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Abstract

In this paper, we consider a nonlinear hierarchical finite element method for heat conduction problems over two- or
three-dimensional plates. Problems considered are nonlinear because the heat conductivity parameter depends upon the
temperature itself. This paper explores a new technique recently proposed by the first author which transforms a nonlinear
parabolic problem to a linear problem at the discrete level. We present several numerical examples which demonstrate the
efficiency of the current technique.
© 2008 Published by Elsevier Inc.
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1. Introduction

In this paper, we report on some recent numerical experiments to approximate the solution of a class of
nonlinear heat conduction problems proposed over two- or three-dimensional plates. The problem is nonlin-
ear because the heat conductivity parameter depends upon the temperature itself. This, of course, describes the
natural state of heat conduction for most materials as their capacities to conduct heat varies with temperature.
To deal with nonlinearity, a new technique which was originally proposed in [3] is used in this paper to trans-
form the problem to a linear problem at the discrete level. The technique is tested on several examples in the
last section to demonstrate the efficiency of the technique. The general approach which was taken in this paper
is the discontinuous Galerkin finite element method (DGFEM). Discontinuity is applied to the time variable.
Unlike the continuous Galerkin finite element method where the entire time domain must be treated simulta-
neously, DGFEM allows computation to march forward in time. This reduces the size of computation. As to
the spatial discretization, a hierarchical modelling is done through the thickness of plate. The use of appro-
priate basis functions associated with a hierarchical modelling transforms the heat conduction problem to a
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hierarchy of dimensionally reduced plate problems at each time step. Hierarchical modelling technique is con-
ceptually simple devoid of three-dimensional elements and it has been used extensively for various plates prob-
lems in engineering. Most of the research on the hierarchical modelling are done for steady-state heat
problems. In 1981, a rigorous mathematical framework of the hierarchical medelling method was established
by Babuska and Vogelius in [15,16]. Subsequently, their results were extended by Schwab to those problems
with boundary layers, [11,12]. It was established in these papers that by increasing the order of approximation
in an appropriate region near the boundary, the optimal order of convergence by the hierarchical modelling is
restored in orthotropic approximation as the thickness d — 0. We test our method on four numerical exam-
ples. First, we consider a two-dimensional plate problem in which compatible data is assumed for boundary
conditions so that the solution is uniformly smooth throughout the region at any time ¢ > 0, free of boundary
layers. Second, we test our method on a similar problem in the three-dimensional setting. Third, we test the
current iterative method on a two-dimensional heat conduction problem with incompatible initial and bound-
ary data. Finally, as the fourth example, we consider the hierarchical modelling technique for a plate with two
layers. This requires a construction of a special class of basis functions.

The dimension reduction technique of the hierarchical modelling for a steady-state nonlinear heat conduc-
tion was investigated by Jensen and Babuska [8] and by Jensen [9]. But, its application to nonlinear parabolic
equations which is done in this paper appears to be new. For discretization over surface of a plate, the stan-
dard A-finite element approximation is employed. In Section 2, the discontinuous Galerkin method based on
the hierarchical modelling is described. New approach which was taken in this paper to deal with the nonlinear
conduction term is also described in this section. Some results from the papers [4-6] by Eriksson and Johnson
and [7] by Eriksson et al. are used to describe the convergence of the current method. The aforementioned
numerical examples are provided in Section 3.

2. DGFEM

The following model problem of nonlinear parabolic type is considered:
Find u such that

u, —div(a(u)Vu) = f in Q, t € R",

u(x,t)=0, xel, teR",

0 2.1
—u(x,t)zfi, XERy, tERT, @1
on

u(x,0) = up(x), xe€Q,
where Q= x (—%.9) is a closed and bounded set in R> with I'=0w x (—%,%), R, = w x {£4} and
R™ = (0,00). The functions f and u, are given data. Problem (2.1) describes a heat conduction problem with
heat conductivity function « affecting the temperature u. An interesting special case of the region Q is the mul-

tilayered plate as shown below: Here the thickness domain [—%,‘5’] is layered and layers are partitioned by
Zo,Z\y ..., Zy,. Also each layer [Z,,Z,,,] is assumed to be associated with heat conductivity parameters

