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Abstract

Simeon Reich [6] proved that the fixed point theorem for single-valued mappings proved by
Boyd and Wong can be generalized to multivalued mappings which map points into compact
sets. He then asked [7] whether his theorem can be extended to multivalued mappings whose
range consists of bounded closed sets. In this note, we provide an affirmative answer for a

certain subclass of Boyd-Wong contractive mappings.
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1 Introduction

Let (X, d) be a complete metric space. Denote by CB(X) and K (X) the space of all nonempty
closed and bounded subsets of X and the space of all nonempty compact subsets of X, respec-
tively. The Hausdorff metric induced by d will be denoted by H. In [5] (p.40), Reich proved
that a mapping 7: X — K (X) has a fixed point in X if it satisfies H(Tx, Ty) < k(d(x,y))d(z,y)
for all z,y € X with « # y, where k: (0,00) — [0, 1) satisfies limsup,_,;+ k(r) < 1 for every
t € (0,00). This result generalizes the fixed point theorem for single-valued mappings that was
proved by Boyd and Wong [1]. One of the conjectures made by Reich in [6],[7] asks whether or
not the range of T' can be relaxed. Specifically the question is whether or not the range of T,

K (X), can be replaced by CB(X). In response to Reich’s conjecture, the following theorem was



recently proved by Mizoguchi and Takahashi [4], and other proofs have been given by Daffer
and Kaneko [3] and Tong-Huei Chang [2];

Theorem 1.1 Let (X,d) be a complete metric space and T: X — CB(X). Assume that T
satisfies

H(Tz,Ty) < k(d(z,y))d(z,y) (1.1)

for all x,y € X with x # y, where k: (0,00) — [0,1) satisfies imsup,_,,+ k(r) < 1 for every
t €[0,00). Then T has a fixed point in X.

The stronger condition assumed on k in Theorem 1.1, viz., limsup,_+ k(r) < 1 for every
t € [0,00), implies that k(t) < h for some 0 < h < 1 and for small ¢ > 0. Therefore with this
condition, one may conclude that a mapping satisfying (1.1) is a contraction in the sense of
Banach over a region for which d(z, y) is sufficiently small. We obtain a theorem which replaces
the closed interval [0, 00) of this result with the open interval (0, 00) of the classical Boyd-Wong

fixed point theorem.

2 The Main Result

In recent papers ([2],[8]) the following class of functions was introduced and studied.
Definition 2.1:  Let ¢: Ry — Ry. ¢ is said to satisfy the condition (®) (denoted ¢ € (®) ) if
(i) ¢(t) < t for all t € (0,00); (ii) ¢ is upper semicontinuous from the right on (0,00); and (iii)
there exists a positive real number s such that ¢ is nondecreasing on (0, s] and Y ;> ¢™(t) < 0o
for all ¢ € (0, s].

Chang [2] observed that if k: (0, 0c0) — [0, 1) satisfies lim sup,_,,+ k(r) < 1 for every ¢t € [0, 00),
then there exists a function ¢ € (®) such that k(t)t < ¢(t) for all ¢ € (0, 0).

Subsequently, Chang proved the following theorem that generalizes Theorem 1.1 above.

Theorem 2.1 Let (X,d) be a complete metric space. Let T: X — CB(X) and suppose that
there exists a function ¢ € (®) such that

H(Tz,Ty) < ¢(max{d(z,y),d(z,Tz),d(y, Ty), d(z,Ty) —2+ d(y, Tx) .

for allx,y € X. Then T has a fized point in X .

The purpose of this note is to establish a class of functions that satisfy limsup, .+ k(r) < 1

for every t € (0,00) and that belong to (®). Utilizing the result of Chang above, we can then



obtain a fixed point theorem for multivalued functions that satisfy the conditions required in
the conjecture of Reich. The existence of such a class of functions confirms that the conjecture

of Reich is still open and that a further investigation toward a complete resolution is required.

