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Abstract

Simeon Reich [6] proved that the fixed point theorem for single-valued mappings proved by

Boyd and Wong can be generalized to multivalued mappings which map points into compact

sets. He then asked [7] whether his theorem can be extended to multivalued mappings whose

range consists of bounded closed sets. In this note, we provide an affirmative answer for a

certain subclass of Boyd-Wong contractive mappings.
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1 Introduction

Let (X, d) be a complete metric space. Denote by CB(X) and K(X) the space of all nonempty

closed and bounded subsets of X and the space of all nonempty compact subsets of X, respec-

tively. The Hausdorff metric induced by d will be denoted by H. In [5] (p.40), Reich proved

that a mapping T :X → K(X) has a fixed point in X if it satisfies H(Tx, Ty) ≤ k(d(x, y))d(x, y)

for all x, y ∈ X with x 6= y, where k: (0,∞) → [0, 1) satisfies lim supr→t+ k(r) < 1 for every

t ∈ (0,∞). This result generalizes the fixed point theorem for single-valued mappings that was

proved by Boyd and Wong [1]. One of the conjectures made by Reich in [6],[7] asks whether or

not the range of T can be relaxed. Specifically the question is whether or not the range of T ,

K(X), can be replaced by CB(X). In response to Reich’s conjecture, the following theorem was
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recently proved by Mizoguchi and Takahashi [4], and other proofs have been given by Daffer

and Kaneko [3] and Tong-Huei Chang [2];

Theorem 1.1 Let (X, d) be a complete metric space and T :X → CB(X). Assume that T

satisfies

H(Tx, Ty) ≤ k(d(x, y))d(x, y) (1.1)

for all x, y ∈ X with x 6= y, where k: (0,∞) → [0, 1) satisfies lim supr→t+ k(r) < 1 for every

t ∈ [0,∞). Then T has a fixed point in X.

The stronger condition assumed on k in Theorem 1.1, viz., lim supr→t+ k(r) < 1 for every

t ∈ [0,∞), implies that k(t) < h for some 0 < h < 1 and for small t > 0. Therefore with this

condition, one may conclude that a mapping satisfying (1.1) is a contraction in the sense of

Banach over a region for which d(x, y) is sufficiently small. We obtain a theorem which replaces

the closed interval [0,∞) of this result with the open interval (0,∞) of the classical Boyd-Wong

fixed point theorem.

2 The Main Result

In recent papers ([2],[8]) the following class of functions was introduced and studied.

Definition 2.1: Let φ:R+ → R+. φ is said to satisfy the condition (Φ) (denoted φ ∈ (Φ) ) if

(i) φ(t) < t for all t ∈ (0,∞); (ii) φ is upper semicontinuous from the right on (0,∞); and (iii)

there exists a positive real number s such that φ is nondecreasing on (0, s] and
∑∞

n=0 φ
n(t) <∞

for all t ∈ (0, s].

Chang [2] observed that if k: (0,∞) → [0, 1) satisfies lim supr→t+ k(r) < 1 for every t ∈ [0,∞),

then there exists a function φ ∈ (Φ) such that k(t)t ≤ φ(t) for all t ∈ (0,∞).

Subsequently, Chang proved the following theorem that generalizes Theorem 1.1 above.

Theorem 2.1 Let (X, d) be a complete metric space. Let T :X → CB(X) and suppose that

there exists a function φ ∈ (Φ) such that

H(Tx, Ty) ≤ φ(max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)
2

})

for all x, y ∈ X. Then T has a fixed point in X.

The purpose of this note is to establish a class of functions that satisfy lim supr→t+ k(r) < 1

for every t ∈ (0,∞) and that belong to (Φ). Utilizing the result of Chang above, we can then
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obtain a fixed point theorem for multivalued functions that satisfy the conditions required in

the conjecture of Reich. The existence of such a class of functions confirms that the conjecture

of Reich is still open and that a further investigation toward a complete resolution is required.

Lemma 2.2 If ϕ(t) = t− atb, where a > 0, then

(i) if b ≥ 2, then
∑∞

n=0 ϕ
n(t) = +∞, for all t ∈ R except for t = 0 and t = a−

1
b−1 ;

(ii) if 1 < b < 2, then

∞∑
n=0

ϕn(t) =

 < +∞, for 0 ≤ t ≤ a−
1

b−1 ,

= +∞, for t < 0 or a−
1

b−1 < t

Here ϕn = ϕ ◦ · · · ◦ ϕ denotes the n-fold composition.

Proof: A sketch shows that
∑∞

n=0 ϕ
n(t) = +∞ for t < 0 or a−

1
b−1 < t, for any value of b

greater than 1. Also, it is clear that the series converges for t = 0 and t = a−
1

b−1 . We thus

restrict attention in what follows to t ∈ (0, a−
1

b−1 ).

