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Abstract

A recent paper [Hideaki Kaneko, Kim S. Bey, Gene J.W. Hou, Discontinuous Galerkin finite element method for par-
abolic problems, preprint November 2000, NASA] is generalized to a case where the spatial region is taken in R®. The
region is assumed to be a thin body, such as a panel on the wing or fuselage of an aerospace vehicle. The traditional
h- as well as /p-finite element methods are applied to the surface defined in the x—y variables, while, through the thickness,
the technique of the p-element is employed. Time and spatial discretization scheme developed in Kaneko et al. (2000),
based upon an assumption of certain weak singularity of ||u,||», is used to derive an optimal a priori error estimate for
the current method.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, the discontinuous Galerkin method is applied to the following standard model problem of
parabolic type:
Find u such that
u(x,t) — Au(x,t) = f(x,1), x€Q, t€R,
u(x,t) =0, x€0Q, t e R, (1.1)
u(x,0) = up(x), x€Q,
where Q is a closed and bounded set in R® with boundary 8Q, R™ = (0, 00), Au = 0%u/ox> + 0°/dy? + 8%u/0z,
u, = 0u/dt, and the functions f and u, are given data.
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The discontinuous Galerkin method is a robust finite element method that can deliver high-order numerical
approximation using unstructured grids. In this paper, region Q is assumed to be a thin body in R>, such as a
panel on the wing or fuselage of an acrospace vehicle. The traditional /- as well as /Ap-finite element approx-
imations are used in the x—y variables, whereas, the p-finite element method developed, e.g., in [5,15], is used in
the z variable which describes the region through the thickness. The application of the p-finite element method
through the thickness of thin structure, as compared to applying the /- or Ap-finite element discretization to all
coordinate directions, enables us to avoid structuring elements in R> that are too thin to satisfy the required
quasi-uniformity condition (e.g., see [7]) that is necessary to deliver stable numerical approximation. It should
be emphasized that the current technique is different from the technique commonly known as hierarchical
finite element approximation for plate problems. In the hierarchical finite element technique, a class of basis
functions are chosen that depend on the differential equation and subsequently numerical solution is obtained
by solving a hierarchy of two-dimensional problems. We are coining the term ‘modified Ap’-finite element
method, as it differs from the traditional /p-finite element method which uses /4- and p-finite elements on
the same domain where the /A-finite element method provides a refinement of the region and the p-finite ele-
ment provides an enrichment. In Section 2, approximation power of the modified Ap-finite element method
will be investigated. In Section 3, the discontinuous Galerkin method with the modified Ap-finite element
approximation technique is established. Discontinuity is in time variable and time discretization is based upon
the degree of singularity of ||u,||>. The traditional /-finite element method is employed in time. The conver-
gence analysis given in [9] will be used. The reader is also reminded of recently published important paper
[16] by Schotzau and Schwab in which various time discretization techniques are discussed. For instance,
an exponential convergence rate in time of p-finite element method is obtained in [16] despite the presence
of singularity in the transient phase of the solution. Time discretization used there is geometric. Schotzau
and Schwab’s result extends the results in [3,4] in which no exponential convergence rate is reported. Also they
discuss the A-finite element technique in time using a class of radical mesh and obtain the algebraic conver-
gence rate which is optimal. The radical mesh was chosen by analyzing the incompatibility between initial
and boundary data. The present authors [1] established a similar time discretization technique for the discon-
tinuous Galerkin finite element method, /-version in time, which was based upon the singularity of |ju,]|».
Using this analysis, it is shown in [1] that the optimal algebraic convergence rate in time of the discontinuous
Galerkin method can be obtained under more dispersed, therefore more computationally stable, radical mesh
than the mesh used in [16]. Time discretization was extended to nonlinear problem in [14].

