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Abstract

In a well known paper [3], Ekeland presented a variational principle that can be used for

many useful applications. In a recent paper [2], the present authors showed that the widely

recognized fixed point theorem of Caristi [1] and the minimization principle of Takahashi [5]

are indeed equivalent, thereby proving the equivalence between these theorems by Ekeland,

Caristi and Takahashi. In this paper, we further investigate the relationship among these

theorems by characterizing the set of minimizers, the set of variational points and the set of

fixed points.
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1 Introduction

In a well known paper [3], Ekeland presented a variational principle which contains numerous

useful applications. The main result of a fundamental nature that Ekeland presented is the

following:

Theorem 1.1 Let (X, d) be a complete metric space and ϕ:X → (−∞,∞] a proper lower

semicontinuous function bounded from below (here ‘proper’ means ϕ is not identically equal to
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∞). Let ε > 0 be given and a point u ∈ X such that

ϕ(u) ≤ inf
x∈X

ϕ(x) + ε.

Then there exists some point v ∈ X such that

ϕ(v) ≤ ϕ(u)

d(u, v) ≤ 1

ϕ(w) > ϕ(v)− εd(v, w) for all w 6= v.

In [3], a wide range of applications of Theorem 1.1 are given. One application that Ekeland

mentions is the fixed point of Caristi [1]. In 1976, Caristi published a paper in which he presented

a fixed point theorem that requires no continuity of the mapping under consideration. Caristi’s

theorem is the following:

Theorem 1.2 Let (X, d) be a complete metric space and ϕ:X → (−∞,∞] a proper lower

semicontinuous function bounded from below. Let f :X → X satisfy

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) for all x ∈ X.

Then f has a fixed point in X, -i.e. there exists x ∈ X such that f(x) = x.

It has been observed that Theorems 1.1 and 1.2 are equivalent, -e.g. see [4]. In the other

area of application of Theorem 1.1, Takahashi [5] proved an existence theorem for a certain class

of nonconvex minimization problems. What Takahashi proved in [5] is the following:

Theorem 1.3 Let (X, d) be a complete metric space and let ϕ:X → (−∞,∞] be a proper

lower semicontinuous function, bounded from below. Suppose that, for each u ∈ X with ϕ(u) >

infx∈X ϕ(x), there is a v ∈ X such that v 6= u and ϕ(v) + d(u, v) ≤ ϕ(u). Then there exists an

x0 ∈ X such that ϕ(x0) = infx∈X ϕ(x).

Takahashi then observed that Theorem 1.3 contains Theorems 1.1 and 1.2 as its corollar-

ies. Recently, the present authors proved in [2] that Theorem 1.2 of Caristi and Theorem 1.3

of Takahashi are indeed equivalent, thereby demonstrating that all three theorems above are

equivalent. The purpose of this paper is to advance the study which began in [2]. Specifically,

we investigate the relationship among Theorems 1.1-1.3 by examining the interplay between the

minimizer of ϕ, Mϕ and the set Φε (see below for its definition). This will be done in Section 2.

In Section 3, we examine the relationship between these sets Mϕ, Φε and the set F (f) of fixed

points for a mapping f that satisfies the conditions of Caristi’s theorem (Theorem 1.2).
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2 Variational Points and Minimizers

Let (X, d) be a complete metric space, and ϕ:X → (−∞,+∞] a proper lower semi-continuous

mapping bounded from below. Define the minimum set of ϕ as

Mϕ = {x ∈ X:ϕ(x) = inf
y∈X

ϕ(y)}. (2.1)

Also define the set

Φε = {x ∈ X:ϕ(y) + εd(x, y) > ϕ(x), for all y 6= x}. (2.2)

By Theorem 1.1, we see that

Φε 6= ∅ for every ε > 0. (2.3)

Moreover the following are clear,

Φε′ ⊂ Φε whenever 0 ≤ ε′ ≤ ε (2.4)

Mϕ ⊂ Φε for every ε > 0. (2.5)

Proposition 2.1 If Mϕ contains two or more points, then Φ0 = ∅. Consequently, in general

Φ0 6= ∩ε>0Φε.

Proof: Suppose there are two distinct points x, y ∈ Mϕ and that z ∈ Φ0. Then ϕ(u) > ϕ(z)

for all u 6= z. But this fails for u equal to at least one of the points x or y. Moreover, if x,

y ∈ Mϕ, then x, y ∈ Φε for every ε > 0 while Φ0 = ∅. Of course, we always have Φ0 ⊂ ∩ε>0Φε.

2.

Proposition 2.2 Φ0 ⊂ Mϕ ⊂ Φε for every ε > 0.

Proof: The second set inclusion was observed in (2.5). As to the first set inclusion, if Φ0 = ∅,

then the result is trivial. If x ∈ Φ0, then ϕ(y) > ϕ(x), for all y 6= x and so ϕ(x) = infy∈X ϕ(y)

and x ∈ Mϕ. 2

Having made preliminary observations concerning the relationship between Mϕ and Φε, we

are in a position to present the following theorem which generalizes Theorem 1.3 of Takahashi.

