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Abstract

The purpose of this paper is twofold. First a theorem from [2] is generalized by assuming
compactness of a certain set of metric projection. Second, we examine a theorem of Dugundji
and Granas [5] concerning fixed points of weakly contractive point-valued maps. We prove
that the theorem of Dugundji and Granas can be extended to multi-valued maps provided

that the corresponding metric projections satisfy the weak contractive condition.
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1 Introduction

Let (X, d) be a metric space, f a continuous map of X into X and 7" a map of X into 2X\ {#}. A
subset K of X is called proximinal if, for each x € X, there exists an element £ € K such that
d(z, k) = d(z, K) where d(z, K) = inf{d(x,y) : y € K}. The family of all bounded proximinal
subsets of X is denoted by P(X). We denote the family of all nonempty closed subsets of X
and that of all nonempty closed and bounded subsets of X by F(X) and CB(X) respectively.
A map ¢: X x X — [0,00) is called compactly positive if inf{¢(z,y) : a < d(z,y) < b} >0
for each finite interval [a,b] C (0,00). A multi-valued map 7: X — F(X) is called weakly



contractive if there exists a compactly positive mapping ¢ such that

H(T(z),T(y)) < d(z,y) — ¢(z,y)

for each z,y € X where H denotes the Hausdorff metric on CB(X) induced by d. T: X — F(X)
is called an k f-contraction if there exists k € [0,1) such that

H(Tz,Ty) < kd(fz, fy)
for each x,y € X. Moreover, T: X — F(X) is called f-contractive if
H(Tz,Ty) < d(fz, fy) whenever fx # fy

for each x,y € X. A point z € X is called a coincidence point of f and T if fr € Tx.
Of course, a k f-contraction generalizes the classical Banach contraction, whereas the idea of
f-contractive maps generalizes that of contractive multifunctions that was studied by Smithson
in [9]. Recently, it was demonstrated in [3] that fixed point theorem for k f-contractions can
be used to prove the existence of solutions of certain classes of nonlinear integral equations.
The study of various conditions that guarantee the existence of fixed points of multi-valued k
f-contractions and those of f-contractive maps were made in [6,2]. A coincidence point plays
a critical role in proving the existence of fixed points of such maps, (see e.g. theorem 1 [2]).
Anf-orbit of x € X under T is a sequence {z, : x, € Xand fz, € Tzy_1,20 = x}. An f-
orbit of x under T is called regular provided that for each n, d(fxy, fon+1) < H(Txp—1,Txy)
and d(fxy, frne1) < d(frn—1, frn). An f-orbit of z under T is called strongly regular if
T:X — P(X) and for each n, d(fzp+1, frn) = d(fxn, Txy,). In a recent paper [2], the following

theorem was proved.

Theorem 1.1 [2] Let X be a connected metric space, T: X — F(X) an f-contractive map,
where f: X — X is continuous. Suppose that T(X) C f(X) and that foT(x) C T o f(x) for
every x € X. If for some x € X an f-orbit of x is reqular and contains a subsequence {xp, }

such that fx,, — to and fx,, 11 — t1, then to =11 and fto € Tty.

Our first task in this paper is to re-examine Theorem 1.1. We shall develop a general
topological framework that can be used to prove a similar theorem concerning a coincidence
point of f and T. The connectivity of X is dropped from assumptions. This will be done in
Section 2.

Our second task is to re-examine a theorem of Dugundji and Granas. In [5], they proved

that a single-valued weakly contractive map of a complete metric space into itself has a unique



fixed point. It is still an open question whether the theorem of Dugundji and Granas can be
extended to multi-valued maps. Partial results were provided in theorem 2 [7] and in theorem
2.3 [4]. In Section 3, we prove a theorem that guarantees a fixed point of multi-valued maps

provided that their metric projections are weakly contractive.

2 Fixed Points of f-Contractions

Throughout this section, for A,, A € F(X), A, = A denotes the convergence of A, to A in
the Hausdorff metric. For each x € X, we denote the metric projection of x onto A by P4(x),
namely Pa(z) = {a € A : d(z,a) = d(z,A)}. We also let A = {z € X : d(z,A) < €} and
Ucz) ={y:d(y,z) < €}. We are now ready to prove a sequence of lemmas that will be used to

establish the main result of this section.

