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Abstract

The purpose of this paper is twofold. First a theorem from [2] is generalized by assuming

compactness of a certain set of metric projection. Second, we examine a theorem of Dugundji

and Granas [5] concerning fixed points of weakly contractive point-valued maps. We prove

that the theorem of Dugundji and Granas can be extended to multi-valued maps provided

that the corresponding metric projections satisfy the weak contractive condition.

Mathematics Subject Classification (1991): 47H10

1 Introduction

Let (X, d) be a metric space, f a continuous map of X into X and T a map of X into 2X \{∅}. A

subset K of X is called proximinal if, for each x ∈ X, there exists an element k ∈ K such that

d(x, k) = d(x,K) where d(x,K) = inf{d(x, y) : y ∈ K}. The family of all bounded proximinal

subsets of X is denoted by P (X). We denote the family of all nonempty closed subsets of X

and that of all nonempty closed and bounded subsets of X by F (X) and CB(X) respectively.

A map φ:X ×X → [0,∞) is called compactly positive if inf{φ(x, y) : a ≤ d(x, y) ≤ b} > 0

for each finite interval [a, b] ⊆ (0,∞). A multi-valued map T :X → F (X) is called weakly
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contractive if there exists a compactly positive mapping φ such that

H(T (x), T (y)) ≤ d(x, y)− φ(x, y)

for each x, y ∈ X where H denotes the Hausdorff metric on CB(X) induced by d. T :X → F (X)

is called an k f-contraction if there exists k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(fx, fy)

for each x, y ∈ X. Moreover, T :X → F (X) is called f-contractive if

H(Tx, Ty) < d(fx, fy) whenever fx 6= fy

for each x, y ∈ X. A point x ∈ X is called a coincidence point of f and T if fx ∈ Tx.

Of course, a k f -contraction generalizes the classical Banach contraction, whereas the idea of

f -contractive maps generalizes that of contractive multifunctions that was studied by Smithson

in [9]. Recently, it was demonstrated in [3] that fixed point theorem for k f -contractions can

be used to prove the existence of solutions of certain classes of nonlinear integral equations.

The study of various conditions that guarantee the existence of fixed points of multi-valued k

f -contractions and those of f -contractive maps were made in [6,2]. A coincidence point plays

a critical role in proving the existence of fixed points of such maps, (see e.g. theorem 1 [2]).

Anf-orbit of x ∈ X under T is a sequence {xn : xn ∈ X and fxn ∈ Txn−1, x0 = x}. An f -

orbit of x under T is called regular provided that for each n, d(fxn, fxn+1) ≤ H(Txn−1, Txn)

and d(fxn, fxn+1) ≤ d(fxn−1, fxn). An f -orbit of x under T is called strongly regular if

T :X → P (X) and for each n, d(fxn+1, fxn) = d(fxn, Txn). In a recent paper [2], the following

theorem was proved.

Theorem 1.1 [2] Let X be a connected metric space, T :X → F (X) an f-contractive map,

where f :X → X is continuous. Suppose that T (X) ⊆ f(X) and that f ◦ T (x) ⊆ T ◦ f(x) for

every x ∈ X. If for some x ∈ X an f-orbit of x is regular and contains a subsequence {xnk
}

such that fxnk
→ t0 and fxnk+1 → t1, then t0 = t1 and ft0 ∈ Tt0.

Our first task in this paper is to re-examine Theorem 1.1. We shall develop a general

topological framework that can be used to prove a similar theorem concerning a coincidence

point of f and T . The connectivity of X is dropped from assumptions. This will be done in

Section 2.

Our second task is to re-examine a theorem of Dugundji and Granas. In [5], they proved

that a single-valued weakly contractive map of a complete metric space into itself has a unique
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fixed point. It is still an open question whether the theorem of Dugundji and Granas can be

extended to multi-valued maps. Partial results were provided in theorem 2 [7] and in theorem

2.3 [4]. In Section 3, we prove a theorem that guarantees a fixed point of multi-valued maps

provided that their metric projections are weakly contractive.