(k,']')[, = 1,...77’1L.
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In many instances, « exhibits a transient phase which is usually caused by some incompatibilities between
the boundary condition and the initial condition. It is shown in [10,1] that, during the transient phase,
()|l = [lue(D)]] 1, o) behaves frequently like #7%, (0 < o < 1) as t — 0. Subsequently, a class of nonuniform
graded time discretization scheme for a class of linear parabolic equations was established in [1] in order to
capture the solution accurately. The result in [1] was extended to nonlinear problems in [3]. We also note that
a similar time discretization technique, using a different analysis, was developed in [13,14]. In this paper, we do
not make a specific reference to the issue of time discretization, but simply assume that it is done in such a way
that optimal convergence rate is attained in time variable. Throughout the paper, it is assumed that the func-
tion a : R — R" satisfies

c<alr)<C, |d(r)<C, reRr
for some positive constants ¢ and C. The weak formulation for (2.1) is given by
Find u : R* — H{}(Q) such that
(u (1), v) + (a(u(t))Vu(t), Vv) = (f(t),v) forall v € Hy(Q), t >0,
u(0) = uy,
where Hé(Q) is the standard Sobolev space, (-, -) denotes the L,(Q) inner product, and u, = % The DGFEM
for approximating the solution of (2.2) using the hierarchical basis function is now described. First, a time

interval, [0, 7], is partitioned into 0 = ¢y < #; < --- <ty =T.Let I, = (t,.1,¢t,) and k, = ¢, — 1,1, n = 1. With
¢ a nonnegative integer, define

W={v:R" =V, @V :v|, €P/l,),n=1,...N},

(2.2)

where

V, = {the space of splines of order r defined over w = Uger, K

where T, is a triangulation of Q and / = max diam([()} = span{g,(x, y)}2,

KeTy,

V= span{lpj}?/:zo.
Here /, C H'(—1, 1) are linearly independent functions defining a hierarchical modelling

Pq(],,) = {U(l) = zq:l)((ﬂ(t) U € V;l & V},
=0

span{6,(z)} = the space of all polynomial of degree < ¢ in ¢

and
Ny N
V,@V = {Z Z(pi(x,y)tpj(z) 2 ¢;(x,y) € V), for each i and y; € V for each j}.
=0 j=0
Also, define

v, = limo(s), v = limo(s).

s—t, st

The DGFEM for (2.2) is given as follows:
Find U" € W such that

/{ (a(U")VU", V") }dt + (U, 0F)
= (U 05) /(f t, VeEW, n=12,...,N—1, (2.3)
Uoiuo.
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Furthermore, if we denote U™* = U”| x> K € Ty, then the first equation in (2.3) can be written as

S [ [ e amersesyas o
KeT), g

= Z / / {U”KIUZKI+ +/fv”dt}dzdw, v ew, n=12,...,N—-1. (2.4)
Ker, VK J—4 In
As UK eWw

Ny N, q

=D D i o, (2)0(0) (2.5)

i=0 j=0 k=0

=

(SIS

for some {c”k }. Writing (2.5) as
U™ _chnK ((P®IP®Q)T nK (26)
and letting v"X = y in (2.4)

>
: e K 4 | fydeydzdew, yeW, n=1,2,....N—1. (2.7)
-3 J L rorens [}

Note that ¢”X is determined by the initial condition u(x, y,z). The element matrices and load vectors in (2.7)
are defined as

C : o drdzd
[K]/K/g/ @tt @

Mﬂ”ﬂ—//:Adﬂ”ﬂmh)mewmn

M+ = / / )dzdo, (2.8)

d
2
_l

U= r ) e
Y

where [C]| represents the element capacitance matrix, [4(y)] represents the element conductance matrix, [M "]
and [M "] represent element mass matrices, and {H} is the element load vector. Using these notations, (2.7)
now becomes

Y lC + Al e + M)y = Y { M e Y + {Hi ) (2.9)