2. Approximation power of modified /4p elements

Let  C R? and I C R be convex regions. For simplicity, it is assumed that I' = [— 4 %] where d = |I'|. For

simplicity, the thickness, d, is assumed constant over the domain. The Sobolev space of order k defined on
o x I' is denoted by H"(w x I') with the norm

2 112
lullir = > 1D%ull3,

0<lof<k

where for each multi-integer o = (o}, %, 23), we have let || = oy + a, + o3 and

ol

)
Ox}' 032 O3’

We note that the Sobolev norm reduces to the usual L, norm when & = 0. In this section, a best possible error
estimate is derived for approximating an element in H*(w x I') by the finite element function spaces. Let K:,
denote the master triangular element defined by

Key={EneR:0<n<(1+8V3 —1<EL00or0< < (1+9V30<E< 1)
Let S”(K:,) denote the space of polynomials of degree <p on K, i.e.,
SP(KCM) = Span{éinj : ia ] = Oa 17 Y2 l+] < p}
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First, the shape functions for the master element K., are formed. To accomplish this, the barycentric coor-
dinates are introduced via

= (1=¢=n/V3)/2, )~2=(1+f—77/\/§)/27 Js=n/V3. (2.1)

;s form a partition of unity and 4, is identically equal to one at a vertex of K, and vanishes on the opposite
51de of K:,. The hierarchical shape functions on K, consists of internal as Well as external functions. The
normalized antiderivatives of the Legendre polynomials are defined by

c):\/zlz+1 P(Od, =123, (2.2)

Now, the external shape functions consist of three nodal shape functions
Nl(éan) :;Liv I = 172737 (23)

and 3(p — 1) side shape functions N,m(é, n),i=1,...,p—1,j=1,2,3. The index j indicates one of three sides
of k¢ ,. Noting that ,;(+1) =0,

‘Zz’("]) :%(1 - 772)@[(77)’ i=1,23,..., (2.4)

where @) is a polynomial of degree i — 1. For instance, ¢,(1) = —v6, ¢,(n) = —v10n and ¢;(y) =
YI4 (1 — 517, etc. The side shape functions are constructed as follows:

4
NY(E ) = daldagi(is — o),
NE(E D) = Jahe (i —43), i=1,....p—1. (2:5)
NEIE ) = idagi(3a — 1),

From (2.4) and (2.5), there are 3+ 3(p — 1) shape functions. As dim(S”(K:,)) = (”+1)(”+2 , the remaining
(pl)+2 basis elements are constructed in terms of internal shape functions. Clearly, nontr1v1al internal shape
functions on K;, exists only if p > 3. For p = 3, the bubble function on K;, below serves as the internal
function;

g (oY
b, (6m) = hniads = ﬁ<(1 \/g> €>- (2.6)

Moreover, the collection /(K:,) of higher-order internal shape functions can be constructed from
PP(Key) = {bg,,v:0€ (K} = {bx,,} @S (Ky), p =3

Let T}, /> 0, be a triangulation of w. Let x = Q' (Ll,Lz,L3) and y = Q (L1, L,,L;) be the element mappings
of the standard triangle K; , to the /th triangular element K eTyeg., the linear mapping onto K’ with vertices

{(l’yl)}z 1’
3
QL(L1, Ly, Ly) = Zx’L,, O)(L1, Lo, L3) = > yiL:.
i=1

The space of all polynomials of degree <p on K’ is denoted by S(K’) and its basis can be formed from the
shape functions of S”(K;,) described above by transforming them under Q' and Q The finite element space
S, T},) is now defined. For w,p > 0 and k > 0,

P (w,Ty) = {u € H (w : u|, € S"(K), K € T))}. (2.7)

Assume that a triangulation {7}}, & > 0, of w consists of {K;}?ﬁf) and that 4, = diam(K}), for [ =1,..., M(h).
In the z-variable for through the thickness approximation, the local variable 7 is defined in the reference
element [—1,1] and I' is mapped onto the reference element by Q., i.e.,

r=90.(-1,1), z=0.(v).
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Clearly, Q. is a linear function defined by
1 d 1 d
2= 0.0 =5(1-9(-3) +30+95
The Jacobian of Q. is constant

dz d

dr 2’

, tel-1,1].

