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Abstract

In this paper, we consider a nonlinear hierarchical finite element method for heat conduction problems over two- or
three-dimensional plates. Problems considered are nonlinear because the heat conductivity parameter depends upon the
temperature itself. This paper explores a new technique recently proposed by the first author which transforms a nonlinear
parabolic problem to a linear problem at the discrete level. We present several numerical examples which demonstrate the
efficiency of the current technique.
� 2008 Published by Elsevier Inc.
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1. Introduction

In this paper, we report on some recent numerical experiments to approximate the solution of a class of
nonlinear heat conduction problems proposed over two- or three-dimensional plates. The problem is nonlin-
ear because the heat conductivity parameter depends upon the temperature itself. This, of course, describes the
natural state of heat conduction for most materials as their capacities to conduct heat varies with temperature.
To deal with nonlinearity, a new technique which was originally proposed in [3] is used in this paper to trans-
form the problem to a linear problem at the discrete level. The technique is tested on several examples in the
last section to demonstrate the efficiency of the technique. The general approach which was taken in this paper
is the discontinuous Galerkin finite element method (DGFEM). Discontinuity is applied to the time variable.
Unlike the continuous Galerkin finite element method where the entire time domain must be treated simulta-
neously, DGFEM allows computation to march forward in time. This reduces the size of computation. As to
the spatial discretization, a hierarchical modelling is done through the thickness of plate. The use of appro-
priate basis functions associated with a hierarchical modelling transforms the heat conduction problem to a
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hierarchy of dimensionally reduced plate problems at each time step. Hierarchical modelling technique is con-
ceptually simple devoid of three-dimensional elements and it has been used extensively for various plates prob-
lems in engineering. Most of the research on the hierarchical modelling are done for steady-state heat
problems. In 1981, a rigorous mathematical framework of the hierarchical medelling method was established
by Babuska and Vogelius in [15,16]. Subsequently, their results were extended by Schwab to those problems
with boundary layers, [11,12]. It was established in these papers that by increasing the order of approximation
in an appropriate region near the boundary, the optimal order of convergence by the hierarchical modelling is
restored in orthotropic approximation as the thickness d ! 0. We test our method on four numerical exam-
ples. First, we consider a two-dimensional plate problem in which compatible data is assumed for boundary
conditions so that the solution is uniformly smooth throughout the region at any time t > 0, free of boundary
layers. Second, we test our method on a similar problem in the three-dimensional setting. Third, we test the
current iterative method on a two-dimensional heat conduction problem with incompatible initial and bound-
ary data. Finally, as the fourth example, we consider the hierarchical modelling technique for a plate with two
layers. This requires a construction of a special class of basis functions.

The dimension reduction technique of the hierarchical modelling for a steady-state nonlinear heat conduc-
tion was investigated by Jensen and Babuska [8] and by Jensen [9]. But, its application to nonlinear parabolic
equations which is done in this paper appears to be new. For discretization over surface of a plate, the stan-
dard h-finite element approximation is employed. In Section 2, the discontinuous Galerkin method based on
the hierarchical modelling is described. New approach which was taken in this paper to deal with the nonlinear
conduction term is also described in this section. Some results from the papers [4–6] by Eriksson and Johnson
and [7] by Eriksson et al. are used to describe the convergence of the current method. The aforementioned
numerical examples are provided in Section 3.

2. DGFEM

The following model problem of nonlinear parabolic type is considered:
Find u such that
Plea
Mat
ut � divðaðuÞruÞ ¼ f in X; t 2 Rþ;

uðx; tÞ ¼ 0; x 2 C; t 2 Rþ;

ou
on
ðx; tÞ ¼ f �; x 2 R�; t 2 Rþ;

uðx; 0Þ ¼ u0ðxÞ; x 2 X;

ð2:1Þ
where X ¼ x� � d
2
; d

2

� �
is a closed and bounded set in R3 with C ¼ ox� � d

2
; d

2

� �
, R� ¼ x� f� d

2
g and

Rþ ¼ ð0;1Þ. The functions f and u0 are given data. Problem (2.1) describes a heat conduction problem with
heat conductivity function a affecting the temperature u. An interesting special case of the region X is the mul-
tilayered plate as shown below: Here the thickness domain � d

2
; d

2

� �
is layered and layers are partitioned by

Z0; Z1; . . . ; ZnL . Also each layer ½Z‘; Z‘þ1� is assumed to be associated with heat conductivity parameters
ðkijÞ‘, ‘ ¼ 1; . . . ; nL.

Z
Z

Z
Z

0

1

nL-L

n
L

=-d/2

=d/2

....