Lemma 2.1 Let C,, and C € F(X). Moreover assume that C is compact. If C,, C C© for all
sufficiently large n and for each € > 0, and if x,, € Cy, for each n € N (=natural numbers), then

there exists a subsequence {xy, } such that x,, — x for some x € C' as k — oc.

Proof: By passing to a subsequence which we again denote by {C,}, we can assume that
C, C G for all n. If no subsequence of {z,,} converges to any point in C, then to each x € C,
there is € = €(z) such that Uc(z) N{z,} = 0. Now {Ugy)(z):x € C} is an open cover of C. Since
C is compact, there is a finite subcover {U(,)(zi):i = 1,..., N}. For large enough n, we have
cG) ¢ U Uy (3). Moreover, since {z,} N UX, Uy, (x:) = 0, we have cG)n {zn} = 0.

This contradiction proves the Lemma. O

Now let A € P(X), z € X, C = Pa(z) and C9 = {z € A:d(z,2) < d(zx,C) + €} for € > 0.
Also we denote the complement of A by A°.

Lemma 2.2 C'= ﬂ€>06~’(6).

Proof: It is clear that C' C NesoC9). If z € C°N A, then for some ¢ > 0, d(z,z) > d(x,C) + .
Thus z € (Nes0C )¢ = Ueso(CO)e. O

Lemma 2.3 inf _ d(z,z) > d(z,C).

(C)ena

Proof: If this is not a case, then there is a sequence {z,}, 2z, € (6'(5))‘3 N A for each n such
that d(z,C) < d(zn,z) < d(z,C) + . This yields that z, € C'©) whenever n > [1] which is a

contradiction. O



Lemma 2.4 Let x,,x € X and A,, A € P(X). Define C,, = P4, (x,) and C = Ps(x). Suppose
that x,, — x and A, = A. Then for every e > 0, we have C,, C C©) for all sufficiently large n.

Proof: If the conclusion is not true, then for some € > 0, there is a subsequence {C,, } and
Zn,, € Cp,N(C9))® for each k. Now d(2p,, 2, ) = d(Chys Tny) = d(Apy, 2, ) — d(A, ) = d(C, z).

Since z,, — x,

lim supy,_, o d(2n,,x) < limsupy_ . d(2n,, Tn,) + limsup,_ o d(zp,, x)

=d(z,C).

Also since z,, € Cp, C Ay, and A,, = A, we have
d(zpn, , (C9) N A) — 0. (2)

Since C' = NesoC© (C is closed) and by Lemma 2.2, C' = Nes0C'©, using C©) C A, we have
that for some €/, 0 < € < e, C(e) C C©. Hence Zn, ¢ C(¢). There are two cases for 2, 1f
Zn, € A, then this implies that

d(zn,,x) > d(z,C) + € (3)

by definition of C(¢). If z,, ¢ A, then d(z,,,A) < %/ for sufficiently large k so that by (2), for k

large enough, there is 2/ € AN (C9))¢ with d(z,,,2') < % In this case we have, since 2/ ¢ C(¢),

d(z,C)+€ < d(,z)
< d(?,zn,) + d(2n,, T)
< 62/ + d(zp,, x),
ie.,
d(z,C) + 62/ < d(zn,,, ). (4)

In either case, (3) or (4), we get using (1)
/

d(z,C) + % < limsupd(zp,,x) < d(z,C).

k—o0

This contradiction shows that there is no subsequence and for every € > 0, C,, C C(©) for all

sufficiently large n. O

We are now ready to prove our first theorem. The connectivity of metric space (X,d) is
dropped from Theorem 1.1 in exchange for an assumption that a certain metric projection is

compact.



Theorem 2.5 Let (X, d) be a metric space and T: X — P(X) a continuous f-contractive map
with T(X) C f(X). Let f be continuous and one-to-one with f=! continuous on f(X). If for
some x € X, a strongly reqular f-orbit of x under T' has a cluster point x*, and if Pp«(fxz*) is

a compact set, then x* is a coincidence point of f and T.

Proof: Let {z,}, fr,t1 € Txy,, for each n > 0, 29 = x, be a strongly regular f-orbit of  under
T and put ¢, = d(fxpt1, frn). If ¢, =0 for some n, then 0 = d(fzp41, fon) = d(frn, Tzy) by
the strong regularity of the f-orbit. Hence x,, is a coincidence point of f and T and the proof is
complete. We thus assume that ¢, > 0 for all n. First notice that {¢,} is monotonically strictly
decreasing. To see this, c¢py1 = d(fxni2, frnt1) = d(Tepy1, fony) < HTzp41,Tx,) <
d(frps1, frn) = ¢p. Thus we assume that lim,,_, ¢, = ¢ for some ¢ > 0.