Theorem 2.3 Let (X, d) be a complete metric space and let ϕ:X → (−∞,∞] be a proper

lower semicontinuous function, bounded from below. Suppose that, for each u ∈ X with ϕ(u) >

infx∈X ϕ(x), there is a v ∈ X such that v 6= u and ϕ(v) + εd(u, v) ≤ ϕ(u) with ε > 0. Then

there exists an x0 ∈ X such that ϕ(x0) = infx∈X ϕ(x).
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A constructive proof demonstrated in [2] for Theorem 1.3 can be modified here. Also, one can

simply re-metrize the space X with εd and obtain a proof from Takahashi’s original formulation

[5]. We first note that using the sets defined thus far, the hypothesis of Theorem 1.3 states that

x /∈ Mϕ =⇒ x /∈ Φ1. (2.6)

which is equivalent to Φ1 ⊂ Mϕ and Theorem 1.3 of Takahashi can be reformulated as

Φ1 ⊂ Mϕ =⇒ Mϕ 6= ∅. (2.7)

Similarly, Theorem 2.3 can be characterized as

Φε ⊂ Mϕ for some ε > 0 =⇒ Mϕ 6= ∅. (2.8)

Set-theoretically, (2.8) is also clear, since by Theorem 1.1 of Ekeland, we have Φε 6= ∅ for all

ε > 0 and thus Mϕ 6= ∅ under the hypothesis of Theorem 2.3. In fact, using Proposition 2.2, we

obtain, if, for some ε > 0, Φε ⊂ Mϕ, then

Φε = Mϕ. (2.9)

One may enhance the characterization of Theorem 2.3 that was made in (2.8). In order to do

this, we make the following definition:

ε0 = sup{ε ≥ 0:Φε ⊂ Mϕ}. (2.10)

Since Φ0 ⊂ Mϕ, ε0 is well defined and ε0 ∈ [0,+∞]. Using ε0, Theorem 2.3 can be reformulated

as:

ε0 > 0 =⇒ Mϕ 6= ∅. (2.11)

Lemma 2.4 If ε0 > 0, then Φε = Mϕ for every ε ∈ (0, ε0).

Proof: By (2.4) and (2.11), if ε ∈ (0, ε0), then Φε ⊂ Mϕ. Hence the result follows by noting

Proposition 2.2. 2

Having made some observations concerning the sets Φε and Mϕ, the equivalence of Theorem

1.1 of Ekeland and Theorem 2.3 can be seen.

Theorem 2.5 Theorem 1.1 and Theorem 2.3 are equivalent.

Proof: By Theorem 1.1 of Ekeland, Φε 6= ∅ for ε > 0. Hence

Mϕ = ∅ =⇒ ε0 = 0. (2.12)
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But the contrapositive of (2.12) is precisely Theorem 2.3 as in (2.11). The converse is similar.

2

With Theorem 2.3, a generalization of Takahashi’s Theorem 1.3, formulated as (2.11), one

could ask whether the converse holds. The converse would read

Mϕ 6= ∅ =⇒ ε0 > 0. (2.13)

This implication turns out to be false and the following counterexample demonstrates it.

Counterexample: In this example we present a situation where Mϕ 6= ∅ but for every ε > 0,

Φε contains points which are not in Mϕ. Let X = [1,∞) ∪ {−1} be endowed with the usual

metric on R. Define

ϕ(x) =


1
x , for x ≥ 1

0, for x = −1

We have Mϕ = {−1} and it is not difficult to show that for each ε > 0, ε−1/2 ∈ Φε.

3 Caristi’s Fixed Point Theorem

In this section, we invesigate the relationship between the sets Φε, Mϕ and the set F (f) of fixed

points of f that satisfies the conditions of Theorem 1.2 of Caristi. As before, we let (X, d) be

a complete metric space and ϕ:X → (−∞,∞] a proper lower semicontinuous function bounded

from below. Let f :X → X satisfy

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) for all x ∈ X. (3.1)

Define Cϕ to be the set of all f :X → X for which the condition (3.1) holds for ϕ. Then Theorem

1.2 can be formulated as

f ∈ Cϕ =⇒ F (f) 6= ∅. (3.2)

First we obtain,

Lemma 3.1 If f ∈ Cϕ, then Φε ⊂ F (f) for 0 ≤ ε ≤ 1.

Proof: For each arbitrary but fixed ε ∈ [0, 1], by Theorem 1.1, Φε 6= ∅. Let x ∈ Φε. If x 6= f(x),

then we get ϕ(x)−ϕ(f(x)) < εd(x, f(x)), while, on the other hand, d(x, f(x)) ≤ ϕ(x)−ϕ(f(x)).

For ε ≤ 1, this is a contradiction. Hence x ∈ F (f). 2

Summarizing what we have so far

f ∈ Cϕ =⇒ Φ0 ⊂ Mϕ ⊂ Φε ⊂ F (f), for ε ∈ [0, 1]. (3.3)
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In particular, the set Mϕ of minimizers of ϕ consists of fixed points of f . If the hypothesis of

Theorem 2.3 holds, then we have

ε0 > 0 and f ∈ Cϕ =⇒ Φ0 ⊂ Mϕ = Φε ⊂ F (f), (3.4)

for 0 < ε < min{1, ε0}. Some further observations of interest are that an example shows that

one can have

Φ0 = Mϕ = Φε ⊂ F (f), with Φε 6= F (f), for every 0 ≤ ε < ∞

(here ε0 = +∞) and that another example shows that

{0} = Φ0 = Mϕ ⊂ Φε ⊂ F (f), for ε > 0 and f ∈ Cϕ.

Lemma 3.2 If f ∈ Cϕ, then for 0 ≤ ε < ε0 we have Φε ⊂ F (f).

Proof: This is clear since Φε ⊂ Mϕ ⊂ F (f) for 0 ∈ [0, ε0). 2

We observe that if ε0 ≤ 1, then lemma 3.1 is better that lemma 3.2 whereas for ε0 > 1,

lemma 3.2 is better. Now we expand on the Caristi’s condition. Namely consider the following

condition; for f :X → X and 0 ≤ ε < ∞,

ϕ(f(x)) + εd(x, f(x)) ≤ ϕ(x). (3.5)

We write Cϕ
ε for the set of all f which satisfy the condition (3.5). Cϕ

ε 6= ∅ since it contains the

identity function.

Proposition 3.3 If f ∈ Cϕ
ε for some ε ∈ (0,∞), then F (f) 6= ∅.

Proof: Simply renorm the metric space with the equivalent norm εd and apply Theorem 1.2

of Caristi to (X, εd). 2

Now we define

εf = sup{ε ≥ 0:ϕ(f(x)) + εd(x, f(x)) ≤ ϕ(x), for all x ∈ X}

= sup{ε ≥ 0: f ∈ Cϕ
ε }.

We first note that Cϕ
ε is antitone, -i.e. Cϕ

ε′ ⊂ Cϕ
ε for 0 < ε ≤ ε′. Therefore f ∈ Cϕ

ε for every ε

with 0 < ε ≤ εf .

Proposition 3.4 If f ∈ Cϕ
ε for some ε > 0, then Φε ⊂ F (f) for 0 ≤ ε ≤ εf .
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Proof: For every ε > 0, by Theorem 1.1 of Ekeland Φε 6= ∅. If x ∈ Φε and x 6= f(x), then

we get ϕ(x) − ϕ(f(x)) < εd(x, f(x)). By hypothesis, εf > 0 and for 0 < ε ≤ εf , we have

εd(x, f(x)) ≤ ϕ(x) − ϕ(f(x)), and in particular, εfd(x, f(x)) ≤ ϕ(x) − ϕ(f(x)) for all x ∈ X.

This contradicts the first inequality if ε ≤ εf , and hence in this case, we have x = f(x), i.e.,

x ∈ F (f). 2

REMARK An example shows that there is ϕ such that, for ε > 0, Cϕ
ε is a singleton set,

consisting of the identity function alone. In this case, we have εf = 0. If, for a function f , we

have f /∈ Cϕ
ε for every 0 ≤ ε < ∞, then we take εf = 0. Note that Cϕ

∞ = ∅ always, since ϕ is

assumed to be proper.

In fact, Proposition 3.4 can be improved. Since we always have Mϕ ⊂ F (f), if ε0 > 0 (recall

(2.10)), we have 0 < ε < ε0 =⇒ Φε ⊂ F (f) by Lemma 2.4. If εf > 0 (so that f ∈ Cϕ
εf

), we have

0 < ε ≤ εf =⇒ Φε ⊂ F (f). Together, these observations yield:

Proposition 3.5 If max{ε0, εf} > 0, then for 0 < ε < max{ε0, εf} we obtain Φε ⊂ F (f).

Lemma 3.6 For a given ϕ, and any f for which εf > 0 (so that f ∈ Cϕ
εf

), we have ε0 ≤ εf .

Proof: Suppose the contrary that 0 < εf < ε0. Then for εf < ε < ε0, choose x ∈ Φε. Since

ε < ε0, we have x ∈ Φε ⊂ Mϕ ⊂ F (f), so that f(x) = x. But since ε > εf , there is some x ∈ X

such that ϕ(f(x)) + εd(x, f(x)) > ϕ(x). This contradicts f(x) = x. 2

Thus, for any lower semicontinuous proper function ϕ that is bounded below, the number

ε0 provides a lower bounded for εf for any self-map f which satisfies the hypothesis of Caristi’s

fixed point theorem. Proposition 3.5 can now be improved as follows:

Proposition 3.7 If εf > 0, then Φε ⊂ F (f) for all 0 ≤ ε ≤ εf .
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