KET, KeT,,

(SN

{/{,{a K a7 ) (VN V TR e+ 1t () e ”K}dzdw

NI&

(S

/ fydtdzdow,
Iy

An interesting variation of (2.9) is

Y MG+ Al e+ e = { M e )+ {Hi) ) (2.10)

KeT), KeT),

Here, of course, the unknown ¢"X that appears under nonlinear term A in (2.9) is replaced by ¢"~ !X, Eq. (2.10)
is now linear in ¢"X. Denote respectively (2.9) and (2.10) more concisely as
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[S(e" )"} = [F(e™ ), (2.11)
[S(e" e} = [F(e"H). (2.12)

Eq. (2.12) suggests the following iteration scheme that can be used to approximate the solution ¢"X of the non-
linear equation (2.11). First, let ¢y = ¢" "X for each n > 1 and define ¢, from

[S(eo){er} = [F(e" )],

Inductively, find ¢; from

[S(er-1)H{ex} = [F(e"™")]

or more specifically

Sk + AG e )] + [ME ] {ed = Y { M ]} + {Hi} (2.13)

KeTy KeTy
To see the convergence of ¢, to ¢"X as k — oo under some appropriate conditions, first note that
e — e = [S(E R (@] - [S(e )] F (@)
= [S(e" IS ()] = (S S (e )] [F (e )] (2.14)

Since [S()] : R” — R”P, D = (Ny + 1) x (N + 1) x (¢ + 1), we see that with [S(-)] = [s;;(-)]7,_;. 55 : R” = R,
for each i and j

Vsi (i) - (€1 =)o Vsip(fiip) - (-1 — ¢K)
[S(er-1)] = [S(e" )] = B - - |

Vspi(fip1) - (61 — K)o+ Vispp(pp) - (€4-1 — 1K)

where 7;; is between ¢;_; and ¢~ Hence, assuming

D
}Eﬁ’é HVSI,( i), <€y for some C; > 0, (2.15)
H[S(ckfl)] — [S(c”*ll( = max Z |VS,/ '/’U Ck — IKH

1<i<D

< max ZHVS,/ i)l lleer — e,

1<<D
< clf||c,(_1 — K (2.16)

Furthermore, under the assumptions that

HSE@ )] e <Gy 1S(e0)] Nl < oy IIFE@ )]l <G (2.17)
for each n and k and for some C, > 0, (2.14)—(2.17) imply that
[ — el < C1CVD||e™ — ¢y (2.18)

If H = D;D,+/D in (2.18), then provided that 0 < H < 1

el < H = eofl o — 0

le”
as k — oo. Hence, we have now proved the following:

Theorem 2.1. Let ¢"X be a unique solution of (2.9), equivalently (2.11), and let ¢ be defined by (2.13) with
co = "X for each n. If the constants Cy and C, defined respectively by (2.15) and (2.17) satisfy C1Cv/D < 1,
then ¢, converges to ¢X as k — oo for each n.
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If C,C,v/D < 1 is not satisfied, then one should modify (2.12) by multiplying both sides by a pre-condi-
tioner M1, i.e
MS(E R = MO EE ),

5o that the bound C,C,v/D < 1 is satisfied relative to [S(¢""%)] "M, [S(e,)] ' M, and M~'[F(¢"'¥)]. One may
select, for instance, M to be the diagonal matrix which contains ||[S(¢"~')]|| . along its diagonal.

The element matrices defined in (2.8) may be reduced to more convenient forms. Capacitance matrix, for
example, can be given as follows:

ot ¢ do\"
[CK]=// /x—‘dtdzdwz// /((p®lﬁ®9)((p®lﬁ®—) drdzdo
k J-4Ji, ot -4 dt

T $ 40"
= [ o9 do® lﬁlﬂ dz® Hd— dr.
K 72

SN

More specifically, with respect to the following three matrices [@] € RV D)*Wutl) " [yp] ¢ RWADXN:AD) g
[@dQT} € RU*D*a+l) defined by