(kij
)
1

(kij
)nL
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In many instances, u exhibits a transient phase which is usually caused by some incompatibilities between
the boundary condition and the initial condition. It is shown in [10,1] that, during the transient phase,

�a
kutðtÞk2 ¼ kutðtÞkL2ðXÞ behaves frequently like t , ð0 < a < 1Þ as t! 0. Subsequently, a class of nonuniform
graded time discretization scheme for a class of linear parabolic equations was established in [1] in order to
capture the solution accurately. The result in [1] was extended to nonlinear problems in [3]. We also note that
a similar time discretization technique, using a different analysis, was developed in [13,14]. In this paper, we do
not make a specific reference to the issue of time discretization, but simply assume that it is done in such a way
that optimal convergence rate is attained in time variable. Throughout the paper, it is assumed that the func-
tion a : R! Rþ satisfies
Plea
Mat
c 6 aðrÞ 6 C; ja0ðrÞj 6 C; r 2 R
for some positive constants c and C. The weak formulation for (2.1) is given by
Find u : Rþ ! H 1

0ðXÞ such that
ðutðtÞ; vÞ þ ðaðuðtÞÞruðtÞ;rvÞ ¼ ðf ðtÞ; vÞ for all v 2 H 1
0ðXÞ; t > 0;

uð0Þ ¼ u0;
ð2:2Þ
where H 1
0ðXÞ is the standard Sobolev space, (� , �) denotes the L2ðXÞ inner product, and ut ¼ ou

ot. The DGFEM
for approximating the solution of (2.2) using the hierarchical basis function is now described. First, a time
interval, ½0; T �, is partitioned into 0 ¼ t0 < t1 < � � � < tN ¼ T . Let In ¼ ðtn�1; tn� and kn ¼ tn � tn�1, n P 1. With
q a nonnegative integer, define
W � fv : Rþ ! V r
h � V : vjIn

2 P qðInÞ; n ¼ 1; . . . Ng;
where
V r
h ¼

�
the space of splines of order r defined over x ¼ [K2T h K

where T h is a triangulation of X and h ¼ max
K2T h

diamðKÞ
�
¼ spanfuiðx; yÞg

Nxy

i¼0;

V ¼ spanfwjg
Nz
j¼0:
Here wj 	 H 1ð�1; 1Þ are linearly independent functions defining a hierarchical modelling( )

P qðInÞ ¼ vðtÞ ¼

Xq

‘¼0

v‘h‘ðtÞ : v‘ 2 V r
h � V ;

spanfh‘ðtÞg ¼ the space of all polynomial of degree 6 q in t
and
V r
h � V ¼

XNxy

i¼0

XNz

j¼0

uiðx; yÞwjðzÞ : uiðx; yÞ 2 V r
h for each i and wj 2 V for each j

( )
:

Also, define
v�n ¼ lim
s!t�n

vðsÞ; vþn ¼ lim
s!tþn

vðsÞ:
The DGFEM for (2.2) is given as follows:
Find Un 2 W such that
Z

In

fðUn
t ; v

nÞ þ ðaðUnÞrUn;rvnÞgdt þ ðU nþ
n�1; v

nþ
n�1Þ

¼ ðU n�
n�1; v

nþ
n�1Þ þ

Z
In

ðf ; vnÞdt; vn 2 W ; n ¼ 1; 2; . . . ;N � 1;

U 0 ¼ u0:

ð2:3Þ
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Furthermore, if we denote U n;K ¼ U njK , K 2 T h, then the first equation in (2.3) can be written as
Plea
Mat
X
K2T h

Z
K

Z d
2

�d
2

Z
In

Un;K
t vn;K þ aðUn;KÞrUn;Krvn;K

� 	
dt þ U n;Kþ

n�1 vn;Kþ
n�1

� �
dzdx

¼
X
K2T h

Z
K

Z d
2

�d
2

U n;K�
n�1 vn;Kþ

n�1 þ
Z

In

fvn dt
� �

dzdx; vn;K 2 W ; n ¼ 1; 2; . . . ;N � 1: ð2:4Þ
As Un;K 2 W
U n;K ¼
XNxy

i¼0

XNz

j¼0

Xq

k¼0

cn;K
ijk uiðx; yÞwjðzÞhkðtÞ ð2:5Þ
for some fcn;K
ijk g. Writing (2.5) as
U n;K ¼ vTcn;K ¼ ðu� w� hÞTcn;K ð2:6Þ

and letting vn;K ¼ v in (2.4)
X

K2T h

Z
K

Z d
2

�d
2

Z
In

fv ovT

ot
cn;K þ aðvcn;KÞðrvTÞTrvTcn;Kgdt þ vþðvþÞTcn;K

� �
dzdx

¼
X
K2T h

Z
K

Z d
2

�d
2

v�ðvþÞTcn�1;K þ
Z

In

f vdt
� �

dzdx; v 2 W ; n ¼ 1; 2; . . . ;N � 1: ð2:7Þ
Note that c0;K is determined by the initial condition u0ðx; y; zÞ. The element matrices and load vectors in (2.7)
are defined as
½CK � ¼
Z

K

Z d
2

�d
2

Z
In

v
ovT

ot
dt dzdx;

½Aðvcn;KÞ� ¼
Z

K

Z d
2

�d
2

Z
In

aðvTcn;KÞÞðrvTÞTrvT dt dzdx;

½Mþþ
K � ¼

Z
K

Z d
2

�d
2

vþðvþÞTdzdx;

½M�þ
K � ¼

Z
K

Z d
2

�d
2

v�ðvþÞTdzdx;

fHKg ¼
Z

K

Z d
2

�d
2

Z
In

f vdt dzdx;

