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Abstract

In this paper, we establish a simple yet effective Taylor series ex-
pansion method of approximating the solutions of nonlinear Hammer-
stein equations. The method lends itself to numerical computations
which can be done in parallel. Numerical examples are provided to
demonstrate the effectiveness of the current method.

1 Inroduction

In a recent paper [1], a Taylor-series expansion method to approximate the
solution of a class of Fredholm integral equation of the second kind was
considered. Subsequently, the present authors [2] generalized the result to
obtain a new Taylor-series method which not only produces more accurate
approximations but also can be applied to a wider class of Fredholm equa-
tions. Moreover, a numerical implementation of the new method can be
carried out in parallel. This is an important point since most of the nu-
merical methods available for approximating the solution of linear as well
as nonlinear equations involve large scale linear or nonlinear systems which



are mostly dense. Therefore, reducing an expensive cost involved in the so-
lution process is always an important issue in approximating the solution of
integral equations. The purpose of this paper is to extend the idea explored
in [2] to nonlinear Hammerstein equations. A Hammerstein equation arises
naturally as an integral equation reformulation of two-point boundary value
problem with nonlinear boundary terms and it can be written as

o(s) — /01 ks, (6, 2(0)dt = y(s),  0<s<1, (1.1)

where v indicates a nonlinear term and x is to be determined. Also, through-
out the paper, we assume that k& € C™([0,1] x [0,1]), y € C™[0,1] and the
following condition to hold,

(C) ¢(t,x) is continuous in ¢ € [0,1] and Lipschitz continuous in z € R,
and g—lﬁ(t, x) exists and uniformly bounded over [0, 1] x R.

There have been a number of papers published recently to approximate
the solution of equation (1.1). The reader may consult papers such as [3],
[4], [5] and references cited therein for other different numerical techniques
for approximating the solution of (1.1).

This paper is organized as follows. In Section 2, a new Taylor series
method is applied directly to nonlinear Hammerstein equation. A resulting
system of nonlinear equations is solved by the Newton’s method. The Taylor
series method lends naturally itself to parallel computation environment.
In Section 3, we present a method which first transforms equation (1.1)
into another nonlinear equation. Due to its special structure of this new
equation, one can compute a prior: key integrals only once throughout the
entire solution process which reduces the computational cost. Computations
in parallel are also possible in this context. Numerical examples are included
at the end of each section.

2 Taylor-series Method for Hammerstein Equa-
tion:

In this section, we apply the Taylor expansion method developed in [2] to
equation (1.1). We first write

Loyt — sym, (2.1)

z(t) = a(s) +a'(s)(t =) + -+ —



Substituting (2.1) for x(¢) in the integral in (1.1), we obtain

w(s) — [ (s, t)w(t,x(s) + 2’ (s)(t — 5) + - --

n 2.2
+%(t—8)")dt%y(8), 0<s<l. (2.2)

This represents an nth order nonlinear differential equation with variable
coefficients. Tt is possible that approximations to 2(s),2/(s), ...,z (s) can
be found by solving (2.2) directly if suitable initial conditions are known
for z(0),2’(0),...,z(™(0). The initial values may possibly be found from
some experimental data, but in many instances, this is not the case. In
the absence of this data, we proceed the solution process as follows. First,
differentiate (1.1) n times, one obtains

2'(s) = Jo Ki(s,)(t, (t)dt =/ (s)
(2.3)

2(s) = o KV (s, )0 (tx(t))dt =y (s),
where k:si)(s,t) = 0Wk(s,t)/0s', i =1,...,n. Next, each z(t) in equations
(2.3) is replaced by (2.1) to obtain, for 0 < s < 1,
2'(s) = Ji K. 00t a(s) +'()(t = 5) + T — st~y (9)

n!

sty ().