2 Fixed Points of f-Contractions

Throughout this section, for An, A ∈ F (X), An ⇒ A denotes the convergence of An to A in

the Hausdorff metric. For each x ∈ X, we denote the metric projection of x onto A by PA(x),

namely PA(x) = {a ∈ A : d(x, a) = d(x,A)}. We also let A(ε) = {x ∈ X : d(x,A) < ε} and

Uε(x) = {y : d(y, x) < ε}. We are now ready to prove a sequence of lemmas that will be used to

establish the main result of this section.

Lemma 2.1 Let Cn and C ∈ F (X). Moreover assume that C is compact. If Cn ⊆ C(ε) for all

sufficiently large n and for each ε > 0, and if xn ∈ Cn for each n ∈ N(=natural numbers), then

there exists a subsequence {xnk
} such that xnk

→ x for some x ∈ C as k →∞.

Proof: By passing to a subsequence which we again denote by {Cn}, we can assume that

Cn ⊆ C( 1
n

) for all n. If no subsequence of {xn} converges to any point in C, then to each x ∈ C,

there is ε = ε(x) such that Uε(x)∩{xn} = ∅. Now {Uε(x)(x):x ∈ C} is an open cover of C. Since

C is compact, there is a finite subcover {Uε(xi)(xi): i = 1, . . . , N}. For large enough n, we have

C( 1
n

) ⊆ ∪N
i=1Uε(xi)(xi). Moreover, since {xn} ∩ ∪N

i=1Uε(xi)(xi) = ∅, we have C( 1
n

) ∩ {xn} = ∅.

This contradiction proves the Lemma. 2

Now let A ∈ P (X), x ∈ X, C = PA(x) and C̃(ε) = {z ∈ A: d(z, x) < d(x, C) + ε} for ε > 0.

Also we denote the complement of A by Ac.

Lemma 2.2 C = ∩ε>0C̃
(ε).

Proof: It is clear that C ⊆ ∩ε>0C̃
(ε). If z ∈ Cc ∩A, then for some ε > 0, d(z, x) ≥ d(x, C) + ε.

Thus z ∈ (∩ε>0C̃
(ε))c = ∪ε>0(C̃(ε))c. 2

Lemma 2.3 inf
z∈(C̃(ε))c∩A

d(z, x) > d(x,C).

Proof: If this is not a case, then there is a sequence {zn}, zn ∈ (C̃(ε))c ∩ A for each n such

that d(x,C) ≤ d(zn, x) < d(x, C) + 1
n . This yields that zn ∈ C̃(ε) whenever n > [1ε ] which is a

contradiction. 2
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Lemma 2.4 Let xn, x ∈ X and An, A ∈ P (X). Define Cn = PAn(xn) and C = PA(x). Suppose

that xn → x and An ⇒ A. Then for every ε > 0, we have Cn ⊆ C(ε) for all sufficiently large n.

Proof: If the conclusion is not true, then for some ε > 0, there is a subsequence {Cnk
} and

znk
∈ Cnk

∩(C(ε))c for each k. Now d(znk
, xnk

) = d(Cnk
, xnk

) = d(Ank
, xnk

) → d(A, x) = d(C, x).

Since xnk
→ x,

lim supk→∞ d(znk
, x) ≤ lim supk→∞ d(znk

, xnk
) + lim supk→∞ d(xnk

, x)

= d(x,C).
(1)

Also since znk
∈ Cnk

⊆ Ank
and Ank

⇒ A, we have

d(znk
, (C(ε))c ∩A) → 0. (2)

Since C = ∩ε>0C
(ε) (C is closed) and by Lemma 2.2, C = ∩ε>0C̃

(ε), using C̃(ε) ⊆ A, we have

that for some ε′, 0 < ε′ ≤ ε, C̃(ε′) ⊆ C(ε). Hence znk
/∈ C̃(ε′). There are two cases for znk