ð2:8Þ
where ½CK � represents the element capacitance matrix, ½AðvÞ� represents the element conductance matrix, ½Mþþ
K �

and ½M�þ
K � represent element mass matrices, and fHKg is the element load vector. Using these notations, (2.7)

now becomes
X
K2T h

½CK � þ ½AðvTcn;KÞ� þ Mþþ
K

� �� �
fcn;Kg ¼

X
K2T h

M�þ
K

� �
fcn�1;Kg þ fHKg

� 	
: ð2:9Þ
An interesting variation of (2.9) is
X
K2T h

½CK � þ ½AðvTcn�1;KÞ� þ Mþþ
K

� �� �
~cn;K
� 	

¼
X
K2T h

M�þ
K

� �
fcn�1;Kg þ fH Kg

� 	
: ð2:10Þ
Here, of course, the unknown cn;K that appears under nonlinear term A in (2.9) is replaced by cn�1;K . Eq. (2.10)
is now linear in ~cn;K . Denote respectively (2.9) and (2.10) more concisely as
se cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
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Plea
Mat
½Sðcn;KÞ�fcn;Kg ¼ ½F ðcn�1;KÞ�; ð2:11Þ
½Sðcn�1;KÞ�f~cn;Kg ¼ ½F ðcn�1;KÞ�: ð2:12Þ
Eq. (2.12) suggests the following iteration scheme that can be used to approximate the solution cn;K of the non-
linear equation (2.11). First, let c0 ¼ cn�1;K for each n P 1 and define c1 from
½Sðc0Þ�fc1g ¼ ½F ðcn�1;KÞ�:

Inductively, find ck from
½Sðck�1Þ�fckg ¼ ½F ðcn�1;KÞ�

or more specifically
X

K2T h

½CK � þ ½AðvTck�1Þ� þ Mþþ
K

� �� �
fckg ¼

X
K2T h

M�þ
K

� �
fcn�1;Kg þ fH Kg

� 	
: ð2:13Þ
To see the convergence of ck to cn;K as k !1 under some appropriate conditions, first note that
cn;K � ck ¼ ½Sðcn�1;KÞ��1½F ðcn�1;KÞ� � ½Sðck�1Þ��1½F ðcn�1;KÞ�

¼ ½Sðcn�1;KÞ��1f½Sðck�1Þ� � ½Sðcn�1;KÞ�g½Sðck�1Þ��1½F ðcn�1;KÞ�: ð2:14Þ
Since ½Sð�Þ� : RD ! RD�D, D � ðN xy þ 1Þ � ðNz þ 1Þ � ðqþ 1Þ, we see that with ½Sð�Þ� ¼ ½sijð�Þ�Di;j¼1, sij : RD ! R,
for each i and j
½Sðck�1Þ� � ½Sðcn�1;KÞ� ¼

rs11ð�g11Þ � ðck�1 � cn�1;KÞ � � � rs1Dð�g1DÞ � ðck�1 � cn�1;KÞ
� � � � � � � � �
� � � � � � � � �

rsD1ð�gD1Þ � ðck�1 � cn�1;KÞ � � � rsDDð�gDDÞ � ðck�1 � cn�1;KÞ

26664
37775;
where �gij is between ck�1 and cn�1;K . Hence, assuming
max
16i6D

XD

j¼1

krsijð�gijÞk2 6 C1 for some C1 > 0; ð2:15Þ

k½Sðck�1Þ� � ½Sðcn�1;KÞ�k1 ¼ max
16i6D

XD

j¼1

jrsijð�gijÞ � ½ck�1 � cn�1;K �j

6 max
16i6D

XD

j¼1

krsijð�gijÞk2kck�1 � cn�1;Kk2

6 C1

ffiffiffiffi
D
p
kck�1 � cn�1;Kk1: ð2:16Þ
Furthermore, under the assumptions that
k½Sðcn�1;KÞ��1k1 6 C2; k½SðckÞ��1k1 6 C2; k½F ðcn�1;KÞ�k1 6 C2 ð2:17Þ
for each n and k and for some C2 > 0, (2.14)–(2.17) imply that
kcn;K � ckk1 6 C1C2

ffiffiffiffi
D
p
kcn;K � ck�1k1: ð2:18Þ
If H � D1D2

ffiffiffiffi
D
p

in (2.18), then provided that 0 < H < 1
kcn;K � ckk1 6 H kkcn;K � c0k1 ! 0
as k !1: Hence, we have now proved the following:

Theorem 2.1. Let cn;K be a unique solution of (2.9), equivalently (2.11), and let ck be defined by (2.13) with

c0 ¼ cn�1;K for each n. If the constants C1 and C2 defined respectively by (2.15) and (2.17) satisfy C1C2

ffiffiffiffi
D
p

< 1,

then ck converges to cn;K as k !1 for each n.
se cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
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If C1C2

ffiffiffiffi
D
p

< 1 is not satisfied, then one should modify (2.12) by multiplying both sides by a pre-condi-
tioner M�1, i.e.,
Plea
Mat
M�1½Sðcn�1;KÞ�fcn;Kg ¼ M�1½F ðcn�1;KÞ�;

so that the bound C1C2

ffiffiffiffi
D
p

< 1 is satisfied relative to ½Sðcn�1;KÞ��1M , ½SðckÞ��1M , and M�1½F ðcn�1;KÞ�. One may
select, for instance, M to be the diagonal matrix which contains k½Sðcn�1;KÞ�k1 along its diagonal.