In this paper, the basis functions of P,([—1,1]) are taken to be the one-dimensional hierarchical shape func-
tions. See [15] for a complete discussion of the basis elements used in the p and Ap-finite element methods.

For example, in approximating an element in H[—1,1], with /=0, Y1) = P,_ (1), 1 <i<p+ 1, where
P; 4 is the Legendre polynomial of degree i — 1, form the hierarchical basis functions. With / = 1, the external
(¥1 and y») and internal (y;, i = 3) shape functions are defined by

-1 147
hO="5" ="

2i —3\'"? [
0= (35) [ retw 3<icper

Note that ;s form an orthogonal family with respect to the energy inner product (-,)g,

1 1
W)= [ owod = [ PR =3,
Also note that the internal shape functions satisfy
Y (£1)=0 for3<i<p+1.
For the case / =2 and p > 3, the four nodal shape functions and the remaining p — 3 internal shape functions
given by
1

h@ =3 (1= (10, a0 = (1 -2 2+7)
ba(®) = g (1021 — 1), Yy(e) = 7 (102~ 1), 29

P\ e
0= (23) [ c-nrstdn i=5.

1

In this case, the internal shape functions satisfy

d'y,
d—lé’(j:l):O for5<i<p+1 and ;=0 1. (2.10)
T
The nodal basis functions, y/;, i = 1,2,3,4, in (2.9) also satisfy three of the four conditions in (2.10). For exam-
ple, using the shape functions in (2.8), any element u € L,[—1,1] can be approximated by u, € P,([—1,1]), in

the form

() = (1) + (1) + D o), (2.11)

For approximating the solutions of parabolic problems with the homogeneous Dirichlet boundary condition,
the first two terms will be dropped, as u(—1) = u(1) = 0. A sequence of triangulations {77},},>¢ is called the
quasiuniform mesh if

h

"<y forall k>0, 2.12
diam(K) vy toralla> (212)
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with & = maxger,diam(K), and for some y > 0. P,(I") denotes the space of all polynomials of degree <p de-
fined on I'. The following is proved by Babuska et al. in [5]. See also [6] by Babuska and Suri on a related
discussion. Here Q, denotes a bounded polygonal domain in R>.

Theorem 2.1. Let u € H*(Qy). Then there exists a sequence z, € P,(Q), p=1,2,..., such that, for any 0 < [ <k,
llu — Zp”z,go < CP_(k_[)H“Hk,QOv
where C is independent of u and p.

The parameters k and / are not necessarily integral. Their proof relies heavily on the approximation power
of the trigonometric polynomials.

With /=0 in Theorem 2.1 and using the usual duality argument, the results in Theorem 2.1 are further
improved by Babuska and Suri in [6] (Theorem 2.9), (see also a series of papers by Gui and Babuska [13]),
to the Ap-finite element setting as follows:

Theorem 2.2. Let T), be a quasiuniform partition of Qo. Then for k = 1, u € H(Qy),

: v —k
vES;]{}({‘),T;}) Hu - UHLZ(QO) = P HuHHk(QO)’

where v = min(k,p + 1).

The corresponding error estimate in the || - ||+ q, is also available in [6].

h-version in the x—y surface variables: First, the h-finite element approximation is considered in the x—y vari-
ables. Let z = s(t) = £t be the linear transformation of [—1, 1] onto I'. Now consider the problem of approx-
imating a function u € H*(w x I') by a function from the tensor product space /(o) ® P,(I'), where

S' (@) = 8 (@, Th) = {u € Ly(o) : ulK € S'(K), K € Ty} (2.13)

For error analysis of A-version of the finite element method, the space S”*(w, T},) defined in (2.7) is not nec-
essary, and the space S)(w) of lower dimension can be used to attain the optimal convergence rate. Let
P} . H*(w) — S,(w) denote the interpolation projection defined by