2™ (s) = o K" (5,00 (8, 2(s) + ' (s)(t = 8) + ©
(2.4)
For simple k and v, equations (2.1) and (2.4) may be solved analytically
for z(s),2'(s),...,z™(s), but it is more likely that they must be solved
numerically. To this end, let

fi(z(s),2'(s),. .., x(")(s)) = y(i)(s) — x(i)(s) + fol kéi)(s,t)x
Wt a(s) + 2/ (s)(t — 8) + -+ Do (¢ — s)ndt)

n!
fori=0,1,...,n.
With



F(x(s),2'(s),...,2M™(s)) = 0 can be solved by the standard Newton method
or by any other nonlinear equations solver. Note that in solving this sys-

tem of nonlinear equations, approximations to z(s),2’(s), . ..,z (s) can be
found for each s and since approximations to z(s), z'(s), ...,z (s) for one
value of s do not affect approximations to z(s),z’(s), ...,z (s) for another

s, the solution process can be done in parallel.
For the error associated with the proposed Taylor series expansion method,
first we write equations in (1.1) and (2.3) as

_/1kgz‘><st z
0

t—s Wyt =y (s), 0<s<1 (2.5)

for i = 0,1,...,n. Similarly Z(s),7'(s),...,Z™(s) denote the solution of
equations (2.2) and (2.4), namely,

/k (s,t) t,zm t—s Ndt =y D(s), 0<s<1 (2.6)
]:

[e=]

fori=0,1,...,n
From (2.5) and (2.6), and using condition (C) and the mean value the-
orem, we obtain

20(s) = 20(s)= LD (5,222, 0) SI_o(2D(s) — 30 (5)) Lo
_ fo kgl (s, )0¢(t 0 )I(’” (&(t))( _ 8)”+1dt

(1)
(2.7)

for some 6;, §(t), 0 <s,t <landi=0,1,...,n. Let

ei(s) = 29 (s) — 29 (s)
(t—s)
aij = 6 — / k) t )t (2.8)
and (n1)
" (€l<t)) AYE
fi= / k) te)i(nﬂ)! (t— &)™+t

for i,7 = 0,1,...,n. Then, for each 0 < s < 1, the error ;(s) of Taylor
series expansion method must satisfy the matrix equation

Anén = F,



where A, = [aij], &, = [&;] and F, = [f;] for i =0,1,...,n. Let | - || denote
a vector norm as well as its corresponding matrix norm, then

I€nll < 1AL 1 £l (2.9)

Example 2.1: We consider

1
x(s) — 7?'/0 4—1—(31—15)2 sinz(t)dt = y(s)

and assume that y is selected so that x(s) = 1+ s + s? is the solution. We
note that a linear version of this equation, namely,

a [1 1
(s) — ;/O Tt =1

is the classical Love’s equation which plays an important role in the area
of electrostatics [7]. The numerical results with n = 3 for this example are
shown in Table 1 and Figure 1. Here, we use the Newton’s method as a
non-linear solver with tolerance le — 10. The code were written in Matlab
and run on a personal computer (Intel Core2 CPU T5600 @ 1.83Ghz).

Table 1: Numerical approximation for z(s) in Example 2.1 with n =3
s x(s) Newton’s
Exact  Approx. Abs. Error Iteration

0.0 1.00000 0.99880 1.20410x1073 4
0.1 1.01100 1.00967 1.32537x103 4
0.2 1.04800 1.04653 1.46766x1073 4
0.3 1.11700 1.11543 1.57037x1073 4
0.4 1.22400 1.22241 1.59206x10~3 4
0.5 1.37500 1.37348 1.51591x1073 4
0.6 1.57600 1.57465 1.34778x1073 4
0.7 1.83300 1.83185 1.14943x1073 4
0.8 2.15200 2.15090 1.09970x1073 4
0.9 2.53900 2.53797 1.02533x1073 4
1.0 3.00000 2.99929 7.11181x10~* 4

3 DModified Taylor-Series Method:

In this section, the Taylor series expansion method in Section 1 is applied
to Hammerstein equations by first transforming them into equivalent non-
linear form which allows each term in the Taylor series to appear under
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Figure 1: The numerical result from Example 2.1 using a Taylor-series
method with n = 3.

the linear integral operator. This enables computations of the integrals of

the form fol k:gi)(s,t)(t;if)]dt to be done only once throughout the solution
process, thereby speeding up the time required to approximate the solution
and reducing the computational complexity. First, we let

2(t) = (t, 2(t)). (3.1)