The element matrices defined in (2.8) may be reduced to more convenient forms. Capacitance matrix, for
example, can be given as follows:
½CK � ¼
Z

K

Z d
2

�d
2

Z
In

v
ovT

ot
dt dzdx ¼

Z
K

Z d
2

�d
2

Z
In

ðu� w� hÞ u� w� dh
dt

� �T

dt dzdx

¼
Z

K
uuT dx�

Z d
2

�d
2

wwT dz�
Z d

2

�d
2

h
dh
dt

T

dt:
More specifically, with respect to the following three matrices ½U� 2 RðNxyþ1Þ�ðNxyþ1Þ, ½W� 2 RðNzþ1Þ�ðNzþ1Þ and
HdH

dt
T

h i
2 Rðqþ1Þ�ðqþ1Þ defined byZ

½U� ¼

K
uuT dx;

½W� ¼
Z d

2

�d
2

wwT dz;

H
dH
dt

T
 �
¼
Z

In

h
dh
dt

T

dt;
the capacitance matrix is obtained from
½CK � ¼ ½U� � ½W� � H
dH
dt

T
 �
: ð2:19Þ
The operation of the outer tensor � between matrices is defined in the standard way which, for completeness,
is illustrated below by a 2� 2 matrix A and a 3� 3 matrix B
½A� ¼
a11 a12

a21 a22


 �
; ½B� ¼

b11 b12 b13

b21 b22 b23

b31 b32 b33

264
375;

½A� � ½B� ¼
a11½B� a12½B�
a21½B� a22½B�


 �
¼

a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a11b31 a11b32 a11b33 a12b31 a12b32 a12b33

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

a21b31 a21b32 a21b33 a22b31 a22b22 a22b33

2666666664

3777777775
:

Similarly to (2.11), ½Mþþ
K �, ½M�þ

K � and fHKg in (2.8) are given by
Mþþ
K

� �
¼ ½U� � ½W� �HþðHþÞT;

M�þ
K

� �
¼ ½U� � ½W� �H�ðHþÞT;

fHKg ¼
Z

K

Z d
2

�d
2

Z
In

f ð�Þ � ðu� w� hÞdt dzdx;

ð2:20Þ
In order to efficiently solve (2.13) for each k, it is important to preassemble as many of the element matrices
in (2.10) as possible. Therefore, besides (2.19) and (2.20), it remains to consider the integral:
se cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
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Plea
Mat
Z
K

Z d
2

�d
2

Z
In

aðvTck�1ÞðrvTÞTrvT dt dzdx: ð2:21Þ
If að�Þ � a is a constant function, then for each k
½AðvTck�1Þ� ¼ af½Ux� � ½W� � ½H� þ ½Uy � � ½W� � ½H� þ ½U� � ½Wz� � ½H�g;
where
½Ux� ¼
Z

K
uxu

T
x dx;

½Uy � ¼
Z

K
uyu

T
y dx;

½Wz� ¼
Z d

2

�d
2

wzw
T
z dz:
For a more general function a, integral (2.21) must be computed at each step k of iteration. To reduce the
computational cost, we proceed as follows: As aðvTck�1Þ is known for each k in (2.12), one may approximate it
by its L2 projection vTbk�1. For instance, if we take the space spanned by fvg to be the projected space, then
bk�1 is computed from the fact that aðvTck�1Þ � vTbk�1 is orthogonal to each v, i.e.,
Z

K

Z d
2

�d
2

Z
In

vvT dt dzdxfbk�1g ¼
Z

K

Z d
2

�d
2

Z
In

aðvTck�1Þvdt dzdx ð2:22Þ
or in the matrix form
½½U� � ½W� � ½H��fbk�1g ¼ fAgk�1; ð2:23Þ
where fAgk�1 ¼
R

K

R d
2

�d
2

R
In

aðvTck�1Þvdt dzdx. By replacing aðvTck�1Þ by vTbk�1, (2.21) now becomes
Z
K

Z d
2

�d
2

Z
In

vTbk�1ðrvTÞTrvT dt dzdx: ð2:24Þ
Since vTbk�1 is the L2 projection of aðvTck�1Þ onto the space spanned by fvg, using the technique established in
[2] to derive an error bound for a modified DGFEM in which h-finite element approximation was used for the
surface of a plate whereas p-finite element approximation was used through the thickness, it can be seen that
kaðvTck�1Þ � vTbk�1k2 ¼ OðhNþ1 þ dNz þ Iqþ1
n Þ: ð2:25Þ
The second term O 1
Nz

� �m� �
in (2.25) is the error term associated with the hierarchical modelling used through

the thickness of a plate and a more complete discussion of this error term will be given in the next section. It
should be pointed out that the modified DGFEM of [2] deals with linear parabolic equations and also it is not
based upon the hierarchical modelling technique discussed in this paper.