. If

znk
∈ A, then this implies that

d(znk
, x) ≥ d(x,C) + ε′ (3)

by definition of C̃(ε′). If znk
/∈ A, then d(znk

, A) < ε′

2 for sufficiently large k so that by (2), for k

large enough, there is z′ ∈ A∩ (C(ε))c with d(znk
, z′) < ε′

2 . In this case we have, since z′ /∈ C̃(ε′),

d(x, C) + ε′ ≤ d(z′, x)

≤ d(z′, znk
) + d(znk

, x)

<
ε′

2
+ d(znk

, x),

i.e.,

d(x,C) +
ε′

2
< d(znk

, x). (4)

In either case, (3) or (4), we get using (1)

d(x, C) +
ε′

2
< lim sup

k→∞
d(znk

, x) ≤ d(x,C).

This contradiction shows that there is no subsequence and for every ε > 0, Cn ⊆ C(ε) for all

sufficiently large n. 2

We are now ready to prove our first theorem. The connectivity of metric space (X, d) is

dropped from Theorem 1.1 in exchange for an assumption that a certain metric projection is

compact.
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Theorem 2.5 Let (X, d) be a metric space and T :X → P (X) a continuous f-contractive map

with T (X) ⊆ f(X). Let f be continuous and one-to-one with f−1 continuous on f(X). If for

some x ∈ X, a strongly regular f-orbit of x under T has a cluster point x∗, and if PTx∗(fx∗) is

a compact set, then x∗ is a coincidence point of f and T .

Proof: Let {xn}, fxn+1 ∈ Txn, for each n ≥ 0, x0 = x, be a strongly regular f -orbit of x under

T and put cn = d(fxn+1, fxn). If cn = 0 for some n, then 0 = d(fxn+1, fxn) = d(fxn, Txn) by

the strong regularity of the f -orbit. Hence xn is a coincidence point of f and T and the proof is

complete. We thus assume that cn > 0 for all n. First notice that {cn} is monotonically strictly

decreasing. To see this, cn+1 = d(fxn+2, fxn+1) = d(Txn+1, fxn+1) ≤ H(Txn+1, Txn) <

d(fxn+1, fxn) = cn. Thus we assume that limn→∞ cn = c for some c ≥ 0.

By hypothesis there is a subsequence {xnk
} of the f -orbit that converges to x∗. By the

continuity of T and f we have

c = lim
k→∞

cnk
= lim

k→∞
d(fxnk+1, fxnk

)

= lim
k→∞

d(Txnk
, fxnk

)

= d(Tx∗, fx∗).

We finish the proof by showing that c = 0. Suppose c > 0. Let C ≡ PTx∗(fx∗). Then C is

compact by hypothesis. For every z ∈ C, we have c = d(Tx∗, fx∗) = d(z, fx∗). Recall that

T (X) ⊆ f(X). Since f−1 is continuous, f−1(C) is compact. For every y ∈ f−1(C), we have

c = d(Tx∗, fx∗) = d(fy, fx∗) > H(Ty, Tx∗). Let ϕ(y) ≡ H(Ty, Tx∗). Then ϕ: f−1(C) → R+ is

continuous and since f−1(C) is compact, supy∈f−1(C) ϕ(y) ≡ r < d(fy, fx∗) = c.

Now put Ck ≡ PTxnk
(fxnk

). Then by the strong regularity of the f -orbit, fxnk+1 ∈ Ck.

Using the continuity of T and f , we have fxnk
→ fx∗ and Txnk

→ Tx∗. By Lemma 4, for every

ε > 0, Ck ⊆ C(ε) for all sufficiently large k. Now fxnk+1 ∈ Ck for every k. Lemma 1 yields a

subsequence of {fxnk+1}, which we denote by the same notation, which converges to some point

z ∈ C. Then since f is continuous and one-to-one, xnk+1 = f−1fxnk+1 → f−1z ≡ y ∈ f−1(C).