(@] = /K po" do,
W= | ',

d
2

{ d@T] / QdHT

the capacitance matrix is obtained from

do’
Cl=lalo 7)o |65 | .19
The operation of the outer tensor ® between matrices is defined in the standard way which, for completeness,

is illustrated below by a 2 x 2 matrix 4 and a 3 x 3 matrix B

g b b bis

1o an

[A] = L B :|7 Bl=|ba by by,
Sl by b3y bis

[anby  anbiy anbiz apby  apbin  anbis
anby  anby anbys apby apbyn  apbxn
an([B] alz[B]]_ anbsi anbyn anby apnby  anbyn  anbsy

anbyy  anbyy aybiz anby  anbp  anbi;

anby  axby anby  anpby  anby anbx

Lanbyi  anby, anbs; anby  anby  anbs; |
Similarly to (2.11), [M}*], [M;"] and {H} in (2.8) are given by

M) =90V oo (e,

M =[2]e Yoo ("),

ey = [ / /Inf<~>-<qo®w®0>drdzdw,

(2.20)

In order to efficiently solve (2.13) for each k, it is important to preassemble as many of the element matrices
in (2.10) as possible. Therefore, besides (2.19) and (2.20), it remains to consider the integral:
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(S

/)

If a(-) = a is a constant function, then for each k

A )] = a{[P] © [Pl @ 0] + (@] @ [P] ® (0] + (9] @ [P:] ® [0]},

/ ( Ci— 1)(V}’ ) V;{Tdtdzdw. (221)

Iy

[SE

where
[@,] = / @) do,
K
(@] = / @,0; do,

= / N2

For a more general function a, integral (2.21) must be computed at each step k of iteration. To reduce the
computational cost, we proceed as follows: As a(yT¢;_;) is known for each k in (2.12), one may approximate it
by its L, projection yTb;_;. For instance, if we take the space spanned by {y} to be the projected space, then
b;_; is computed from the fact that a(yT¢, 1) — z"b,_; is orthogonal to each y, i.e.,

//Z/XXszdzdw{bk,l}:/ /z/a(xTck,l)thdzda) (2.22)
x J-4Jr, K J-4JI,

or in the matrix form

(@] © [¥] @ [O]l{bir} = {A}, ), (2.23)

where {A}, | = [, f[, I, a( xTer 1)y dtdzdw. By replacing a(yTe; 1) by xTbs_1, (2.21) now becomes

d
/ / / 21 (VD) Vi dedzdo. (2.24)

Iy

Since %Tb,_ is the L, projection of a(yT¢,_;) onto the space spanned by {1}, using the technique established in
[2] to derive an error bound for a modified DGFEM in which /A-finite element approximation was used for the
surface of a plate whereas p-finite element approximation was used through the thickness, it can be seen that

la(z"er1) = 2" bia|l, = O +a™ +13). (2.25)

The second term 0< (Nl)m) in (2.25) is the error term associated with the hierarchical modelling used through
the thickness of a plate ‘and a more complete discussion of this error term will be given in the next section. It
should be pointed out that the modified DGFEM of [2] deals with linear parabolic equations and also it is not
based upon the hierarchical modelling technique discussed in this paper.

Droppmg for simplicity the index & — 1 from the components of b,_;, we write b;_; = (bl)/ - Also, let

={u} = {ou¥, [k}fvtlelzl (1]+1 Then
D
g dpT 0 O
T V=Y v °P @
X bkfl(v/{ ) V)( - XZbZ|:|:ax ox a

o
Y A ®Zw b @ 3 01, 00"
— 707 ox ox  Qy dy b e

T
— ] QYYT 200" + o' ® {% %] ® OOT]

oy oy
T T
IDIUTTEE) S A S 00" (226)
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Substituting the second expression of (2.26) into (2.24), one obtains

’ dp 0 a 0
T T™NTo. T _ @ dp" cp @
//%'/I,,l b 1(Vy') Vy dtdzdw = E b[/ [ax » y]dK@E by,
WM/ dz®§ bgk/elkeerHE by,
oy oy
X /W,-(/’(pTdK@) Ej sz_/ ‘//z{ Z]dz@ E by,

/ 0,,00" dt

= [B(x"bi-1)). (2.27)

