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A construction of wavelets
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In this note, given a multiresolution analysis, we construct a class of four-coefficient scaling
filters using only elementary algebraic operations. The method of construction also reveals
that the sum conditions ¥ deven = 3. dodd = 1 can also be verified without referring to the
vanishing moment property.
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1. A review of construction of wavelets

We begin this note by recalling the definition of a multiresolution analysis.

Definition A multiresolution analysis --- S V_1 S Vo & Vy C -- - with scaling function
¢ is an increasing sequence of subspaces of L2(R)‘ satisfying the following four
conditions:

(1) (density) U;¥; is dense in LX(R),

(2) (separation) N;¥; = {0},

(3) (scaling) ix)e V; & fi27x)e Vo, o
(4) (orthonormality) {¢(x — ¥)},cz is an orthonormal basis for V.

First of all, {2/2p(Zx — V)},e 7 forms an orthonormal basis for ;. This is evident
from the definition. In order to form an orthonormal basis for L*(R), the density
condition 1 seems to suggest, at first, to combine all the orthonormal bases

{(22p(2%x — y)}, ez Of V;. But this does not work since there are distinct elements

§
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from two orthonormal bases, {2/%p(2/x — y)}, 7 for ¥; and (2U+D/2p(2*1x — p)}, . 2
for Vj;1, that are not orthogonal to each other. What is required at this point is the
construction of an orthonormal basis for the orthogonal complement W, of ¥V,
in V1. More generally, we need to find an orthonormal basis for W; where

V]+l = V@ W/ja
forj=0,1,....The function 1/1 for which {(x — )}, ¢ z is an orthonormal basis for Wy

is the wavelet generator Once ¥ is found, then {21/ 2y(2x — ¥)},  z form an orthonormal
basis for W; and as

L*(R) = Vo ® (O W) = ®jez W),
{p(x = P)yez U {2129 (Yx — ez z0 O {2]/21/,(2Jx V}yezj>0 form an orthonormal

© wavelet basis for L2(R).
Since g€ Vy € V1, we must have the following scaling identity,

@)=Y apx—y). (BY

yezZ

It is well known [1] that the conditions that must be met by the coefficients a, s are the
following:

Ylalf=2, (1.2)
yeZ
> ayaryqy = 25(y,0), 1.3)
yYezZ

and v
Ya =2 : (1.4)

Equation (1.2) is a consequence of the scaling 1dent1ty and of the fact that lloll, = 1.
Equation (1.3) is obtamed from condition 4 of the deﬁmtlon, i.e.,

[ ot = gt = 0,0,

upon substituting the scaling identities for ¢(x — y) and ¢(x). Equation (1.4) is obtained
also from the scaling identity with additional condition that [ ¢(x)dx # 0. Namely,
integrate both sides of (1.1) and make a change of variable. Note that (1.2) is a special
case of (1.3). Clearly, the scaling function determines a multiresolution analysis, but not
conversely. A construction of wavelets involves reversing the procedure, In other words,
we need a characterization of a function that satisfies the scaling identity (1.1) and that
generates a multiresolution analysis. In order to better explain the content of the present
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note which is described in the next section, let us next review in five steps how a-general
construction of wavelets is done. We refer the reader to [1] and [3] for a moére complete
-descriptions of these steps. : . :

Step 1 This step consists of producing solutions to algebraic identities (1'.2)—(1.4).

Step 2 Once a;s are determined, a possible scaling function ¢ is defined. This can
_be done, for instance, by finding a fixed point of the linear transformation

Sfx) =Y afi2x—y)

yezZ
by iterations

0= lim S"f

h—>o0

with an appropriate initial function f.

Step 3 Now, we must verify that the function ¢, defined in Step 2, generates a
multiresolution analysis. To this end, we let

Ao(&) = % Z ayeZJrng.

yeZ

Tt turns out that the following condition (1.5) along with (1.2)~(1.4) serves as sufficient
conditions for the orthonormality of {¢(x — V)},cz

A #0 for I <7 | (1.5)

Step 4 This step is to study those conditions that are necessary to construct wavelets.

Let ¥y = ¢ and ¥ = ¥, a wavelet generator to be determined. Also, let ag = a,, the

solutions of (1.2)~(1.4). Since {Yx(x — ¥)}, ez k=0,1 must be an orthonormal basis for
V) = Vo ® W, noting that {2'/2¢(2x — y)}, ¢z is an orthonormal basis for V1,

W) =) apx—v), k=01 (1.6)

yezZ

Equation (1.6) with k=0 is the scaling identity (1.1). The condition that o 1 ¥y,
or more precisely, with j,k€{0,1},y€Z,

f Ui(x = Px)dx = 80, K3, 0),

leads to, upon replacing ¥, and ¥, by the correspondmg ,expréssiéné in (L6); o o

Y aldh,., = 280,08, 0). a.7mn
.VYeZ ‘
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Equation (1.7) contains (1.2) and (1.3) as special cases. We cannot expect the wavelet
generator ¥ to satisfy [ y(x)dx # 0, so we do not have an equivalent condition to
(1.4) for a},. Hence, we can only use (1.4), restated below in the current notation as