(Pru)(x,y) = > u(xl,y)ol(x,y) forall (x,y) €K' and ueH'(w), (2.14)
i=1
where T}, is a triangulation of o with K’ € T}, and {(x/,y!)}_, is a set of nodes on K’ with ¢/ (xj,y;) = ;. Also,
denote by Q,: HYT) — »(I') a projection defined by

p+1

(Qu)(z) => a;Wi(z) forallzeT, (2.15)

i=1

where ¥(z) = y{s '(z)) for each i > 1 where y; are defined, e.g., in (2.8) or (2.9). Recall that for k = 1, the
constants a; and a, are known in case of parabolic problems with Dirichlet condition, and it is assumed that
a;, i = 3, 1n (2.15) are determined by

2

p+l 2 ptl
/ u(z) =Y a¥(z)| dz = min / u(z) = > _b;¥(2)| dz. (2.16)
r j=3 € r =3
From approximation theory [17],
|- P, Lo = O). (2.17)

Also Q,: Ly(I') = —P,(I'), from being the orthogonal projection in the sense described in (2.16) and from
Theorem 2.1 that

17 = Q,llyry = O™"). (2.18)
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Let

Forue LywxT),

P20, =|

Ly(wxT)

r

Py ® Oyl oy = sUP ([P % Qp)utl] -

flull,=1

(P @ ux,y,2) => Y ulxl,yl,2)0i(x,y),

! i=1

and

(P, ® 0, )u(x..2) Z{ iso,’xy}a] @),

Jj=1 i—1

where a; depends upon u and obtained according to (2.16). First, approximation order under L, operator

norm of P, ® O, for Pj @I is established.

Lemma 2.3. For P}, : H*(w) — S} (®»),0 < r

(2.15),
1P, @1 —P,@Q,l, < Cpt,

where C is independent of p.

Proof

|

l[ull=

= sup
llull=1

< s 43
[lull=1 I

< sup
flull =1

by Minkowski

K

K

<'s rmax E
1<i<r

HMH —1

< C sup max
1<i<r
llell =1

P;®[—P;®QPH2£ sup H(P2®I—

<k, and Q,: HNID) — P,(I') defined respectively in (2.14) and

Py, )ull,
Pt r 1/2
1 (7 7is2) 0i (x, ) — ZZ /(x,y)a; ¥ )dzdxdy}
L p+l1 2 172
/ Z(pf(x,y)< X[, ¥1:2) Za, >dzdxdy
'l =1
2 X 2 12
p+
S [ et fustie) = )| vy
K! =
inequality
2 1/2
p+1
|01 Julxioi 2) Za, (2)| dzdxdy
) 1/2

l7y17 Z

< Cpik , by Theorem 2.1. OJ

Similarly, the following lemma will be useful.

Lemma 2.4. Let P}, : H*(w) — S}, with 0 <

l1®0,-P,®0,, < CH,

where C is independent of r.

r <k and Q,: H'(I') — P,(I'). Then
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Proof
[7€0,~Pi@0,[l,= sup (120, ~ P20, )ul,

5 12
p+l r
// =3[ L aldaloten | v dedrdy
Hull21 KleT), j=
p+l
where Z a;(x,») ¥V;(z) is the best L,(I") approximation of u(x,y,-)
=
2 1/2
p+1
< // a;(x, ) Zoc, XLy @i(x,y) ¢ ¥,(z)| dzdxdy
\1;\2 1 K'eT,
5 2 1/2
p+1 ”
<swp 38 S [ [l =D u(al) o) ¥ dedrdy
[lull2=1 j=1 K'eT, k'Jr i=1
2 1/2
<0 30 [ e = S ony)| faxdy

< Ch", provided that o; € H (w),
where the last inequality follows from a well-known result of the approximation power of piecewise polyno-
mials [17]. O

Using Theorems 2.1 and 2.2, we obtain the following theorem which provides an error estimate for approx-
imating an element in H*(w x I') by elements from S’ (@) @ P,(I'). The result will be used in the next section
when the formulation of error estimate of the modified 4—p discontinuous Galerkin finite element method for
approximating the solution of the parabolic problem (1.1) is established.