By hypothesis there is a subsequence {z,, } of the f-orbit that converges to z*. By the

continuity of T and f we have

Cc = kli,ngo Cn, — leIl;.lo d(fxnk+1, fﬂfnk)
= klim d(Txp,, fTn,)
= d(Tz", fx™).

We finish the proof by showing that ¢ = 0. Suppose ¢ > 0. Let C' = Py« (fz*). Then C is
compact by hypothesis. For every z € C, we have ¢ = d(Tz*, fz*) = d(z, fz*). Recall that
T(X) C f(X). Since f~! is continuous, f~1(C) is compact. For every y € f~1(C), we have
c=d(Tx*, fx*) = d(fy, f*) > H(Ty,Tx*). Let p(y) = H(Ty,Tx*). Then ¢: f~1(C) — Ry is
continuous and since f~!(C) is compact, supycr-1(c) p(y) =1 < d(fy, fz*) = c.

Now put Cy = Pry,, (fxpn,). Then by the strong regularity of the f-orbit, fz,, 41 € Ck.
Using the continuity of 7" and f, we have fx,, — fz* and T'z,, — Tz*. By Lemma 4, for every
e >0, C, C C© for all sufficiently large k. Now fxn,+1 € Cy, for every k. Lemma 1 yields a
subsequence of { fx,, +1}, which we denote by the same notation, which converges to some point
z € C. Then since f is continuous and one-to-one, z, 11 = f~fan, 41 — flz=y € f1(O).
It now follows that

lim H(Txp, 41,Txp,) =HTy,Tz") <r <ec (5)

k—o0

But by the strong regularity of the f-orbit,

H(Tl‘nk+1, Tﬂ?nk) > d(T$nk+1, fxnk+1) = d(fﬁnk*Fla fﬁ’nk+2) = Cpy+2-

Since limy, o0 ¢, = ¢, limg_,00 Cpy42 = ¢ and hence liminfy o H(T2y, +1,TTy,) > ¢, which
contradicts (5). Thus we conclude that ¢ = 0 and this yields d(Tz*, fz*) = 0, implying fz* €

Tz*, i.e., z* is a coincidence point. O



Theorem 2.6 Suppose all the hypotheses in Theorem 2.5 are satisfied. Suppose further that
foT(x) CTo f(x) for every coincidence point x* of f and T. If {f"x*} converges, then f and

T possess a common fixed point .

Proof: Since foT C To f for every coincidence point of f and T', we have f"oTxz* C To f"x*.
If f"o* — x, we get from fz* € Tx* that f"*la* € T o f"z* and letting n — oo, we obtain

r € T, ie., x is a fixed point of T'. O

REMARK 1: If (X,d) is a connected metric space, then an f contractive map 7: X — F(X)
is continuous [2] and this need not be assumed.

REMARK 2: If T: X — C(X) or if T: X — K(X), where C(X) stands for the Chebyshev
subsets [8] and K (X) the nonempty compact subsets of X, then Pr,«(fz*) is compact and this

assumption can be dropped.

3 Fixed Points of Weak Contractions

Throughout this section, we assume that (X, d) is a complete metric space. In this section, we
study metric projections that are weakly contractive. We let 6(A, B) = sup{d(z,y):z € A,y €
B} for A, B C X. The following lemma generalizes lemma 1.3 of Dugundji and Granas [5].

Lemma 3.1 Let T: X — P(X) satisfy

H(Pry(z), Pry(y)) < d(z,y) — ¢(z,y),  forallz,y € X

where p: X x X — Ry is compactly positive. For r > 0, write A(5,r) = inf{p(z,y):5 <
d(xz,y) <r}. Let xg € X. If d(xo, Pray(x0)) < min{%, A(5,7)}, then Pry(y) N Up(xo) # 0 for
every y € Uyp(zp).

Proof: Let y € U(xp). Then

d(zo, Pry(y)) < d(zo, Prag(v0)) + H(Pra, (o), Pry(y))

< min{%,A(g,r)} + d(z0,y) — (z0, 7).