Y =2 (1.8)

yeZ

At this point, we have reduced the problem of constructing wavelets to the solution of
algebraic identities (1.7) and (1.8), together with condition (1.5), which was to guarantee
the orthonormality condition 4 for ¢. In summary, we have (Theorem 4.3, [3]) that

THeoreM 1.1 Suppose ¢ generates a multiresolution analysis and a satisfy (1.7) and
(1.8) with v, defined by (1.6) and Yo = @. Then the functions {21/21p1(21x-— y)} for
j€Z, yeZ form an orthonormal basis of L*(R).

Step 5 This step completes the task that began in Step 4. Namely, we need to produce
the solutions of (1.7) and (1.8) that satisfy (1.5). The function 4, defined earlier can be
written as

Ao(s)~—2 oo,

yeZ

Similarly, we define

AI(E) 22 al 27riyé"

yeZ

In terms of 4, and A;, equations (1.7) and (1.8) can be shown to be equivalent to
2
D AkE + np)AiE + np) = 8(j, k), (1.9)
p=1

and
Ay(0) =1, O (1.10)

respectively [1] where 7 = 0 and 772 1/2. One method of construction -presented by
Daubechies is to first solve for {a } using

Ap(0) =1
|A0($)|2+|Ao(§+ )|2—1
A& #0 for &l <5

and subsequently incorporate the remaining equauons from (1.9) to find A,(§) which
in turn gives {a }. The remaining equations are

2

4@ + 4 (£+3)

=1, (1.11)



A construction of wavelets 1249

and: : S g
1 1 :
m@Md9+Aos+§Als+5 =0, - (1.12)
It is shown [1] that
27viE 1
A1) =445
solves (1.11) and (1.12) and this amounts to setting
a, =(-1y*"'d)_,. (1.13)

2. A construction of scaling functions and their wavelets

In this section, we present a method of constructing a class of four-coefficient scaling
filters using only elementary algebraic operations. Particularly, we are interested in
obtaining the solutions g, = ag of equations (1.2), (1.3) and (1.4). Recall from the
previous section, each solution will generate a multiresolution analysis provided that
condition (1.5) holds. Formulas for constructing four-coefficiént scaling filters
already exist. An elegant approach. of Daubechie is well documented in [1].
Therefore, we do not claim that the results obtained in this section are new.
But rather, the purpose of the present note is to shed another perspective in construc-
tions of scaling filters and to demonstrate the fact that the sum condition
Y deven = Y _dodd = 1 can be derived without referring to the vanishing moment
property. The fact that the sum condition is a consequence of (2.1), which will be
established in this section, appears to be new. We do not discuss a. complete construc-
tion of wavelets in this note. However, once a, = a, are found, the associated wavelets
can be generated simply from (1.13).

We consider the case where only ag, a;, a; and a3 are the terms which could
possibly be nonzero. We also assume that they are real. Equations (1.2), (1.4)
and (1.3) become respectively,

a§+a%+a§+a§=2
gp+a+ataz=2 @.1)

apay + graz = 0.

If a3 # 0, then a; = —ayaa /a3, and substituting, we get

2 42
aga
g+t +Bra=2 RO
3. : A RS O I FUI B T TS T

apa . cl
ay——=+m+a3=2."
as vt et T e
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Let x = ay, y = a» and ¢ = 1/a3, thereby obtaining

1
2 2,22 1 2

; =2 —
x+c"‘xy +y =

2.2
1
x—cxy+y=2—z.
Assuming 1 — ¢cx # 0, (2.2) yields
_2—-(/)~-x s 2—(1/cH) ~x?
R T A @3)
Squaring the first equation and equating it to the second equation yields
2
2%x* =43 + 2% —de+ DX +4(c— Dx+2 — % +5=0. (2.4)
In order to study the solutions of (2.4), let
X
Ax) =25 — 423 + 2F —de+ Hx2 +4(c— Dx +2 — - +523.
First, we observe that, for every ¢#£0,
: 1 -
Y = . .
7(3) =0 @3
and that '
4x+%)=2c2x4+(4—-4c--02)x2’+%02+c+1——§+222-. (2.6)

~

Let fix) = f(x + 1/2). Then f7(x) =0 has roots

1/ 4 4
.0 and :J:-z- 1+'E—c—2-.

When :I:1/2\/1 +(4/c) — (4/c)® are real, i.e., for

Equation (2.6) shows that the graph of f is symmetric about the line x =1 /2.

c<=2-2/2 or ¢>=2+22, 2.7

f attains its minimum at =+1 /2\/ 1+ (4/c) — (4/c)*. For the values of ¢ specified in
(2.7), we have fix1/2,/1 + (4¢) — (4/c)?) = 0. Translating back into £, we conclude that

Eiz,/nz——g, (2.8)

are the roots of f{x) = 0. Each is a double root of the quartic f{x) = 0. If we denote two
roots in (2.8) by x; and x,, then notice that x2 = 1 — xj. This, of course, is a rehash of
the fact that the graph of fis symmetric about x = 1/2. The following theorem serves as
the first step toward establishing the algorithm that generates many wavelets.
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THEOREM 2.1  Consider the equations in (2.1) and let x = aq, y = a; and ¢ = 1/as. Then
x+y=1

Proof Since x = 1/24 1/2,/1+ (4/c) — (4/c)* and x2 = 1/2— 1/2/ 1 + (4/¢) ~ (4]}
are two roots of fix) =0,

L LA (1L 4
272 2 ¢ 22 2 cf

are two linear factors of f{x), and upon multiplying and simplifying, we obtain
xt—x+ (/2= (1/c). If x=x; or x=Xx3, then x* —x + (1/c¢?) — (1/c) = 0, which
reduces ’

cx—1 =cx2+%—2. (2.9)
But we have, from (2.3) and (2.9),

2-(/9)=x _ —cx2——(1/c)+2=

= 1. ]
Xty=x4 1—cx 1—cx
Note that from (2.1) and Theorem 2.1, we obtain
a+a=1 and a +a3=1. (2.10)

Note also that (1.13) implies 4¢(1/2) = 0 and 4,(0) = 0, which is the well-known van-
" ishing moment condition for wavelets. 4o(1/2) = 0 is satisfied by (2.10). And this is
what is done generally for the construction of wavelets. More specifically, (2.1) and
(1.13), and hence (2.10), are solved together to get the complete descriptions of
scaling filters as well as wavelets. As pointed out earlier, the task of this note has
been different. We examined the solutions of (2.1) independently, and derived (2:10)
without referring to (1.13). In [2] (p. 296), it is noted that ‘the sum condition
3 Geven = Y_doqa = 1 is always imposed’. Theorem 2.1 tells us that, with wavelets
whose scaling relation involves four terms, it is necessary that Y  deven = Y. dodd = 1.
Some other immediate consequences of Theorem 2.1 are:

& —ay—apar =0

@ —ay—apay =0.
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Now, we are ready to present the algorithm for the solution of our problem:
Algorithm
(1) Choose

1 1
¢ (—2*2ﬁ), 'f2+2«/§).

(2) Find ap = 1/2+1/2,/1 +4a3 42,

(3) Getay =1 —ap.
@ Geta, =1-—as.

The corresponding scaling function ¢ can be derived by finding a fixed point of the
mapping - (

SAx) = agf(2x) + aif2x — 1) + apf2x — 2) + a3/(2x — 3),

by iteration with a reasonable starting function, £, i.e.,
1 n
ox) = lim S"/°(2).

To install p accuracy condition on wavelets, i.e., to establish the p vanishing moment
properties of wavelets, it is required [2] that

Y (-Dfk"a =0, form<p (2.11)

By (2.10), (2.11) is satisfied with m =0. Therefore, the algorithm, when aj is taken in the
range specified, will generate a family of wavelets whose accuracy order is 1. If we want
the second-order accuracy in wavelets, then we must also have equation (2.11) with
m=1. In our case, this is :

—ay +2ay — 3a3 = 0. @.12)

Since ay =1~ a3 and a9 = 1 — a,, substituting into (2.12), We obtain 2qy = 1 — 2as.

Replacing ay by 1/2+1/2,/1+4a3 —4a3 and solving for as;, we obtain
a3 = (1 £4/3)/4. If we take a3 = (1 — /3 3)/4, then the following wavelet is generated
by the algorithm;

1+43 _3+Y3 3-43 1-+3
;4 ’ .

ay = 7 a = Q= 7’ a3 = 4

Of course, this is one of Daubechies wavelets. It is important to note that our
apprcgach can be extended to any scaling function that involves four nonzero coefﬁ-
cients. For instance, consider the case;

@(x) = a_19(2x +1) + app(2x) + a1p2x — 1) + ap(2x — 2).
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Then the algorithm is modified to
(1) Choose

1 1
(S . .
“ (—2 V2 2+ 2&)

(@) Find a_; = 1/2 £ 1/2,/1 + 4a, — 4.

3) Getay=1—a_,.
4 Getay=1-a,.

Arguing as before to obtain the second-order accuracy in the wavelet, we get once
again the coefficients,

1+v3  _3+43 _3-v3 _1-43
4 s 0= 4 B 1= 4 s 2= 4 .

a1 =

The support of the scaling function is [—1,2]. Also, we note that choosing g, =0 and
the minus sign for a_; in the algorithm, yields a_; =a; =0, ay =a; = 1. These
values yield the scaling function ¢ for the classical Haar wavelets.
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