Theorem 2.5. Let u € H'(w x I'). Then there exists u* € Sy(w) @ P,(I') such that for 0 <r < k,p >0,
||u u ||L2 wxT) O(hr+p_k)

Proof. Define u* = (P, ® Q,)u. Then, using Lemmas 2.3 and 2.4
lu = u'lly = llu = (P @ Qplully = llu = (I @ Q))u+ (I ® Q,)u— (P, @0, )ull,
<lu— I ® Qully+ |1 @ Q,)u— (P, ® Q,)ully = Ok +p™). O

hp-version in the x—y surface variables: Now we incorporate the /sp-version of approximation technique in
the x—y coordinates. The goal is to approximate a function u € H*(w x I') from the tensor product space
S”*(w, T)) ® Po(I') for nonnegative integers p; and p,. Analysis is similar to the one given in Lemmas 2.3
and 2.4 and therefore is not given. Using Theorem 2.2, it can be seen easily that

Theorem 2.6. Let u € H"(w x I'). Then there exists u* € S""*(w, T)) ® Pf,(F),
Hu u ||L20)><F O(hpl +p2 )
where v = min(k,p, + 1) and h = maxgcr,diam(K), with T}, a triangulation of .
Remark. Let N(p) = W Note that numbers of the degrees of freedom of $7*(w, T,) and P,y(I') are

M(h)N(p,) and N(p,) respectively. Since a single element through the thickness is used because of the specific
structural consideration in this paper, we cannot expect the total error to decrease by letting the diameter
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h — 0, i.e., by letting the size of surface elements decrease to 0. The second error term would quickly domi-
nates the overall performance of approximation in that case. In order for both of the error terms in Theorem
2.6 to decrease consistently, note that N(p) = O(p?) and h = O(M(h)""). Thus the number of surface elements
M(h) and the corresponding degree p; of polynomials should be selected so as to maintain

M) N(p) = N(py) . (2.19)

Eq. (2.19) not only describes the consistent error estimates between the two terms but also indicates the con-
sistent workloads between the surface and the through the thickness approximations.

3. Discontinuous Galerkin method

In this section, the discontinuous Galerkin (DG) method for problem (1.1) is developed. The discontinuity
is introduced in time, which allows computation to march forward in time. This, when compared with the
standard continuous Galerkin method, presents an enormous saving in size of computation. The DG finite
element method for parabolic partial differential equations was studied in a series of papers by Erikson, John-
son and Larsson, [8—12]. In these papers, the convergence in time of 4-finite element DG method is established
for solutions which are smooth. More specifically, when the solutions are approximated by polynomials of
degree r, then the algebraic error estimate of O(A7 ') as Ar — 0 is obtained. However, in many parabolic par-
tial equations, solutions exhibit singularities at # =0 due to the initial conditions. In a recent paper [1], the
present authors established a graded time discretization scheme that captures the transient solution to optimal
precision. The graded time mesh is selected by assuming that ||u,||, is weakly singular. A similar study of the
graded time meshes is reported recently by Schoétzau and Schwab [16]. They derive a set of graded time par-
tition points by considering an incompatibility between initial and boundary conditions. It is demonstrated in
[1] that the time discretization based upon ||u,||>» provides more relaxed distribution of partition points. The
paper of Schétzau and Schwab goes on to describe the p-finite element in time and obtain an exponential
convergence in spite of a singular transient phase of the solution. We will not discuss the p-finite element
in time in this paper. It will be taken up in [2] in which the complete p-finite element for parabolic problems
is discussed.

We begin by recalling several results from [2] that are pertinent to the present paper. The following condi-
tions will be assumed. Recall from Section 2 that Q = w X I'. Let (h, T, S) denote a finite element discretization
satisfying

1. h is a positive function in C'(Q) such that

|VA(x)| <M forall x € Q and for some M > 0.