Dropping for simplicity the index k � 1 from the components of bk�1, we write bk�1 ¼ ðb‘ÞD‘¼1. Also, let
v ¼ fv‘g

D
‘ ¼ fu‘i

w‘j
h‘kg

Nþ1;Nzþ1;qþ1
i¼1;j¼1;k¼1 . Then
vTbk�1ðrvTÞTrvT ¼
XD

‘¼1

v‘b‘
ou
ox

ouT

ox
þ ou

oy
ouT

oy


 �
� wwT � hhT þ uuT � ow

oz
owT

oz


 �
� hhT


 �
¼
X

i

u‘i
b‘i

ou
ox

ouT

ox
þ ou

oy
ouT

oy


 �
�
X

j

w‘j
b‘jwwT �

X
k

h‘k b‘k hhT

þ
X

i

u‘i
b‘iuuT �

X
j

w‘j
b‘j

ow
oz

owT

oz


 �
�
X

k

h‘k b‘k hhT: ð2:26Þ
se cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
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Substituting the second expression of (2.26) into (2.24), one obtains
Plea
Mat
Z
K

Z d
2

�d
2

Z
In

vTbk�1ðrvTÞTrvT dt dzdx ¼
X

i

b‘

Z
K

u‘i

ou
ox

ouT

ox
þ ou

oy
ouT

oy


 �
dK �

X
j

b‘j

�
Z d

2

�d
2

w‘j
wwT dz�

X
k

b‘k

Z
In

h‘k hhT dt þ
X

i

b‘i

�
Z

K
u‘i

uuT dK �
X

j

b‘j

Z d
2

�d
2

w‘j

ow
oz

owT

oz


 �
dz�

X
k

b‘k

�
Z

In

h‘k hhT dt

� ½BðvTbk�1Þ�: ð2:27Þ
All the integrals in (2.27) should be preassembled along with (2.19) and (2.20). The solution ck of (2.13) is now
approximated by solving for ~ck of the following:
X

K2T h

½CK � þ ½BðvTbk�1Þ� þ Mþþ
K

� �� �
~ckf g ¼

X
K2T h

M�þ
K

� �
cn�1;K
� 	

þ fHKg
� 	

: ð2:28Þ
Analogous to (2.12), we write (2.27) more concisely as
½eSðbk�1Þ�f~ckg ¼ ½F ðcn�1;KÞ�: ð2:29Þ

To see that kck � ~ckk1 ! 0 as N ;Nz; q!1
kck � ~ckk1 ¼ k½Sðck�1Þ�1 � eSðbk�1Þ�1�½F ðcn�1;KÞ�k1
¼ kSðck�1Þ�1½eSðbk�1Þ � Sðck�1Þ�eSðbk�1Þ�1½F ðcn�1;KÞ�k1 6 C3keSðbk�1Þ � Sðck�1Þk1; ð2:30Þ
where C3 > 0 is a bound for kSðck�1Þ�1k1keSðbk�1Þ�1k1k½F ðcn�1;KÞ�k1. Now
keSðbk�1Þ � Sðck�1Þk1 ¼
X
K2T h

BðvTbk�1Þ � AðvTck�1Þ
� ������

�����
1

¼
X
K2T h

Z
K

Z d
2

�d
2

Z
In

vTbk�1 � aðvTck�1Þ
� 	

ðrvTÞTrvT dt dzdx

�����
�����
1

¼ max
16i6D

XD

j¼1

X
K2T h

Z
K

Z d
2

�d
2

Z
In

vTbk�1 � aðvTck�1Þ
� 	

ðrvTÞTrvT dt dzdx

" #
ij

������
������

6 max
16i6D

XD

j¼1

X
K2T h

Z
K

Z d
2

�d
2

Z
In

jvTbk�1 � aðvTck�1Þj2dt dzdx

( )1=2

�
Z

K

Z d
2

�d
2

Z
In

ðrvTÞTrvT
h i

ij

���� ����2dt dzdx

( )1=2

6 max
16i6D

XD

j¼1

X
K2T h

Z
K

Z d
2

�d
2

Z
In

ðrvTÞTrvT
h i

ij

���� ����2dt dzdx

( )1=2

� kvTbk�1 � aðvTck�1Þk2

6 C4kvTbk�1 � aðvTck�1Þk2; ð2:31Þ
where D4 ¼ max16i6D
PD

j¼1

P
K2T h
f
R

K

R d
2

�d
2

R
In
j½ðrvTÞTrvT�ijj

2dt dzdxg1=2. Putting together (2.25), (2.31) and
(2.25) we obtain
kck � ~ckk1 6 C3C4kvTbk�1 � aðvTck�1Þk2 ! 0; as N ;N z; q!1: ð2:32Þ
se cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
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Since ck ! bn;K as k !1 by Theorem 2.1, using (2.32)
Plea
Mat
kbn;K � ~ckk1 6 kbn;K � ckk1 þ kck � ~ckk1 ! 0; as N ;N z; q!1:

Thus we proved the following:

Theorem 2.2. Let cn;K be a unique solution of (2.9), equivalently (2.11), and let ck be defined by (2.13) with

c0 ¼ cn�1;K for each n. Assume that the constants C1 and C2 defined, respectively, by (2.15) and (2.17) satisfy
C1C2

ffiffiffiffi
D
p

< 1. Also let ~ck be the solution of (2.29), then ~ck converges to cn;K as k !1 for each n.