Lemma 2.2 If p(t) =t — at®, where a > 0, then
(1) if b> 2, then > ;25" (t) = +o0, for allt € R except fort =0 and t = a_ﬁ;
(11) if 1 <b <2, then

< 400, for0<t<a 5T,

doe(t) = {
n=0

1
=400, fort<Qora 1<t

Here o™ = po--- 0y denotes the n-fold composition.

Proof: A sketch shows that > »° ;" (t) = 400 for ¢t < 0 or a T T < t, for any value of b
greater than 1. Also, it is clear that the series converges for ¢t = 0 and ¢t = a_ﬁ. We thus
restrict attention in what follows to ¢ € (0, aiﬁ).

Let b > 2 and choose k > a, k € N. Then %—% > %—n% > #, for all n > k"—fa = ng. Thus
(L) > n%rk for n > ng, for some ngy. On the interval (0, (ab)fﬁ), ¢ is increasing, and so for ¢

in this interval and N > max{[t~!] + 1,n9} we have p(t) > n%rk It follows that ¢"(t) > m

It follows that ¢™(t) > Ni,m. Indeed, this is true for n = ng, and we see that, for n > ng,

1 1 1
) >
N + kn

P = le"(1) 2 o “Nikntk Ntk(n+l)

completing the induction. Hence,

o0 o oo 1
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Now let 1 < b < 2. For1<c<b_%,wehave
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n¢ (n+1)° nc(n + 1)°¢ (1+ %)C %

1 o
as n — oo. Thus, there is ng, which we can choose so that ng“ < (ab) *=1 (so that nEC is in
0

the interval where ¢ is increasing) such that # — ﬁ < ﬁ, for all n > ng. Thus we have
1
(L) < ﬁ for all n > ng. For every t € [0,a” 1], lim,_o ™ (t) = 0, and so for some

ko € N we have pFo < nig‘ This implies that ¢"(t) < m, for all n > kg. Indeed, this is

true for n = kg, and we have that,

1 1
(no +mn—ko+1)¢" = (no +n—ko+1)¢’

P () = w(¢"(1) < o

A



completing the induction. Hence

00 ko—1 00 ko—1 00
"(t) = e"(t) + @"(t) = ©"( < 400
nz:%) n;) g;;o nz:% 2,; no +n — ko)

since ¢ > 1. O

Theorem 2.3 Let (X,d) be a complete metric space and T: X — CB(X). If there exists a
function p: Ry — R, such that o(t) < t for allt > 0 and ¢(t) < t —at®, a > 0, for some

1 < b < 2 on some interval [0,s], s > 0, such that
H(Tz,Ty) < p(d(z,y))
for all x,y € X, then T has a fized point in X.

Proof: Writing () = t — at?, we have that " (t) < ¥"(t) for every n € N and t € [0, (ab)ﬁ]
an interval upon which is increasing). Indeed, this holds for n = 0,1 and if it holds for n,

then (since ¥"(t) € [0, (ab)®—T ] for every n,

PELE) = p(W"(1) 2 B(9"(1) = w(¢"(1) = (1)

completing the induction. By Lemma 2.2, ¢ € (®); hence we also have ¢ € (®) and the
conclusion follows from Theorem 2.1. O
We remark that Theorem 2.3 can be formulated using the contractive condition

d(z, Ty) + d(y, T'x)
2

H(Tx, Ty) < p(max{d(z,y), d(z, Tx),d(y, Ty), )

because of Theorem 2.1 above. However, because of a more relevance to the conjecture of Reich,
we chose to describe our theorem using the contractive condition H (T'z,Ty) < p(d(z,y)).
Theorem 2.3 reveals that with k(t) = 1 — at®~! we have a class of functions that satisfy all

the conditions in the conjecture of Reich. Hence we obtain the following;

Theorem 2.4 Let (X,d) be a complete metric space and T: X — CB(X). Assume that T
satisfies

H(Tw,Ty) < k(d(z,y))d(z,y)
for all z,y € X where k: Ry — [0,1] with k(t) < 1 fort >0, and k(t) <1 —at*™', a > 0, for
some b € (1,2) on some interval [0,s], s >0, 0 < s < a 1. Then T has a fized point in X .
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