2. T=1{K} is a set of triangular subdomain of «w with each triangular element having diameter /sx such
that

clhig/dx forall K € T,
K

and associated with the function 4 through
c—1hg <h(x) <chg forallxeK, KeT,

where ¢; >0, ¢; > 0. B
3. S'is the set of all continuous functions on € which are polynomials of order r in x = (x;,x,) oneach K€ T
and vanish on 0w as well as which are polynomials of order p in the z-variable in I

For the discontinuous Galerkin method for (1.1), we partition R as 0 =1, <, <---<t,<--- where we
let 1,, = (t,_1,t,] with k, = t,, — t,_1. For each time interval, with ¢ a nonnegative integer, We let

Wi, ={v:R" =V, 0, €Pl,), n=1,...,N},
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where
the space of all functions u* € S}, (w) ® P,(I")
V=4 Oru € Sk(w, Ty) @ Py(I') such that

h= max diam(K) where T, is a triangulation of
KeT)

Pq(ln) = {U(t) = Zq:vifi 1V € Vhp}.

i=0

The discontinuous Galerkin method is defined as follows:
Find U such that for n=1,2,..., with Q=0 ® I, Ul,,, € WZP and

/{(U,,U) +a(U,v)}dt + ([U],_j,vi,) = /( ,v)dt  for all ve W}, (3.1)
1, Iy
where [w], = w! —w,, wi) =lim_ .w(t, +5), Uy = uo, (u,v) = [, u(x)v(x)dx and a(u,v) = (VU,Vv). The

smoothness of ||u,|| L) 18 sub]ect to the initial condition as well as to the boundary condition. For example, if
we take in (1.1), ug(x) = n — x, f{x, ) = 0 and Q = (0, ), then the actual solution of the corresponding problem
is given by

2/“ 2((m 1 . 1
== T — x)sin xdx——{—— sin” 'n}zO(—,).
12 [[m—ssingmar =22 Lintjaf < o]

In the following, C’s denote generic constants whose values change as they appear. Now,
d & 2
2 _ D 22 —2j2t
()12 = o) o } R DI (62)

The last equality in (3.2) is justified because of the uniform convergence of Zjil Cj*e~%" with respect to 7. Now

using the fact that s e dx < oo, a simple change of variables (say, y = jv/27) will show that the last expres-
sion in (3.2) is § Ct A2 , which leads to

(D), = O(t‘3/4)-

A similar argument shows that if u) = (] ) for some initial value function uy(x), then ||u,(1)||2 = O(¢~"/%). This
case arises when ug(x) = min(x, 7w — x) for x € (0,n). If uo decays faster than j > as j — oo, then ||u,(7)||, will be
bounded as t — 0. An initial phase for small ¢ is the well known initial transient for parabolic problems. It is
the case that the smoothness of the solutions of parabolic problems vary significantly in space and time with
initial transients where highly oscillatory components of the solution are decaying rapidly. Therefore, in order
for numerical methods for parabolic problems to be successful, it is imperative that the methods take a careful
account of time and space discretization scheme so as to capture the transient solutions. An adaptive time step
control scheme was established by Eriksson and Johnson in [9]. Time steps k,, are defined by controlling the
size of

i k][],

J<g+1
where g is the order of spline used in time and «\" = u,, u'” = u,, u!’’ = Au, and [w]l;, = max,,[[w(t)]],. Note
that the method of Eriksson and Johnson requires some estimates concerning ||u||, and u,” = Au, to achieve

the second and the third-order convergence in time. The approach given in [1] provides convergence of any
order in time for the discontinuous Galerkin method by examining only the behavior of |ju,||,.
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For 0 <« <1 and ¢ a nonnegative integer, define O = ‘f%”; For a positive integer N and 7> 0, define

* n Q
tn—(ﬁ) n=0,1,....N
and
t,="0T. (3.3)

We let I, =(t,_1,t,], n=1,2,...,N. Let k, denote the length of I, so that

ky = [(]%)Q— ("];1>Q] T, n=12 .. N.