Finally, in this section, we examine the accuracy of DGFEM solution U, i.e., the solution of U of (2.4), as
an approximation of the solution u of (2.1). For this end, an important theorem by Erikkson and Johnson is
recalled. As was done in [4], the following will be assumed. These assumptions allow u to have a transient
phase. More importantly, these assumptions form the basis for Theorem 2.3 below:
max
t6tN
kuðtÞk1 6 C5; ð2:33ÞZ tN

0

kruk2
1 6 C6; ð2:34Þ

XN

n¼1

knkruk2
1 6 C7; ð2:35Þ

max
M6N

log
tM

kM
þ 1

� �
þ
XM

n¼1

kn aðunÞrun �
1

kn

Z
In

aðuÞrudt

���� ����2

1
6 C8; ð2:36ÞZ tN

0

kutðtÞk1dt 6 C9; ð2:37Þ

kutðtÞk2 6 C10t�1þb; ð2:38Þ
where C1 � C10 and b are positive constants.
The following theorem is given in [4] for q ¼ 0. The case for q ¼ 1, the linear in time, is treated in [6].

Theorem 2.3 [4]. Let u be the solution of (2.1) and U 2 W that of (2.4) and assume that (2.33)–(2.36) hold. Then

there is a constant C depending only on the bounds for a, a0, C5 � C8, and l with kn�1 6 lkn for all 1 < n 6 N ,

such that
max
t6tN
kuðtÞ � UðtÞk2 6 C log

tN

kN
þ 1

� �1=2

inf
v2W

max
t6tN
kuðtÞ � vðtÞk2: ð2:39Þ
Putting together (2.39) in Theorem 2.3 and (2.25), we obtain

Theorem 2.4. Let u be the solution of (2.1) and U 2 W that of (2.4) and assume that (2.33)–(2.36) hold. Then

there is a constant C depending only on the bounds for a, a0, C5 � C8, and l with kn�1 6 lkn for all 1 < n 6 N ,

such that
max
t6tN
kuðtÞ � UðtÞk2 6 C log

tN

kN
þ 1

� �1=2

ðhNþ1 þ dNz þ Iqþ1
n Þ: ð2:40Þ
3. Hierarchical modelling and numerical examples

Hierarchical modelling is a method of approximating a solution of boundary value problems (particularly
of elliptic type) on domains which has a thin structure in at least one transverse direction, such as plates and
shells. This method has been used extensively in various engineering applications. The authors are not aware
of a study which incorporates the idea of hierarchical modelling in solving parabolic problems as was done in
this paper.
se cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
h. Comput. (2008), doi:10.1016/j.amc.2007.12.062
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A class of hierarchical functions which produce an optimal convergence result is always problem depen-
dent. For example, for a steady-state heat equation below proposed on X ¼ x� ð�d; dÞ 	 Rnþ1, n P 2,
�1 < d < 1 with the sets R� ¼ x� f�dg, C ¼ c� ð�d; dÞ
Plea
Mat
Du ¼ 0 in X;

u ¼ 0 on C;

ou
on
¼ f � on R�:

ð3:1Þ
Vogelius and Babuska [15,16] showed that an optimal choice of hierarchical basis functions for steady-state
problem (3.1) can be found as follows: Define w2jðzÞ ¼ w2jð�zÞ, j ¼ 0; 1; . . . ; recursively
Z 1

�1

aðzÞw00ðzÞv0ðzÞdz ¼ 0; ð3:2ÞZ 1

�1

aðzÞw02jðzÞv0ðzÞdzþ
Z 1

�1

bðzÞw2j�2ðzÞvðzÞdz ¼ djðvÞ ð3:3Þ
for all v 2 H 1½�1; 1�, j ¼ 1; 2; . . ., where
djðvÞ ¼
vð1Þ þ vð�1Þ if j ¼ 1;

0 else

�

and define w2jþ1ðzÞ ¼ �w2jþ1ð�zÞ, j ¼ 0; 1; . . . by
Z 1

�1

aðzÞw02jþ1ðzÞv0ðzÞdzþ
Z 1

�1

bðzÞw2j�1ðzÞvðzÞdz ¼ ~djðvÞ ð3:4Þ
for all v 2 H 1½�1; 1�, j ¼ 1; 2; . . ., where
~djðvÞ ¼
vð1Þ � vð�1Þ if j ¼ 0;

0 else

�

and
w�1 ¼ 0: ð3:5Þ
For nonlinear parabolic problems, the optimal choice of hierarchical basis functions is difficult to deter-
mine. We demonstrate below that a collection of basis functions fz2ign

i¼0 works quite well for model examples
considered in this paper.

Example 1. This example examines the effectiveness of the current method of linearization applied to (2.1)
over two-dimensional plates. Here we assume that X ¼ ½�2; 2� � ½�2; 2�, ½0; T � ¼ ½0; 5� and the solution
uðx; y; tÞ ¼ ð1� 0:25x2Þð1� 0:25y2Þt;
where
kðuÞ ¼ 0:005uþ 1:
We assume boundary as well as initial conditions to be exact derived from u. There are a total of 256 finite
elements taken over the region X and the tolerance d ¼ 0:005 is used for convergence. The program also
set the maximum number of iterations to be 5, for convenience, and computation moves forward to the next
time level, when the maximum number of iterations are performed. This device is put into effect to prevent
unnecessary iterations if approximations are no longer improving. The overall error is a combination of mod-
elling error and discretization error. Moreover, with the parabolic problems, discretization error accumulates
linearly as time moves forward. Thus, if iterations terminate before tolerance is achieved and one requires
more accuracy in computation, then some refinements of the finite elements are required. We used the linear
splines to approximate u in space and time variables.
se cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
h. Comput. (2008), doi:10.1016/j.amc.2007.12.062
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Example 1
Count
Numerical experiments using hierarchical finite element ...,
2

Error
t1
 1
 0.0016

t2
 1
 0.0029

t3
 1
 0.0042

t4
 2
 0.0049

t5
 5
 0.0058

t6
 5
 0.0066

t7
 5
 0.0074

t8
 5
 0.0083

t9
 5
 0.0091

t10
 5
 0.0010
The temperature profiles at four different time levels, t1; t3; t7 and t10 are given below.
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Example 2. Now we consider (2.1) over three-dimensional plate X ¼ ½�2; 2� � ½�2; 2� � ½�1; 1�. Assume the
same number 256 elements over the surface ½�2; 2� � ½�2; 2� and a set of hierarchical functions f1; z2; z4g
through the thickness of plate [�1,1]. Linear splines are used for approximating u in the x; y and t variables.
The solution is taken to be
Plea
Mat
uðx; y; z; tÞ ¼ ð1� 0:25x2Þð1� 0:25y2Þð1� z2Þ2t
with kðuÞ ¼ 0:005uþ 1. Time interval of [0,5] is taken and it is partitioned uniformly into 10 intervals. Errors
in temperature at the cross sections of z1 ¼ 0, z2 ¼ 1=3 and z3 ¼ 2=3 are given below. Because of the symmetry
of this problem, the temperatures at z ¼ �1=3 and z ¼ 2=3 follow from these data.
t

se cite this artic
h. Comput. (20
Example 2
Count
le in press as: H. Kaneko
08), doi:10.1016/j.amc.200
Error at z1
et al., Numerical experiments
7.12.062
Error at z2
using hierarchical finite elemen
Error at z3
t1
 1
 0.0016
 0.0012
 0.0004

t2
 1
 0.0032
 0.0024
 0.0006

t3
 1
 0.0048
 0.0036
 0.0008

t4
 2
 0.0056
 0.0042
 0.0011

t5
 3
 0.0069
 0.0051
 0.0012

t6
 3
 0.0081
 0.0060
 0.0013

t7
 3
 0.0093
 0.0069
 0.0013

t8
 3
 0.0106
 0.0078
 0.0014

t9
 3
 0.0118
 0.0087
 0.0015

t10
 3
 0.0130
 0.0095
 0.0016
The temperature profiles over three cross sections z0 ¼ 0; z1 ¼ 1=3 and z2 ¼ 2=3 at four different time levels
t1; t3; t7 and t10 are drawn below.
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Example 3. The nonlinear parabolic problems (2.1) having boundary layers can be handled by the current

method of ‘linearlization’. Suppose we consider (2.1) over two-dimensional plate X ¼ ½0; p� � ½0; p� with
boundary conditions
Plea
Mat
u ¼ 0 on oX ð3:6Þ

and initial condition
uðx; y; 0Þ ¼ ðp� xÞðp� yÞ: ð3:7Þ

Then it is clear that we have a boundary region along x ¼ 0 and y ¼ 0 in which we have a solution changing
rapidly neat t ¼ 0, due to the incompatibility between the boundary condition and the initial condition, i.e.,
se cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
h. Comput. (2008), doi:10.1016/j.amc.2007.12.062
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the transient phase of the solution. The current method works well for this type of nonlinear parabolic prob-
lems over a two-dimensional plate region. Here are the temperature profiles at eight different time levels (non-
uniform) of (2.1) with boundary condition (3.6) and initial condition (3.7) imposed. Some mesh refinements
within the region boundary layers are done to maintain accurate approximation.

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

6

7

8

9

t1

y

Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem  linear time

x

A
pp

ro
x.

T
em

pe
ra

tu
re

0

1

2

3
0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

6

7

8

9

t2

y

Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem  linear time

x

A
pp

ro
x.

T
em

pe
ra

tu
re

9

Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem  constant time Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem  constant time
0
1

2
3

0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

6

7

8

t3

y
x

A
pp

ro
x.

T
em

pe
ra

tu
re

0

1

2

3
0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

6

7

8

9

t4

yx

A
pp

ro
x.

T
em

pe
ra

tu
re

9

Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem  linear time

9

Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem  constant time
0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

6

7

8

t5

y

x

A
pp

ro
x.

T
em

pe
ra

tu
re

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

6

7

8

t6

y

x

A
pp

ro
x.

T
em

pe
ra

tu
re
Please cite this article in press as: H. Kaneko et al., Numerical experiments using hierarchical finite element ..., Appl.
Math. Comput. (2008), doi:10.1016/j.amc.2007.12.062



H. Kaneko et al. / Applied Mathematics and Computation xxx (2008) xxx–xxx 15

ARTICLE IN PRESS
Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem  constant time Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem  linear time
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Example 4. Now we consider the heat conduction problem over a three-dimensional multilayered plate where
each layer has different heat conductivities. In the case of a plate having constant conductivities over each
layer, hierarchical basis functions are piecewise polynomials. Hence, in order to construct basis functions
for hierarchical modelling for heat conduction problem through the thickness of a multilayered plate, it is
ideal that these basis functions satisfy the temperature and the flux conditions across each boundary between
two layers. Typically, for example, problem (2.1) over a multilayered plate is endowed with the following addi-
tional conditions:
Plea
Mat
uið�; ZiÞ ¼ uiþ1ð�; ZiÞ; i ¼ 1; . . . ; nL; ð3:6Þ

kz;i
oui

oz
ð�; ZiÞ ¼ kz;iþ1

ouiþ1

oz
ð�; ZiÞ; i ¼ 1; . . . ; nL � 1: ð3:7Þ
Hence, one would like to have hierarchical basis functions to satisfy these conditions. To this end, let
u0ðgÞ ¼
1

2
ð1� gÞ;

u1ðgÞ ¼
1

2
ð1þ gÞ;

uiðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2i� 1

2

r Z g

�1

P i�1ðgÞdn;

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2i� 1Þ

p ðP iðgÞ � P i�2ðgÞÞ; i ¼ 2; 3; . . . ; px; ð3:8Þ
where P i is the Legendre polynomial of the first kind of order i given by
P 0ðgÞ ¼ 1;

P 1ðgÞ ¼ g;

P iðgÞ ¼
1

i
½ð2i� 1ÞgP i�1ðgÞ � ði� 1ÞP i�2ðgÞ�; i ¼ 2; 3; . . . ;

w0ðyÞ ¼ 1;
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Plea
Mat
wjðyÞ ¼

w1
j ðyÞ �1 < y < g1;

w2
j ðyÞ g1 < y < g2;

..

.

wnL
j ðyÞ gnL�1 < y < 1;

8>>>>><>>>>>:
j ¼ 1; 2; . . . ;
where
w1
j ðyÞ ¼

1

k1

ujðyÞ;

wi
jðyÞ ¼

1

ki
ðujðyÞ � ujðgi�1ÞÞ þ ci; i ¼ 2; . . . ; nL
and
c2 ¼
1

k1

ujðg1Þ;

ciþ1 ¼ ci þ
1

ki
ðujðgiÞ � ujðgi�1ÞÞ; i ¼ 2; . . . ; nL � 1;

ð3:9Þ
wj’s are thus hierarchical and it is not difficult to see that they satisfy (3.6) and (3.7). Now, we utilize the con-
struction method just described in (3.9) to (2.1) with the following characteristics. First, we assume that
X ¼ ½�2; 2� � ½�2; 2� � ½�d; d�, ½0; T � ¼ ½0; 5� and the solution is taken to be
uðx; y; z; tÞ ¼
ð1� 0:25x2Þð1� 0:25y2Þ ðd

2�z2Þ2
kz1

t; �d 6 z < 0;

ð1� 0:25x2Þð1� 0:25y2Þ ððd
2�z2Þ2�d4Þ

kz2
þ d4

kz1

� �
t; 0 6 z < d;

8<:

where kz1 ¼ kz1ij ¼ 0:005uðxi; yj; 0; tn�1Þ þ 1 and kz2 ¼ kz2ij ¼ 0:05uðxi; yj; 0; tn�1Þ þ 10 at each node ðxi; yjÞ and
kðuÞ ¼
0:005uþ 1; �d 6 z < 0;

0:05uþ 10; 0 6 z < d:

�

The total of N ¼ 256 elements are taken over ½�2; 2� � ½�2; 2� and a set of hierarchical basis functions
fw0ijðzÞ;w1ijðzÞ;w2ijðzÞg are defined according to (3.9). In particular, we define
w0ijðzÞ ¼ 1; w1ijðzÞ ¼
z2

kz1ij
; �d < z < 0;

z2

kz2ij
; 0 < z < d;

8<:
w2ijðzÞ ¼

z4

kz1ij
; �d < z < 0;

z4

kz2ij
; 0 < z < d:

8<:

We take d ¼ 1 in the next computations. Errors in the temperature at the cross sections of z1 ¼ 0; z2 ¼ 1=3 and
z3 ¼ 2=3 are given below.

Errors in temperature through the thickness and at z1, z2 and z3
t

se cite
h. Co
Count
this article in p
mput. (2008), d
Error through the thickness
ress as: H. Kaneko et al., Numerical ex
oi:10.1016/j.amc.2007.12.062
Error at z1
periments using hier
Error at z2
archical finite elemen
Error at z3
0.5
 1
 0.00163
 0.00146
 0.00142
 0.00133

1.0
 1
 0.00395
 0.00355
 0.00345
 0.00321

1.5
 3
 0.00626
 0.00562
 0.00545
 0.00507

2.0
 3
 0.00995
 0.00891
 0.00864
 0.00803

2.5
 3
 0.01441
 0.01288
 0.01250
 0.01162
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The following is a volumetric slice plot of approximate temperature at time step t5 ¼ 2:5 for this two-layered

plate parabolic problem.
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