Equation (1.1) transforms to

(s) — /0 (s D)2(8)dt = y(s), (3.2)



for 0 < s < 1. Using (3.1) and (3.2),

o(s) = / k(s,8)2()dt), 0<s<1. (3.3)
Transformations done in (3.1)-(3.3) were first proposed in [6]. Now,
1
2(t) ~ 2(s) + 2/ (s)(t —8) + -+ Ez(”)(s)(t —s)", (3.4)

and substituting this into (3.3), one obtains

2(s) = (s, y(s)— fol k(s,t)dtz(s) — fol k(s t)(t — s)dt2'(s) (3.5)
— = o k(s t)(8 = s)mdt 2 () '

As in (2.2), equation (3.5) represents an nth order nonlinear differential
equation which can be solved if n boundary conditions are given. Here, we
differentiate (3.3) n times to get, for i =1,...,n,

8

20(s) = 550 / k(s,t)z(t)dt), 0<s<1. (3.6)

and replacing z(t) by (3.4), we obtain

2O(s) m Ftb(s. uls) = Jo Kls, )t 2(s) — fo K(s,0)(t — s)dt 2/(5)
— = I (s, ) (- s)dt 2 (s))

(3.7)
Equations (3.5) and (3.7) demonstrate the advantage of transformation
(3.1). The unknowns z(s), 2'(s), ..., 2™ (s) are now placed outside the inte-

grals so that the integrals of the form 2 fol kgz)(s,t)(t —8)"dt, 0 < r,i <n,
are computed once throughout iterations of a nonlinear solver such as the
Newton’s method.

To make the notation concise, we let

filz, 2. 2™) = 20(s) — Lou(s, <>—f& k(s, t)dt z(s)
— Jo (s, t)(t — 8)dt /() — -+ — L [ k(s,t)(t — s)"dt 2V (s))
fort=0,1,...,n
With



we find the solutions Z(s), Z/(s), ..., 2™ (s) that satisfy
F(z(s), 2 (s),...,2™(s)) = 0.

Once %(s), Z'(s), ..., 2™ (s) are found, use (3.2) to find an approximation
to the solution z(s) of (1.1). It is important once again to note that (3.6)
and (3.7) are solved for each s and the solutions Z(s), Z/(s),..., 2™ (s) at
a particular s does not affect the solutions at a different s. Therefore, the
solution process can be done in parallel. This is particularly important when
dealing with multivariate integral equations which we discuss in our future
paper.

An error analysis of modified Taylor series expansion method can be
done using the Lipschitz condition on 1 described in condition (C) and it
is similar to the error analysis done in the previous section. We now present
three examples using the modified Taylor series expansion method.

Example 3.1: We consider
1
96(8)—/ (s +t)z?(t)dt = S5 — -, 0<s<l1.
0 3 4

The exact solution is z(s) = s. Now, z(s) = ¥(s,z(s)) = 2?(s) and equation
(3.3) takes the following form in this particular example;

1 2
o(s) = Es— % + /0 (s—i—t)z(t)dt] (3.8)
Substituting
2(t) ~ 2(s) + 2/(s)(t — s) + %z”(s)(t — 5)? (3.9)

into (3.8), we obtain

2 1 1

)= 3o 1 4 =) [ s+t 2(6) [ (54 00— s)at

(3.10)

+Z”2(S) /01(8 +t)(t — s)thr

Differentiating (3.8) twice, we obtain

J(s) =2 Es -7+ /01(8 —i—t)z(t)dt} - E + /01 z(t)dt] (3.11)

8



and

(s) = E + /0 1 z(t)dtr

(3.12)

Substituting (3.9) into (3.11) and (3.12), two additional equations are ob-
tained. These equations along with (3.10) can be used to solve for z(s), 2/(s)
and 2”(s). It is found that z(s) = s? and consequently using

z(s) = %s - % + /01(5 + t)a?(t)dt,

we obtain the exact solution z(s) = s up to the machine accuracy. The
numerical results with n = 2 are shown in Table 2 and Figure 2.