Note that
k, < Q[ﬁ] ol T by the mean value theorem,
N N
hence
ky, < C%, (3.4)
NI+

where C is a constant independent of #. The solution u(x, ¢) of (1.1) is then approximated in ¢ over each 7, by a
polynomial of degree g. For example, with ¢ = 1, let I'w denote the linear interpolatory projection of w € Hj
in time onto Wy, viz,

tn - t_tn—l
w(x,t,—1) +
kn ( ytn 1) kn

Note that 7', considered as an operator defined on Hj is bounded with respect to the norm || - ||, where

I'w(x, 1) =

w(x,t,) foreachtel,.

Iw(0)l., = max [w@)l,..,

Since Q is assumed to be of bounded domain, 7}, is bounded with respect to || - ||, also. As was the case with the
L, projection, I equals the identity on polynomials of degree <1. Expanding u(x, ) in Taylor series with re-
spect to ¢ at ¢, to the first or to the second order, we obtain, respectively, for each n=1,2,..., N,

< [ o) lgs. (3.5)

i
Hu—lnu

Lemma 3.1. Ler 0 < o < 1, g a nonnegative integer and T > 0, we assume that t,,n=1,..., N are defined by (3.3).
Then

1
—o
r?gaNx/lS ds < Can+17

where C,, is a constant independent on N.

Lemma 3.2. Let t, and k, be defined by (3.3). Then

1/2
In
(1 +10gk—> <V2 foreachn=0,1,...,N.
Lemma 3.2 is used to guarantee the stability of the discontinuous Galerkin method. In the remainder of this
paper, we illustrate the current ‘modified’ Ap-finite element method by assuming the 4-version in the surface x—
y variables using the linear splines. Also we illustrate the cases for constant as well as linear degree in time
approximation. Let {(x;, yl-)}?il is the set of nodal points which are the interior vertices of K in 7). Let ¢;
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be the linear spline basis element defined by ¢{x;,y;) = 6, fori,j=1,..., M. The superscript / used in (2.2) will
be dropped. For application of higher-order spline basis, more nodal points are required over each K. The
solution u of (1.1) is approximated by (z > 0)

ez 3 (o) (-2) ol ) (5-1) + om0

=1
Note that u(x,, yj, ¥4 s 0) forj=1,..., M are known from the initial condition. Also, for ¢ > 0, the boundary
values u(xj,yj, F4, t) are given. As u(x 1) =0, forx €0Q, t € R" in (1.1) and (3.6) simplifies to

M p+l

u(x,y,z,0) ~ > ad(Oi(2)e,(x,y). (3.7)

Jj=1 i=3
At each time level 7, we approximate u(x,y,z,t,) = u(x,t) by

M p+l

U= U"(x) = UR,1,) = d(t)W,(2)e,(x,), n=0,1,...,N. (3.8)

=1 i=3

To start the DG finite element method, we first require «/(#,) and they are determined from u,(¥). More spe-
cifically, for each j=1,..., M, since uo(x;,y;,z,t) ~ U°(x},y;,2, to) = SYHal(to)Y,(2), M(p — 1) many al(t)
are found by solving

ol
ol

/ U, (20, (2)dz - a(ty) = /A u(x;,y;,2,0)0,(z)dz fori=3,....p+1.

2

Now, Eq. (3.1) can be formulated as follows:
Forn=1,2,...,N, given U" ", find U = Ul|, =€ P,(,) such that

/[(U,,v) +a(U,v)]dt + (U 00 = / (f,v)dt + (U™ 0" 0, (3.9)
]n In
for all v € P,(I,) where U™ = u.
For a special case, consider ¢ = 0, i.e., constant in time. As U" = U™~ = U""" in this case, (3.9) reduces to
(U" — U1, 0) + kya(U /(f (3.10)
for all v € Py(1,) and n =1,2,...,N. With (3.7) and (3.10) becomes for each n=1,2,...
p+1 M ptl
Z Za’ [0, V,05) —kua (Wi, V00l =D~ al(tat) (10, Wo0p) + (3 0,0),
I j=1 =3

foreacha=3,....p+1;=1,....M
For pgl—q/l we let Ul —ch( )li_tlizllp (¥) where ®, = S 6 (1)) p,(r.y) and W, =
ZJ lzz 34 J( ) ( )(p](x y) As U"