Two cases arise: (i) d(zo,y) < 5. Here d(xo, Pry(y)) < 5+ 5 =r. (ii) § < d(zo,y) < r. Here

3
d(zo, Pry(y)) < A(5,7)+7—A(5,7) = r. Thus in all cases d(zo, Pry(y)) < r. Hence there exists

(I TR

z € Pry(y) with d(zg,z) <r. O



Theorem 3.2 Let (X,d) be a complete metric space and T: X — P(X) be continuous. Suppose
that T satisfies

H(Pri(z), Pry(y)) < d(z,y) —¢(x,y)  foralz,ye X

where ¢ is compactly positive. Then T has a unique fized point.

Proof: Let 2o € X and let {x,} be a strongly regular orbit of xg under 7. Then

d(Zn, Tny1) = d(zp, Pre,(2,)) < H(PTan—l(‘,Enfl)7 Pre, (7n))

< d(xn—ly xn) - @(xn—la xn)

< d($n727 xnfl) - QO(SCan, xnfl) - Sp(l'nfly xn)
n—1

< d(CCo,l‘l) - Z@($i7xi+1)'
i=0

Thus Y170 @(2, mi41) < d(zo,21) and 3520 (@, 2i41) < 0o. Write c(p,r) = min{5, A(5,7)},
with A(%,r) as in Lemma 3.1. To every k € N, there is n, € N such that

Ly ns1) < (& ) e, ) < d€,n) < o, 21)}

for all n > ny. Hence for n > ng, we have

A Tn1) = (e, Pra, (1)) < clp, 7).
We may choose the sequence {n;} to be increasing. By Lemma 3.1, Pry,, (25,) N U% (xn,) # 0,
and so zp,+1 can be chosen in this intersection. Then x,, 11 € U 1 (2n, ) and again by Lemma 3.1
Zn,+2 can be chosen in PT:E%Jrl (Tnp+1)N U% (@n,) # 0. Inductively, we get that z,, ; € U% (n,)
and so Ty, +j+1 can be chosen in PTmnkﬂ‘ (Tng+5) N U% (xy,,) for all j > 0.

We now replace the original strongly regular orbit {z,,} by a new one {Z,}. For all n < n;,
we put &, = x,. For k = 1 and n > ny, we replace {z,} by a new sequence {xq(zl)} formed as
described above. We thus have $7(11) € Ui(xy,) for all n > n;. For k =2 and n > ng, we replace
the terms of the sequence {x%l)} by new ones {:L‘g)} using the procedure described above. Thus

22 e, (2ny) for all m > no. In general, having arrived at {ac,(lk_l)} for all n > ny, replace PG
2

by 2P e Ué (2r, ). This generates a new sequence {Z, }, which is also a strongly regular orbit of
zg. This sequence has the property that z,, € U 1 (Zp, ) for all n > ny and for every k € N. We
claim that the sequence thus constructed is Cauchy. To prove this claim, let ¢ > 0 and choose

k > % Then for all m,n > n, we have Z,,, Tp € U%(icnk) and 80 d(Zp, Tp) < % < 2¢. Now

7



since X is complete, {Z,} converges, say &, — z. Since T is continuous, we have TZ, — Tz,
and an appeal to lemma 2 of Assad and Kirk [1] now yields z € Tz, i.e., T has a fixed point.
Uniqueness of fixed point is clear. O

REMARK 3: In Theorem 3.2, the continuity condition assumed on T was necessitated because
of the appeal to lemma 2 of Assad and Kirk [1] that we made at the end of the proof. The
following lemma shows that Theorem 3.2 can be improved by relaxing the continuity assumption
on T'. First we recall the following [8]; T: X — C'B(X) is said to be upper Kuratowski semi-
continuous (u.K.s.c) at zg, respectively lower Kuratowski semi-continuous (1.K.s.c.) at
xo, if limp—ooTn = xo, Yn € T(xp), n € N, limy 0o Y = Yo imply yo € T'(z¢), respectively
if limy, o0 T, = o, Yo € T(xo) imply limd(yo, T'(zy)) = 0. T: X — CB(X) is said to be up-
per semi-continuous (u.s.c.) at xg, respectively lower semi-continuous (l.s.c.) at zg if
for every open set U C X such that T'(x¢) C U, respectively such that T'(zo) N U # 0, there
exists in X an open neighborhood V' of zy such that T'(x) C U for all z € V, respectively
such that T(x) NU # 0 for all z € V. Finally, T: X — CB(X) is said to be upper Haus-
dorff semi-continuous (u.H.s.c.) at xzg, respectively lower Hausdorff semi-continuous
(LH.s.c.) at zg, if limy—.cc 2, = @0 implies limy, o SUPgep(e,,) d(9, T(20)) = 0, respectively

liInn~>oo SupgeT(zo) d(ga T(l‘n)> = 0.

Lemma 3.3 Let (X,d) be a metric space and let T: X — CB(X) and let {x,,} be a sequence
such that xn4+1 € T(xy), for n € N. Suppose that x, — xo and that T is u.s.c., u.K.s.c. or
u.H.s.c., then xoy € T(xg), i.e., zo is a fired point of T.

Proof: Let T be u.s.c. and suppose that zg ¢ T(z). Let 0 < e < +d(zo,T(z0)) be given.
Define V = {y € X|d(y,T(zo)) < €}. Since T is u.s.c., there is 6 > 0 such that d(z,zq) <
implies T'(z) C V. We choose § < %d(z,T(x0)). Now choose ny such that n > ng implies
d(xp,x0) < §. Then T'(z,) C V. But since x,41 € T(x,), we have x,41 € V. Hence, for
n > ng + 1, we have d(zn, o) > +d(zo, T(0)). This contradiction proves this lemma.

If T is u.K.s.c., then by the definition of u.K.s.c. the result follows immediately.

If Tis u.H.s.c., then x,, — o implies that sup,cp (g, d(x, T(x0)) — 0. Since d(zo, T'(20)) <
d(zo, zn) +d(n, T(20)) < d(20, Tpn) +SUPzer(s, ) d(@, T (20)) and since the last two terms tend
to 0 as n — oo, we conclude that d(zg,T(z9)) = 0 and xo € T(xp). (We note that this last
result in fact takes care of u.s.c. case, since u.s.c. implies u.H.s.c. [8;p.56]) O

Theorem 3.2 can now be improved vastly using the lemma 3.3.

Theorem 3.4 Let (X,d) be a complete metric space and T: X — P(X) be u.s.c., u.K.s.c. or



u.H.s.c. Suppose further that T satisfies

H(Pro(), Pry(y)) < d(z,y) —@(z,y)  forallz,yeX
where @ 1s compactly positive. Then T has a unique fized point.

REMARK 4: Lemma 3.3 does not hold when 7' is l.s.c., .LK.s.c. or .LH.s.c. This can be seen by
the following example. Let T: R — C'B(R) be defined by T'(z) = [0, 1] for  # 0 and 7'(0) = {1}.
Then T is l.s.c., LK.s.c., and 1.H.s.c. But it is not true that if x,, — xg9 and x, 1 € T(x,), then
xo € T(xg). Let {x,,} be a sequence in (0, 1] which converges to 0. Then x,,+1 € T(xy,) = [0, 1]
for every n, but = 0 ¢ T(0) = {1}. Of course this example does not provide a counterexample
to Theorem 3.2. It is interesting to investigate whether or not the continuity conditions on T
can be further weakened.

REMARK 5: The condition of Theorem 3.2 can be replaced by the following stronger condi-
tion.

H(PTJ»‘({L')ﬂ PTy(y)) < (I)(d(xa y))?

where ®: R, — R, satisfies ®(t) < ¢ and limsup,_,, (s) < ¢, for all ¢ > 0. Indeed, defining
@(t) =t — ®(t), we have H(Pry(z), Pry(y)) < d(z,y) — ¢(d(z,y)). To see that ¢ is compactly
positive, consider the interval [a,b], 0 < a < b < oco. If inf{p(s)|s € [a,b]} = 0, then there
is a sequence {s,} in [a,b] such that lim, .. ¢(s,) = 0. If s,, — s for some s € [a,b], then
lim, 00 (8n, — P(sp)) = s — limy, 00 (s,) = 0 so that limy, o ®(s,) = s. This contradiction
proves that ¢ is compactly positive.

REMARK 6: It is interesting to ask whether or not the condition limsup,_,, ®(s) < ¢, for all
t >0 in REMARK 5 can be replaced by the condition limsup,_,,+ ®(s) < ¢, for all ¢ > 0
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