It now follows that

lim
k→∞

H(Txnk+1, Txnk
) = H(Ty, Tx∗) ≤ r < c. (5)

But by the strong regularity of the f -orbit,

H(Txnk+1, Txnk
) ≥ d(Txnk+1, fxnk+1) = d(fxnk+1, fxnk+2) = cnk+2.

Since limn→∞ cn = c, limk→∞ cnk+2 = c and hence lim infk→∞H(Txnk+1, Txnk
) ≥ c, which

contradicts (5). Thus we conclude that c = 0 and this yields d(Tx∗, fx∗) = 0, implying fx∗ ∈

Tx∗, i.e., x∗ is a coincidence point. 2

5



Theorem 2.6 Suppose all the hypotheses in Theorem 2.5 are satisfied. Suppose further that

f ◦ T (x) ⊆ T ◦ f(x) for every coincidence point x∗ of f and T . If {fnx∗} converges, then f and

T possess a common fixed point .

Proof: Since f ◦T ⊆ T ◦f for every coincidence point of f and T , we have fn ◦Tx∗ ⊆ T ◦fnx∗.

If fnx∗ → x, we get from fx∗ ∈ Tx∗ that fn+1x∗ ∈ T ◦ fnx∗ and letting n → ∞, we obtain

x ∈ Tx, i.e., x is a fixed point of T . 2

REMARK 1: If (X, d) is a connected metric space, then an f contractive map T :X → F (X)

is continuous [2] and this need not be assumed.

REMARK 2: If T :X → C̆(X) or if T :X → K(X), where C̆(X) stands for the Chebyshev

subsets [8] and K(X) the nonempty compact subsets of X, then PTx∗(fx∗) is compact and this

assumption can be dropped.

3 Fixed Points of Weak Contractions

Throughout this section, we assume that (X, d) is a complete metric space. In this section, we

study metric projections that are weakly contractive. We let δ(A,B) ≡ sup{d(x, y):x ∈ A, y ∈

B} for A, B ⊆ X. The following lemma generalizes lemma 1.3 of Dugundji and Granas [5].

Lemma 3.1 Let T :X → P (X) satisfy

H(PTx(x), PTy(y)) ≤ d(x, y)− ϕ(x, y), for all x, y ∈ X

where ϕ:X × X → R+ is compactly positive. For r > 0, write Λ( r
2 , r) = inf{ϕ(x, y): r

2 ≤

d(x, y) < r}. Let x0 ∈ X. If d(x0, PTx0(x0)) < min{ r
2 ,Λ( r

2 , r)}, then PTy(y) ∩ Ur(x0) 6= ∅ for

every y ∈ Ur(x0).

Proof: Let y ∈ Ur(x0). Then

d(x0, PTy(y)) ≤ d(x0, PTx0(x0)) + H(PTx0(x0), PTy(y))

< min{r

2
,Λ(

r

2
, r)}+ d(x0, y)− ϕ(x0, y).

Two cases arise: (i) d(x0, y) < r
2 . Here d(x0, PTy(y)) < r

2 + r
2 = r. (ii) r

2 ≤ d(x0, y) ≤ r. Here

d(x0, PTy(y)) < Λ( r
2 , r)+r−Λ( r

2 , r) = r. Thus in all cases d(x0, PTy(y)) < r. Hence there exists

z ∈ PTy(y) with d(x0, z) < r. 2
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Theorem 3.2 Let (X, d) be a complete metric space and T :X → P (X) be continuous. Suppose

that T satisfies

H(PTx(x), PTy(y)) ≤ d(x, y)− ϕ(x, y) for all x, y ∈ X

where ϕ is compactly positive. Then T has a unique fixed point.

Proof: Let x0 ∈ X and let {xn} be a strongly regular orbit of x0 under T . Then

d(xn, xn+1) = d(xn, PTxn(xn)) ≤ H(PTxn−1(xn−1), PTxn(xn))

≤ d(xn−1, xn)− ϕ(xn−1, xn)

≤ d(xn−2, xn−1)− ϕ(xn−2, xn−1)− ϕ(xn−1, xn)

. . .