@,and U "=, |+ ¥, (3.9) becomes
_ t—1t,_
/I{k—n(qf,,,v)—i-a(@n—i-TlY’ v)]dH—( ny U ):/1( ) dt + (D + WPy, V] -, (3.11)

for all v € P((1,). By taklng v= %fpﬁ and = ’"w ®g, (3.11) reduces to the following linear equations for
2M(p — 1) unknowns a!”(z,) and a, ”(z,):

p+1 M
J=

SN ) {0 o) + kaal@hs, 0410,) +ZZ (oW op0,) + ka0, og10,)}
i=3

j=1 i=3 =1

M p+l ] )
:/(,f qoﬁ’wb +ZZ[a;'p,j(ln—l)+a;pﬁj(ln—l)]((pojwn(pﬁwa)? 0‘:377p+17 ﬁzlv"wMa
Iy =3

J=1
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S o e) Fato b o) + kaalobs o)

38 ar ){ (o opi) + Falo b opb)

——/ — qoﬁlp) a=3,...,p+1L; p=1,....M

The following theorem can be proved by minor modifications to the proof of Theorem 1.1, [9] and by mak-
ing use of Theorem 2.5. The present theorem is described for Q =w ® I' C R°.

Theorem 3.3. Suppose that there is a constant y such that the time steps k, satisfy k, < yk,+;, n=1,...,N — 1
and let U, denote the solution of (3.9) approximating u at t,. Here u is approximated by a polynomial of degree
q = 0 over each I, for n=1,...,N — 1, and u(-,-,",t) is approximated by an element from S, (w) ® P,(I") for
each t € R*, where w is a polygonal domain in R*. Then there is a constant C depending only on 7y and a constant
P, where px = Phx and pg is the diameter of the circle inscribed in K for all K € T), such that for n=
1,2,...,N,

N '
) = Uil < (1 10g 2 ) {max 1, -+

DiyuH[n +pk||uH1,,,H"(F)}7 (3.12)

where [|w||; )y = maX.e,
variables.

w(t) || ey and Diy denotes the second-order derivative with respect to x and y

Lemma 3.2 guarantees that the current DG finite element method with the graded temporal meshes defined
in (3.3) is a stable scheme. Also Lemma 3.1 provides a bound for the term max,,, ||u — I;uHIm in (3.12) pro-
vided that |ju,||, = O(t™*) as t — 0. Theorem 2.5 is used to control the last two error terms in Theorem 3.3. In
summary, we obtain the following theorem which utilizes the traditional /A-finite element in the surface
variables.

Theorem 3.4. Suppose that u € H(w % I') and llug|> = O(t™) for 0 <o <1 and that the time partition points t,
are taken according to (3.3). Let U, denote the solution of (3.9) approximating u at t,. Also assume that u is
approximated in time variable by a polynomial of degree q = 0 over each I, forn=1,...,N — 1, and u(-,",,t) is
approximated by an element from Sﬁ(cu) ® P,(I) for each t € R*, where  is a polygonal domain in R?. Then

lu(ta) = Unll, = O 4 17 + p7*).

If higher-order r > 2 splines are used in S (), then the second term in the error can be replaced by /" provided

1S bounded.

n

In the case of the /p-finite element approximation for the surface variables, Theorem 2.6 is now used to
establish the following.

Theorem 3.5. Suppose that u € H*(w x I') and ltts|l2 = O(t™) for 0 < oo < 1 and that the time partition points it t,
are taken according to (3.3). Let U, denote the solution of (3.9) approximating u at t,. Also assume that u is
approximated in time variable by a polynomial of degree ¢ = 0 over each I, forn=1,...,N — 1, and u(-,-,",t) is
approximated by an element from SP"*(w, T}) ® Pp(I) for each t € R, where w is a polygonal domain in R
Then

lu(ts) = Unlly = ON"D + 'p* + py ),
where v = min(k,p; + 1).

Numerical experiments of the presently proposed ‘modified’ #—p finite element method for parabolic equa-
tions will be reported elsewhere in future.
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