All the integrals in (2.27) should be preassembled along with (2.19) and (2.20). The solution ¢; of (2.13) is now
approximated by solving for ¢; of the following:

S Ck] + B + Mg &} = > { Mt {5} + {Hi ) (2.28)

KeTy, KeTy

IR

mla~

Analogous to (2.12), we write (2.27) more concisely as
[S (1) {&} = [F(e" ). (2.29)
To see that ||¢; — &l — 0as N,N.,qg — o0
lex = &lloe = N11S(ee1) ™ = S(be-y) JF ()|l
= [1S(ei1) " [S (be-1) = S(ee)IS (1) F ()]0 < CallS (1) = S(ex1)llo (2.30)
where C; > 0 is a bound for [|S(e,_1) ™" || IS (be—t) I I[F (€ 5)]|l... Now

Z [B(x"be-r) _A(}'Tck—l)}

KeT),

i, / / /{‘ bt —a(xen) } (V") V" drdzdo

Lm//
e {//
x{/K/;/,

[(v/ Vi,

ISi<h <= Ker, -4 J,

3 ckfl)Hz
C4HXTbk 1—51(}{Tck 1)||2, (2.31)

where Dy = max1<,<DZj Doker, Uk f:_ Il XT]lj|2dtdzdw}l/2. Putting together (2.25), (2.31) and
(2.25) we obtain

ler — &l < C3Cy

IS (bs-1) — S(ee1)ll =

(SN

= max
1<i<D

/ A= —a(xTck])}(VXT)Tvdetdzdw]
In

1/2
/ |XTbk—1 - a(XTCk1)|2dtdZdw}
I
2 12
dtdzdw}

) 1/2
dtdzdw}

ij

IR

N

wl&

(S

[S1EW

/N

[(VXT)TVXT} ;

1 —a(y e )|, =0, as N,N.,qg — oo. (2.32)
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Since ¢; — b™* as k — oo by Theorem 2.1, using (2.32)
an’K - ék“oo < Hme - ck“oo + ||Ck - éka - 07 as N7N27q — 00.
Thus we proved the following:

Theorem 2.2. Let ¢"X be a unique solution of (2.9), equivalently (2.11), and let ¢, be defined by (2.13) with
co = "X for each n. Assume that the constants Cy and C, defined, respectively, by (2.15) and (2.17) satisfy
C1Cyv/D < 1. Also let & be the solution of (2.29), then & converges to ¢"X as k — oo for each n.

Finally, in this section, we examine the accuracy of DGFEM solution U, i.e., the solution of U of (2.4), as
an approximation of the solution u of (2.1). For this end, an important theorem by Erikkson and Johnson is
recalled. As was done in [4], the following will be assumed. These assumptions allow u to have a transient
phase. More importantly, these assumptions form the basis for Theorem 2.3 below:

max [lu(7)]|,, < Cs, (2.33)
1<ty
iy
| vl < co 234)
0
N
>kl Vulll, < G, (2.35)
n=1
v M 1 2
max (loga—k 1) + ;kn a(u,)Vu, 0 /1,, a(u)Vudt ) < G, (2.36)
ty
| i<, (2.37)
0
Hut(t)Hz < CIOFIH;a (2.38)

where C; — Cyp and f are positive constants.
The following theorem is given in [4] for ¢ = 0. The case for ¢ = 1, the linear in time, is treated in [6].

Theorem 2.3 [4]. Let u be the solution of (2.1) and U € W that of (2.4) and assume that (2.33)—(2.36) hold. Then
there is a constant C depending only on the bounds for a, d', Cs — Cg, and p with k, | < pk, for all 1 <n <N,
such that

vEW 1<ty

1/2
max lu() = U], < C(loglt(N—k 1) inf max |[u(¢) — v(?)||,. (2.39)
1<ty N

Putting together (2.39) in Theorem 2.3 and (2.25), we obtain

Theorem 2.4. Let u be the solution of (2.1) and U € W that of (2.4) and assume that (2.33)—~(2.36) hold. Then
there is a constant C depending only on the bounds for a, ', Cs — Cs, and p with k,_y < pk, for all 1 <n <N,
such that