≤ d(x0, x1)−
n−1∑
i=0

ϕ(xi, xi+1).

Thus
∑n−1

i=0 ϕ(xi, xi+1) ≤ d(x0, x1) and
∑∞

i=0 ϕ(xi, xi+1) < ∞. Write c(ϕ, r) = min{ r
2 ,Λ( r

2 , r)},

with Λ( r
2 , r) as in Lemma 3.1. To every k ∈ N , there is nk ∈ N such that

ϕ(xn, xn+1) < inf{ϕ(ξ, η): c(ϕ,
1
k
) ≤ d(ξ, η) ≤ d(x0, x1)}

for all n ≥ nk. Hence for n ≥ nk, we have

d(xn, xn+1) = d(xn, PTxn(xn)) < c(ϕ,
1
k
).

We may choose the sequence {nk} to be increasing. By Lemma 3.1, PTxnk
(xnk

) ∩ U 1
k
(xnk

) 6= ∅,

and so xnk+1 can be chosen in this intersection. Then xnk+1 ∈ U 1
k
(xnk

) and again by Lemma 3.1

xnk+2 can be chosen in PTxnk+1(xnk+1)∩U 1
k
(xnk

) 6= ∅. Inductively, we get that xnk+j ∈ U 1
k
(xnk

)

and so xnk+j+1 can be chosen in PTxnk+j (xnk+j) ∩ U 1
k
(xnk

) for all j ≥ 0.

We now replace the original strongly regular orbit {xn} by a new one {x̃n}. For all n ≤ n1,

we put x̃n = xn. For k = 1 and n > n1, we replace {xn} by a new sequence {x(1)
n } formed as

described above. We thus have x
(1)
n ∈ U1(xn1) for all n ≥ n1. For k = 2 and n > n2, we replace

the terms of the sequence {x(1)
n } by new ones {x(2)

n } using the procedure described above. Thus

x
(2)
n ∈ U 1

2
(xn2) for all n ≥ n2. In general, having arrived at {x(k−1)

n } for all n > nk replace x
(k−1)
n

by x
(k)
n ∈ U 1

k
(xnk

). This generates a new sequence {x̃n}, which is also a strongly regular orbit of

x0. This sequence has the property that x̃n ∈ U 1
k
(x̃nk

) for all n ≥ nk and for every k ∈ N . We

claim that the sequence thus constructed is Cauchy. To prove this claim, let ε > 0 and choose

k > 1
ε . Then for all m,n ≥ nk we have x̃m, x̃n ∈ U 1

k
(x̃nk

) and so d(x̃m, x̃n) ≤ 2
k < 2ε. Now
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since X is complete, {x̃n} converges, say x̃n → z. Since T is continuous, we have T x̃n → Tz,

and an appeal to lemma 2 of Assad and Kirk [1] now yields z ∈ Tz, i.e., T has a fixed point.

Uniqueness of fixed point is clear. 2

REMARK 3: In Theorem 3.2, the continuity condition assumed on T was necessitated because

of the appeal to lemma 2 of Assad and Kirk [1] that we made at the end of the proof. The

following lemma shows that Theorem 3.2 can be improved by relaxing the continuity assumption

on T . First we recall the following [8]; T :X → CB(X) is said to be upper Kuratowski semi-

continuous (u.K.s.c) at x0, respectively lower Kuratowski semi-continuous (l.K.s.c.) at

x0, if limn→∞xn = x0, yn ∈ T (xn), n ∈ N , limn→∞ yn = y0 imply y0 ∈ T (x0), respectively

if limn→∞ xn = x0, y0 ∈ T (x0) imply lim d(y0, T (xn)) = 0. T :X → CB(X) is said to be up-

per semi-continuous (u.s.c.) at x0, respectively lower semi-continuous (l.s.c.) at x0 if

for every open set U ⊂ X such that T (x0) ