I i

nu
�� ��Im in (3.12) pro-

vided that kutk2 = O(t�a) as t! 0. Theorem 2.5 is used to control the last two error terms in Theorem 3.3. In
summary, we obtain the following theorem which utilizes the traditional h-finite element in the surface
variables.

Theorem 3.4. Suppose that u 2 Hk(x · C) and kutk2 = O(t�a) for 0 < a < 1 and that the time partition points tn

are taken according to (3.3). Let Un denote the solution of (3.9) approximating u at tn. Also assume that u is

approximated in time variable by a polynomial of degree q P 0 over each In for n = 1, . . . ,N � 1, and u(Æ, Æ, Æ, t) is

approximated by an element from S2
hðxÞ � P pðCÞ for each t 2 R+, where x is a polygonal domain in R2. Then

kuðtnÞ � U nk2 ¼ OðN�ðqþ1Þ þ h2 þ p�kÞ:

If higher-order r > 2 splines are used in Sr
hðxÞ, then the second term in the error can be replaced by hr provided

Dr
xyu

��� ���
In

is bounded.

In the case of the hp-finite element approximation for the surface variables, Theorem 2.6 is now used to
establish the following.

Theorem 3.5. Suppose that u 2 Hk(x · C) and kutk2 = O(t�a) for 0 < a < 1 and that the time partition points it tn

are taken according to (3.3). Let Un denote the solution of (3.9) approximating u at tn. Also assume that u is

approximated in time variable by a polynomial of degree q P 0 over each In for n = 1, . . . ,N � 1, and u(Æ, Æ, Æ, t) is

approximated by an element from Sp1;kðx; T hÞ � P p2ðCÞ for each t 2 R+, where x is a polygonal domain in R2.
Then

kuðtnÞ � U nk2 ¼ OðN�ðqþ1Þ þ hmp�k
1 þ p�k

2 Þ;

where m = min(k,p1 + 1).

Numerical experiments of the presently proposed ‘modified’ h–p finite element method for parabolic equa-
tions will be reported elsewhere in future.
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[5] I. Babuška, B.A. Szabo, I.N. Katz, The p-version of the finite element method, SIAM J. Numer. Anal. 18 (3) (1981) 515–545.
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