Table 2: Numerical approximation for z(s) in Example 3.1 with n = 2

s z(s) x(s) Newton’s
Exact  Approx. Abs. Error Exact  Approx. Abs. Error Iteration
0.0 0.00000 -0.00000 9.91352x10~12 0.00000  0.00000 5.36430x10~ ! )
0.1 0.01000 0.01000 9.18050x10~14 0.10000  0.10000 9.32163x10712 )
0.2 0.04000 0.04000 2.35312x10~!3 0.20000 0.20000 1.42539x10~'2 5
0.3 0.09000 0.09000 6.74738x10~14 0.30000  0.30000 1.98341x10713 5
0.4 0.16000 0.16000 1.37113x10~1* 0.40000  0.40000 2.65898x 1014 5
0.5 0.25000 0.25000 2.66454x1071° 0.50000  0.50000 3.77476x10~'° )
0.6 0.36000 0.36000 4.44089x 1016 0.60000  0.60000 5.55112x 10716 5)
0.7 0.49000 0.49000 3.88578x10716 0.70000  0.70000 3.33067x10~16 )
0.8 0.64000 0.64000 6.66134x10716 0.80000  0.80000 5.55112x 1016 5
0.9 0.81000 0.81000 3.33067x10716 0.90000  0.90000 2.22045x10~16 5
1.0 1.00000 1.00000 1.11022x10716 1.00000  1.00000  0.00000x 10° )
Example 3.2: Here we consider
1 1
o) = [ it = e - S( 1), (3.13)
0
with k(s,t) = 1 and ¥(s,z(s)) = x2(s) so that z(s) = e° is the exact

solution. Equation (2.3) takes the following form:

o(s) = {es _ %(e2 1)+ /01 z(t)dtr.

Arguing as in Example 3.1, we obtain the following results. The numerical
result with n = 12 for this example is shown in Table 3. And, the graph of
the numerical results with n = 4,8 and 12 are shown in Figure 3.
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Figure 2: The numerical result from Example 3.1 using a modified Taylor-
series method with n = 2.

Example 3.3: Here we consider

1
x(s) — 727/0 4+(;L_t)Qe:’“"(t)dt =y(s) (3.14)

and assume that y is selected so that z(s) = sins is the solution. This
example is similar to Example 2.1, but nonlinear term and solution are
different. The numerical result for this example with n = 4 is shown in
Table 4. And, the graph of the numerical results with n = 2 and 4 are
shown in Figure 4.

10



Table 3: Numerical approximation for z(s) in Example 3.2 with n = 12

Exact  Approx. Abs. Error Exact  Approx. Abs. Error

Newton’s
Iteration

0.0 1.00000 1.00000 8.28526x10~% 1.00000 1.00000 4.88823x10~°
0.1 1.22140 1.22140 2.03202x1078 1.10517 1.10517 1.66629x10°6
0.2 1.49182 1.49182 4.19286x10~?° 1.22140 1.22140 4.94014x10~7
0.3 1.82212 1.82212 1.50170x10~8 1.34986 1.34986 1.28783x1077
0.4 222554 2.22554 9.80880x10~8 1.49182 1.49182 1.24572x10~7
0.5 2.71828 2.71828 5.09805x10~"7 1.64872  1.64872 5.20679x1077
0.6 3.32012 3.32012 7.79238x10°8 1.82212 1.82212 1.12624x1077
0.7 4.05520 4.05520 3.67041x1078 2.01375 2.01375 1.96428x10~7
0.8 4.95303 4.95303 8.21571x10~8 2.22554 2.22554  1.24280x10~6
0.9 6.04965 6.04965 2.83171x10~ " 2.45960 2.45961 6.22427x107°
1.0 7.38906 7.38905 1.41904x107° 2.71828 2.71831 2.64610x107°

ot

S OO U UT U R Ot

4 Discrete Taylor-Expansion Method:

In this section, we discuss briefly an idea of discrete Taylor-expansion method.

In applying Taylor-expansion method, it is necessary to find the derivatives
of the kernel k£ of Hammerstein equation. The derivatives were computed
analytically in examples discussed in the previous sections. Dealing with
integral equations with more complicated kernels, these derivatives must be
approximated by use of quadratures. More specifically, all the derivatives
in equations (2.4) must be approximated. Suppose that we approximate

K (s,1) by
m;
QKW (s, 1)) = alk(si, 1), (4.1)
§=0
where ag ’s are weights of the quadrature and sg ’s are prescribed points which
depend upon s, 0 <i <n and 0 < j < m;. Then equations in (2.3) become

2™
|

2(s) = Jy S alk(s), )i (t w(s) + 2/ (s)(t — s) + T2 (¢ — 8)")dt ~y/(s),

2™ (s) = JL T @k (s7, (1 2 (s) + 2/ (s)(t — 5) + T (£ — s)")dt A y™(s).

(4.2)
We found that the use of the following central difference formulae (Table
5) for quadrature in (4.1) for interior points s and the forward and backward

11
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Figure 3: The numerical results from Example 3.2 using a modified Taylor-
seried mehtod with n = 4,8 and 12.

formulae (Tables 6 and 7) for the end points s = 0 and s = 1 provides
excellent approximation.

Example 4.1: Here we rework Example 2.1 using the discrete Taylor-
expansion method. Recall
()~ 2 [ g st = y(s)
x(s) — — ———ssinz =y(s
7o A+ (s—1)? 4

and assume that y is selected so that z(s) = 1 + s? + s3 is the solution.
Quadrature schemes in tables 5, 6 and 7 were used to obtain an approxima-
tion. We note that the order of truncation error of all the quadratures used

12



Table 4: Numerical approximation for z(s) in Example 3.3 with n = 4

s z(s) x(s) Newton’s
Exact  Approx. Abs. Error Exact  Approx. Abs. Error Iteration

0.0 1.00000 1.00180 1.79872x10~3 0.00000 0.00180 1.79710x10~3 11

0.1 1.10499 1.10594 9.48838x10* 0.09983  0.10069 8.58319x10~* 11

0.2 1.21978 1.22017 3.95105x10~% 0.19867 0.19899  3.23863x10~* 10

0.3 1.34383 1.34392 9.75300x107° 0.29552  0.29559  7.25738x107° 9

0.4 1.47612 1.47610 2.24942x107° 0.38942  0.38940 1.52388x107° 8

0.5 1.61515 1.61510 4.29222x107° 0.47943  0.47940 2.65752x107° 7

0.6 1.75882 1.75885 2.87394x1075 0.56464 0.56466 1.63400x10~° 8

0.7 1.90450 1.90487  3.69469x10~* 0.64422  0.64441 1.93979x10~* 10

0.8 2.04901 2.05051 1.50405x1073 0.71736  0.71809  7.33766x10~4 11

0.9 2.18874 2.19322 4.47973x1073 0.78333  0.78537  2.04462x1073 13

1.0 231978 2.33071 1.09311x10~2 0.84147 0.84617 4.70108x10~3 14

Table 5: Central difference formulas of order O(h?)

f@+h)— f(z—h)

f(z) = o
ooy f@+h)=2f(z)+ f(z—h)
' (z) = )
F®) (2) ~ f(z+2h) —2f(x+h)+2f(x—h) - f(z—2h)
2h3

FO (@)~ f(m+2h)—4f(w+h)+6fhim)—4f(m—h)+f(m—2h)
f(s)(z)““ f(zx+3h) —4f(x+2h)+5f(x+h) —5f(x —h)+4f (x — 2h) — f (z — 3h)

- 2h5
FO) (2) ~ f(z+3h) — 6f (x+2h) +15f (x + h) — 20f (2) + 15f (& — h) — 6f (z — 2h) + f (z — 3h)

h6

is O(h?). The numerical results, when compared with the results reported
earlier in Example 2.1, are consistent with the order of truncation error.
The numerical result with n = 3 using discrete Taylor-expansion method is
shown in Table 8. We used h = 0.01 for the finite difference scheme in our
computations.

13
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Figure 4: The numerical result from Example 3.3 using a modified Taylor-
series method with n = 2 and n = 4.
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Table 8: Numerical approximation for z(s) in Example 4.1 (using discrete
taylor expansion) with n = 3
s x(s) Newton’s
Exact  Approx. Abs. Error Iteration

0.0 1.00000 0.99880 1.20410x10~3 4
0.1 1.01100 1.00967 1.32537x1073 4
0.2 1.04800 1.04653 1.46766x10~3 4
0.3 1.11700 1.11543 1.57020x10°3 4
0.4 1.22400 1.22241 1.59141x103 4
0.5 1.37500 1.37349 1.51402x1073 4
0.6 1.57600 1.57465 1.34778x1073 4
0.7 1.83300 1.83186 1.14353x1073 4
0.8 2.15200 2.15090 1.09972x1073 4
0.9 2.53900 2.53797 1.02533x1073 4
1.0 3.00000 2.99929 7.10212x10* 4
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