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Abstract

In a well known paper [3], Ekeland presented a variational principle that can be used for
many useful applications. In a recent paper [2], the present authors showed that the widely
recognized fixed point theorem of Caristi [1] and the minimization principle of Takahashi [5]
are indeed equivalent, thereby proving the equivalence between these theorems by Ekeland,
Caristi and Takahashi. In this paper, we further investigate the relationship among these
theorems by characterizing the set of minimizers, the set of variational points and the set of

fixed points.
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1 Introduction

In a well known paper [3], Ekeland presented a variational principle which contains numerous
useful applications. The main result of a fundamental nature that Ekeland presented is the

following:

Theorem 1.1 Let (X,d) be a complete metric space and p: X — (—o00,00] a proper lower

semicontinuous function bounded from below (here ‘proper’ means ¢ is not identically equal to



o00). Let € > 0 be given and a point u € X such that

< i .
o(u) < xlg)f( o(x) +e€

Then there exists some point v € X such that

o)  <o(u)
d(u,v) <1
pw) > ) —ed(v,w) for all w # v.

In [3], a wide range of applications of Theorem 1.1 are given. One application that Ekeland
mentions is the fixed point of Caristi [1]. In 1976, Caristi published a paper in which he presented
a fixed point theorem that requires no continuity of the mapping under consideration. Caristi’s

theorem is the following:

Theorem 1.2 Let (X,d) be a complete metric space and p: X — (—o00,00] a proper lower

semicontinuous function bounded from below. Let f: X — X satisfy

d(z, f(z)) < p(z) — p(f(x)) for all z € X.

Then f has a fized point in X, -i.e. there exists © € X such that f(x) = x.

It has been observed that Theorems 1.1 and 1.2 are equivalent, -e.g. see [4]. In the other
area of application of Theorem 1.1, Takahashi [5] proved an existence theorem for a certain class

of nonconvex minimization problems. What Takahashi proved in [5] is the following:

Theorem 1.3 Let (X,d) be a complete metric space and let p: X — (—oo,00] be a proper
lower semicontinuous function, bounded from below. Suppose that, for each u € X with @(u) >
infyex ¢(z), there is a v € X such that v # u and ¢(v) + d(u,v) < @(u). Then there exists an
xo € X such that p(xo) = infrex p(z).

Takahashi then observed that Theorem 1.3 contains Theorems 1.1 and 1.2 as its corollar-
ies. Recently, the present authors proved in [2] that Theorem 1.2 of Caristi and Theorem 1.3
of Takahashi are indeed equivalent, thereby demonstrating that all three theorems above are
equivalent. The purpose of this paper is to advance the study which began in [2]. Specifically,
we investigate the relationship among Theorems 1.1-1.3 by examining the interplay between the
minimizer of ¢, M, and the set ®. (see below for its definition). This will be done in Section 2.
In Section 3, we examine the relationship between these sets M, ®. and the set F'(f) of fixed

points for a mapping f that satisfies the conditions of Caristi’s theorem (Theorem 1.2).



2 Variational Points and Minimizers

Let (X,d) be a complete metric space, and ¢: X — (—o0, +00] a proper lower semi-continuous

mapping bounded from below. Define the minimum set of ¢ as

M, ={z € X:p(x) = inf p(y)}. (2.1)
yeX
Also define the set
O, ={z € X:p(y) +ed(z,y) > (x), for all y # z}. (2.2)
By Theorem 1.1, we see that
D, £ for every e > 0. (2.3)

Moreover the following are clear,
b, C D,  whenever 0 <€ <e (2.4)
M, C o, for every € > 0. (2.5)

Proposition 2.1 If M, contains two or more points, then ®g = (). Consequently, in general

Dy # Ne>0Pe.

Proof: Suppose there are two distinct points x,y € M, and that z € ®g. Then p(u) > ¢p(2)
for all u # z. But this fails for u equal to at least one of the points x or y. Moreover, if z,
y € My, then z,y € ®, for every € > 0 while &5 = ). Of course, we always have &5 C NeoPe.
O.

Proposition 2.2 &, C M, C ®. for every e > 0.

Proof: The second set inclusion was observed in (2.5). As to the first set inclusion, if &5 = 0,
then the result is trivial. If z € ®¢, then ¢(y) > (), for all y # x and so ¢(z) = infyex ©(y)
and x € M,. O

Having made preliminary observations concerning the relationship between M, and ®., we

are in a position to present the following theorem which generalizes Theorem 1.3 of Takahashi.

Theorem 2.3 Let (X,d) be a complete metric space and let ¢: X — (—o0,00] be a proper
lower semicontinuous function, bounded from below. Suppose that, for each u € X with p(u) >
infyex p(z), there is a v € X such that v # u and ¢(v) + ed(u,v) < p(u) with e > 0. Then
there exists an xg € X such that ¢(xg) = infyex p(x).



A constructive proof demonstrated in [2] for Theorem 1.3 can be modified here. Also, one can
simply re-metrize the space X with ed and obtain a proof from Takahashi’s original formulation

[5]. We first note that using the sets defined thus far, the hypothesis of Theorem 1.3 states that
¢ M, = x ¢ ;. (2.6)
which is equivalent to ®; C M, and Theorem 1.3 of Takahashi can be reformulated as
®) C M, = M, #0. (2.7)
Similarly, Theorem 2.3 can be characterized as
o, C M, for some € > 0 = M, # 0. (2.8)

Set-theoretically, (2.8) is also clear, since by Theorem 1.1 of Ekeland, we have ®. # () for all
€ > 0 and thus M, # () under the hypothesis of Theorem 2.3. In fact, using Proposition 2.2, we
obtain, if, for some € > 0, ®. C M, then

O = M, (2.9)

One may enhance the characterization of Theorem 2.3 that was made in (2.8). In order to do

this, we make the following definition:
€0 = sup{e > 0: . C M,}. (2.10)

Since &g C M, € is well defined and ¢y € [0, +00]. Using €y, Theorem 2.3 can be reformulated
as:

€ > 0= M, #0. (2.11)
Lemma 2.4 If ¢y > 0, then ®. = M, for every e € (0, ¢€p).

Proof: By (2.4) and (2.11), if € € (0,¢€p), then ®. C M,,. Hence the result follows by noting
Proposition 2.2. O
Having made some observations concerning the sets ®. and M,,, the equivalence of Theorem

1.1 of Ekeland and Theorem 2.3 can be seen.
Theorem 2.5 Theorem 1.1 and Theorem 2.3 are equivalent.

Proof: By Theorem 1.1 of Ekeland, ®, # () for € > 0. Hence
M, =0= ¢ =0. (2.12)
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But the contrapositive of (2.12) is precisely Theorem 2.3 as in (2.11). The converse is similar.
|
With Theorem 2.3, a generalization of Takahashi’s Theorem 1.3, formulated as (2.11), one

could ask whether the converse holds. The converse would read
M, # 0 = ¢ > 0. (2.13)

This implication turns out to be false and the following counterexample demonstrates it.
Counterexample: In this example we present a situation where M, # () but for every ¢ > 0,

®, contains points which are not in M,. Let X = [1,00) U {—1} be endowed with the usual

{1, forxz >1
X

metric on R. Define

p(x) =
0, forx = —1

We have M, = {—1} and it is not difficult to show that for each € > 0, e"¥/2 € ®,.

3 Caristi’s Fixed Point Theorem

In this section, we invesigate the relationship between the sets ®., M, and the set F'(f) of fixed
points of f that satisfies the conditions of Theorem 1.2 of Caristi. As before, we let (X, d) be
a complete metric space and p: X — (—o00, 00| a proper lower semicontinuous function bounded

from below. Let f: X — X satisfy

d(z, f(x)) < @(x) —o(f(z)) for all x € X. (3.1)

Define Cy, to be the set of all f: X — X for which the condition (3.1) holds for ¢. Then Theorem
1.2 can be formulated as

feC, = F(f) #0. (3.2)

First we obtain,
Lemma 3.1 If f € C,, then ® C F(f) for 0 <e<1.

Proof: For each arbitrary but fixed € € [0, 1], by Theorem 1.1, ®. # (). Let z € ®.. If x # f(x),
then we get p(z) —¢(f(x)) < ed(x, f(z)), while, on the other hand, d(z, f(z)) < v(x) —p(f(z)).
For € < 1, this is a contradiction. Hence x € F(f). O

Summarizing what we have so far

feC,= o C M, C . C F(f), for € € [0, 1]. (3.3)



In particular, the set M, of minimizers of ¢ consists of fixed points of f. If the hypothesis of

Theorem 2.3 holds, then we have
e >0 and feC,= &9 C M, = C F(f), (3.4)

for 0 < € < min{1, ¢y}. Some further observations of interest are that an example shows that

one can have
Qg =M, = C F(f), with® #F(f), for every 0 <e < o0
(here €9 = +00) and that another example shows that
{0} =®g =M, C ®. C F(f), for e>0and f e Cy.
Lemma 3.2 If f € C,, then for 0 < e < ¢y we have ®. C F(f).

Proof: This is clear since ®. C M, C F(f) for 0 € [0,¢). O
We observe that if ¢g < 1, then lemma 3.1 is better that lemma 3.2 whereas for ¢; > 1,
lemma 3.2 is better. Now we expand on the Caristi’s condition. Namely consider the following

condition; for f: X — X and 0 < e < o0,

p(f(x)) + ed(z, f(2)) < p(x). (3.5)

We write C¥ for the set of all f which satisfy the condition (3.5). C'¢ # () since it contains the

identity function.
Proposition 3.3 If f € C? for some € € (0,00), then F(f) # (.

Proof: Simply renorm the metric space with the equivalent norm ed and apply Theorem 1.2
of Caristi to (X, ed). O

Now we define

ef =supf{e > 0:¢(f(x)) +ed(z, f(x)) < p(x), forallze X}
=sup{e > 0: f € C¢}.

We first note that C¥ is antitone, -i.e. CF C C¥¢ for 0 < € < ¢. Therefore f € C¥ for every €

with 0 < e <ey.

Proposition 3.4 If f € C¢ for some € > 0, then ®. C F(f) for 0 < e <ey.



Proof: For every € > 0, by Theorem 1.1 of Ekeland ®, # 0. If x € &, and = # f(z), then
we get p(x) — ¢(f(x)) < ed(x, f(x)). By hypothesis, e > 0 and for 0 < € < €7, we have
ed(z, f(z)) < p(x) — ¢(f(x)), and in particular, e;d(z, f(x)) < p(x) — ¢(f(x)) for all z € X.
This contradicts the first inequality if € < €y, and hence in this case, we have x = f(x), i.e.,
xe F(f). O
REMARK An example shows that there is ¢ such that, for ¢ > 0, C? is a singleton set,
consisting of the identity function alone. In this case, we have e¢; = 0. If, for a function f, we
have f ¢ C¢ for every 0 < € < oo, then we take e = 0. Note that C¥ = () always, since ¢ is
assumed to be proper.

In fact, Proposition 3.4 can be improved. Since we always have M, C F(f), if g > 0 (recall
(2.10)), we have 0 < ¢ < ¢g = ®c C F(f) by Lemma 2.4. If e; > 0 (so that f € C&), we have
0<e<er = P C F(f). Together, these observations yield:

Proposition 3.5 If max{ep,er} > 0, then for 0 < e < max{e,er} we obtain ®. C F(f).
Lemma 3.6 For a given ¢, and any f for which e >0 (so that f € C’ff), we have €y < €5.

Proof: Suppose the contrary that 0 < ey < €g. Then for €¢; < € < €, choose x € ®.. Since
€ < €y, we have x € &, C M, C F(f), so that f(x) = x. But since € > ¢y, there is some z € X
such that ¢(f(x)) + ed(z, f(x)) > ¢(x). This contradicts f(z) =x. O

Thus, for any lower semicontinuous proper function ¢ that is bounded below, the number
€o provides a lower bounded for €y for any self-map f which satisfies the hypothesis of Caristi’s

fixed point theorem. Proposition 3.5 can now be improved as follows:

Proposition 3.7 Ife; > 0, then ®. C F(f) for all 0 < e < ¢;.
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