1/2
t
max [[u(r) = U(1)]l, < c(logki + 1) (RN @™ 4 1941, (2.40)
ISIN N

3. Hierarchical modelling and numerical examples

Hierarchical modelling is a method of approximating a solution of boundary value problems (particularly
of elliptic type) on domains which has a thin structure in at least one transverse direction, such as plates and
shells. This method has been used extensively in various engineering applications. The authors are not aware
of a study which incorporates the idea of hierarchical modelling in solving parabolic problems as was done in
this paper.
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A class of hierarchical functions which produce an optimal convergence result is always problem depen-
dent. For example, for a steady-state heat equation below proposed on Q = w x (—d,d) C R*™', n > 2,
—1 <d < | with the sets R = w x {£d}, ' =y x (—d,d)

Au=0 1in Q,

Lézo on I, (3.1)
_u:_fi OnRi.

on

Vogelius and Babuska [15,16] showed that an optimal choice of hierarchical basis functions for steady-state
problem (3.1) can be found as follows: Define ,,(z) = ¥,,(—z), j =0, 1,..., recursively

[ e =o (3.2)

1

'/_1 a(z)lﬁ;j(z)u’(z)dz—l—/_ b(z)lpz‘i_z(z)v(z)dz =6,(v) (3.3)

I
forallve H'[-1,1], j=1,2,..., where

[ Hu(-1) if =1,
0,(v) = { 0 else
and define ¥, (z) = —,;,1(=2), j=0,1,... by
[ e @@t [ bl Eete)d = 5,0) (34

forallve H'[-1,1], j=1,2,..., where

<, o) —o(=1) if j=0,
9,(v) = {0 else

and
v_, =0. (3.5)

For nonlinear parabolic problems, the optimal choice of hierarchical basis functions is difficult to deter-
mine. We demonstrate below that a collection of basis functions {z*}}_; works quite well for model examples
considered in this paper.

Example 1. This example examines the effectiveness of the current method of linearization applied to (2.1)
over two-dimensional plates. Here we assume that Q = [-2,2] x [-2,2], [0, 7] = [0, 5] and the solution

u(x,y,t) = (1 —0.25¢%)(1 — 0.25)%)1,

where
k(u) = 0.005u + 1.

We assume boundary as well as initial conditions to be exact derived from u. There are a total of 256 finite
elements taken over the region @2 and the tolerance ¢ = 0.005 is used for convergence. The program also
set the maximum number of iterations to be 5, for convenience, and computation moves forward to the next
time level, when the maximum number of iterations are performed. This device is put into effect to prevent
unnecessary iterations if approximations are no longer improving. The overall error is a combination of mod-
elling error and discretization error. Moreover, with the parabolic problems, discretization error accumulates
linearly as time moves forward. Thus, if iterations terminate before tolerance is achieved and one requires
more accuracy in computation, then some refinements of the finite elements are required. We used the linear
splines to approximate u in space and time variables.
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t Example 1
Count Error
1 1 0.0016
2 1 0.0029
13 1 0.0042
14 2 0.0049
s 5 0.0058
t6 5 0.0066
t7 5 0.0074
13 5 0.0083
ty 5 0.0091
1o 5 0.0010
The temperature profiles at four different time levels, ¢, 3, ¢; and ¢y are given below.
Fig.Discontinuous Galerkin Finite Element Method for Parabolic Nonlinear Problem — linear time Fig.Discontinuous Galerkin Finite Element Method for Parabolic Nonlinear Problem - linear time
1 3
5 5
4 4
§
Lo
32
<
1
0
2
y -2 2 R y -2 -2 «
Fig.Discontinuous Galerkin Finite Element Method for Parabolic Nonlinear Problem - linear time Fig.Discontinuous Galerkin Finite Element Method for Parabolic Nonlinear Problem - linear time
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Example 2. Now we consider (2.1) over three-dimensional plate Q = [—2,2] x [-2,2] x [—1,1]. Assume the
same number 256 elements over the surface [—2,2] x [~2,2] and a set of hierarchical functions {1,2z% z*}
through the thickness of plate [—1,1]. Linear splines are used for approximating u in the x,y and ¢ variables.
The solution is taken to be

u(x,y,z, t) = (1 - 025x2)(1 — 025)}2)(1 —22)21

with k(u) = 0.005z + 1. Time interval of [0, 5] is taken and it is partitioned uniformly into 10 intervals. Errors
in temperature at the cross sections of z; = 0, z, = 1/3 and z; = 2/3 are given below. Because of the symmetry
of this problem, the temperatures at z = —1/3 and z = 2/3 follow from these data.

t Example 2
Count Error at z; Error at z, Error at z3

t 1 0.0016 0.0012 0.0004
t 1 0.0032 0.0024 0.0006
3 1 0.0048 0.0036 0.0008
ty 2 0.0056 0.0042 0.0011
ts 3 0.0069 0.0051 0.0012
te 3 0.0081 0.0060 0.0013
ty 3 0.0093 0.0069 0.0013
t3 3 0.0106 0.0078 0.0014
to 3 0.0118 0.0087 0.0015
to 3 0.0130 0.0095 0.0016

The temperature profiles over three cross sections zo = 0,z; = 1/3 and z, = 2/3 at four different time levels
t,t3,t; and ty are drawn below.

Fig.Discontinuous Galerkin Finite Element Method for Parabolic Fig.Discontinuous Galerkin Finite Element Method for Parabolic Fig.Discontinuous Galerkin Finite Element Method for Parabolic
Nonlinear Problem linear time Nonlinear Problem linear time Nonlinear Problem linear time
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45 4. 4.
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4 4 4
235 035 035
g o I g0
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5 2 5 2 5 2
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215 315 315
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<1 g1 < 1
0.5 05 0.5
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Fig.Discontinuous Galerkin Finite Element Method for Parabolic Fig.Discontinuous Galerkin Finite Element Method for Parabolic Fig.Discontinuous Galerkin Finite Element Method for Parabolic
Nonlinear Problem linear time Nonlinear Problem linear time Nonlinear Problem linear time

3

Approx.Temperature
Approx.Temperature
Approx.Temperature

,/173 TN
,;,';;:: :“‘“ee\
§OSS S

y 2 -2 X y 22 x y 22 X
Fig.Discontinuous Galerkin Finite Element Method for Parabolic Fig.Discontinuous Galerkin Finite Element Method for Parabolic Fig.Discontinuous Galerkin Finite Element Method for Parabolic

Nonlinear Problem linear time Nonlinear Problem linear time Nonlinear Problem linear time

7 R . 17 : i 17
45 - L, ) 45 5 - L, ) 45 B
4 4 4
o ]
035 335 535
5 ] g
g 3 g 3 g 3
825 £25 £25
5 2 %2 %2
515 215 215
g <y <y
05 05 05
0 0 0
2 2 2

1 2 2 2
y 2 -2 p y 22 x y X
Fig.Discontinuous Galerkin Finite Element Method for Parabolic Fig.Discontinuous Galerkin Finite Element Method for Parabolic Fig.Discontinuous Galerkin Finite Element Method for Parabolic

Nonlinear Problem linear time Nonlinear Problem linear time Nonlinear Problem linear time

t10.-
23

4.5

»
&~ o
>
&~ o

IS

035 035 035
5 5 El
g 3 5 3 g 3
3 3 g
g25 g25 g2.5
22 2 2 < 2
315 315 o15
g1 g1 g 4
< < <
05 05 05
0 0 0
2 2 2

Example 3. The nonlinear parabolic problems (2.1) having boundary layers can be handled by the current
method of ‘linearlization’. Suppose we consider (2.1) over two-dimensional plate Q = [0,7n] x [0, 7] with
boundary conditions

u=0 ondQ (3.6)
and initial condition

u(x,,0) = (n —x)(m - y). (3.7)
Then it is clear that we have a boundary region along x = 0 and y = 0 in which we have a solution changing
rapidly neat ¢t = 0, due to the incompatibility between the boundary condition and the initial condition, i.e.,
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the transient phase of the solution. The current method works well for this type of nonlinear parabolic prob-
lems over a two-dimensional plate region. Here are the temperature profiles at eight different time levels (non-
uniform) of (2.1) with boundary condition (3.6) and initial condition (3.7) imposed. Some mesh refinements
within the region boundary layers are done to maintain accurate approximation.

Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem linear time Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem linear time
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Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem constant time
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Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem constant time Fig.Discontinuous Galerkin Finite Element Method for Parabolic Problem linear time
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Example 4. Now we consider the heat conduction problem over a three-dimensional multilayered plate where
each layer has different heat conductivities. In the case of a plate having constant conductivities over each
layer, hierarchical basis functions are piecewise polynomials. Hence, in order to construct basis functions
for hierarchical modelling for heat conduction problem through the thickness of a multilayered plate, it is
ideal that these basis functions satisfy the temperature and the flux conditions across each boundary between
two layers. Typically, for example, problem (2.1) over a multilayered plate is endowed with the following addi-
tional conditions:

u,-(~,ZI-) :ui+l('7zi), l: 17...,nL, (36)
6u,» aui«H .
(- Z)=k. i —— (-, Z. =1,... —1. :
kz,l aZ ( ) 1) kz,t+l aZ ( 9 l)a 1 ) y L (3 7)

Hence, one would like to have hierarchical basis functions to satisfy these conditions. To this end, let

Po(n) =5 (1 —n),

NS

o) =51+ 1),

@:(n) = \/212_71/: Pi_i(n)dg,

1 o
= m(ﬂ(ﬂ) —Pia(n), i=23,....p, (3-8)

where P; is the Legendre polynomial of the first kind of order i given by

Po(n) =1,
Pl(’?) =1,
Pi) =120 = DPea) = = DP()], =23,
lp()(y) = 1;
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Vi) —l<y<mn,
Vi) m <y <nm,

and

1 (3.9)

Citl = Ci+ E((P/(”Iz) =), i=2,...,m -1,
Y ’s are thus hierarchical and it is not difficult to see that they satisfy (3.6) and (3.7). Now, we utilize the con-
struction method just described in (3.9) to (2.1) with the following characteristics. First, we assume that
Q=1[-2,2] x[-2,2] x [-d,d], [0,T] = [0, 5] and the solution is taken to be

(1-0252)(1 - 0.252) 20 —d <z<0,
“(xa%ZJ) = d>—2) gt 4
(1 —0.252)(1 — 0.25)?) (%Jr,j—)t 0<z<d,

where kz; = kzy;; = 0.005u(x;,y;,0,4,-1) + 1 and kz, = kzy;; = 0.05u(x;,»;,0,, 1) + 10 at each node (x;,y;) and

y _ {O00Su 1, —d <z <0,
7 0.05u+10, 0<z<d.

The total of N =256 elements are taken over [—2,2] x [-2,2] and a set of hierarchical basis functions
{W0ij(2),¥1;(2), ¥a;(2) } are defined according to (3.9). In particular, we define

2

1;7]”»7 7d<Z<O,

2 0<z<d,

kz2ij 0

lpoy(z) =1, lplij(z) =

4

— —d<z<O,
Vaglz) =14
2ij - 4

éw 0<z<d.

We take d = 1 in the next computations. Errors in the temperature at the cross sections of z; = 0,z, = 1/3 and
z3 = 2/3 are given below.

Errors in temperature through the thickness and at zj, z; and z3

t Count Error through the thickness Error at z; Error at z, Error at z3
0.5 1 0.00163 0.00146 0.00142 0.00133
1.0 1 0.00395 0.00355 0.00345 0.00321
1.5 3 0.00626 0.00562 0.00545 0.00507
2.0 3 0.00995 0.00891 0.00864 0.00803
2.5 3 0.01441 0.01288 0.01250 0.01162
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The following is a volumetric slice plot of approximate temperature at time step 5 = 2.5 for this two-layered
plate parabolic problem.

z exact solution

~ 0
-2 45 -1 05

x Volumetric slice plot
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