Let b ≥ 2 and choose k > a, k ∈ N . Then 1
n−

a
nb ≥ 1

n−
a
n2 ≥ 1

n+k , for all n ≥ ak
k−a = n0. Thus

ϕ( 1
n) ≥ 1

n+k for n ≥ n0, for some n0. On the interval (0, (ab)−
1

b−1 ), ϕ is increasing, and so for t

in this interval and N > max{[t−1] + 1, n0} we have ϕ(t) ≥ 1
n+k . It follows that ϕn(t) ≥ 1

N+kn .

It follows that ϕn(t) ≥ 1
N+kn . Indeed, this is true for n = n0, and we see that, for n ≥ n0,

ϕn+1(t) = ϕ(ϕn(t)) ≥ ϕ(
1

N + kn
) ≥ 1

N + kn+ k
=

1
N + k(n+ 1)

,

completing the induction. Hence,

∞∑
n=0

ϕn(t) ≥
∞∑

n=N

ϕn(t) ≥
∞∑

n=N

1
N + kn

= +∞.

Now let 1 < b < 2. For 1 < c < 1
b−1 , we have

nbc(
1
nc
− 1

(n+ 1)c
) =

nbc((n+ 1)c − nc)
nc(n+ 1)c

=
nbc−c−1

(1 + 1
n)c

·
(1 + 1

n)− 1
1
n

→ 0

as n → ∞. Thus, there is n0, which we can choose so that n−c
0 < (ab)−

1
b−1 (so that 1

n−c
0

is in

the interval where ϕ is increasing) such that 1
nc − 1

(n+1)c ≤ 1
nbc , for all n ≥ n0. Thus we have

ϕ( 1
nc ) ≤ 1

(n+1)c for all n ≥ n0. For every t ∈ [0, a−
1

b−1 ], limn→∞ ϕ
n(t) = 0, and so for some

k0 ∈ N we have ϕk0 ≤ 1
nc

0
. This implies that ϕn(t) ≤ 1

(n0+n−k0)c , for all n ≥ k0. Indeed, this is

true for n = k0, and we have that,

ϕn+1(t) = ϕ(ϕn(t)) ≤ ϕ(
1

(n0 + n− k0 + 1)c
) ≤ 1

(n0 + n− k0 + 1)c
,
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completing the induction. Hence

∞∑
n=0

ϕn(t) =
k0−1∑
n=0

ϕn(t) +
∞∑

n=k0

ϕn(t) =
k0−1∑
n=0

ϕn(t) +
∞∑

n=k0

1
n0 + n− k0)c

< +∞

since c > 1. 2

Theorem 2.3 Let (X, d) be a complete metric space and T :X → CB(X). If there exists a

function ϕ:R+ → R+ such that ϕ(t) < t for all t > 0 and ϕ(t) ≤ t − atb, a > 0, for some

1 < b < 2 on some interval [0, s], s > 0, such that

H(Tx, Ty) ≤ ϕ(d(x, y))

for all x, y ∈ X, then T has a fixed point in X.

Proof: Writing ψ(t) = t− atb, we have that ϕn(t) ≤ ψn(t) for every n ∈ N and t ∈ [0, (ab)
1

b−1 ]

an interval upon which ψ is increasing). Indeed, this holds for n = 0, 1 and if it holds for n,

then (since ψn(t) ∈ [0, (ab)
1

b−1 ] for every n,

ψn+1(t) = ψ(ψn(t)) ≥ ψ(ϕn(t)) ≥ ϕ(ϕn(t)) = ϕn+1(t)

completing the induction. By Lemma 2.2, ψ ∈ (Φ); hence we also have ϕ ∈ (Φ) and the

conclusion follows from Theorem 2.1. 2

We remark that Theorem 2.3 can be formulated using the contractive condition

H(Tx, Ty) ≤ ϕ(max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)
2

})

because of Theorem 2.1 above. However, because of a more relevance to the conjecture of Reich,

we chose to describe our theorem using the contractive condition H(Tx, Ty) ≤ ϕ(d(x, y)).

Theorem 2.3 reveals that with k(t) = 1 − atb−1 we have a class of functions that satisfy all

the conditions in the conjecture of Reich. Hence we obtain the following;

Theorem 2.4 Let (X, d) be a complete metric space and T :X → CB(X). Assume that T

satisfies

H(Tx, Ty) ≤ k(d(x, y))d(x, y)

for all x, y ∈ X where k:R+ → [0, 1] with k(t) < 1 for t > 0, and k(t) ≤ 1 − atb−1, a > 0, for

some b ∈ (1, 2) on some interval [0, s], s > 0, 0 < s < a−
1

b−1 . Then T has a fixed point in X.
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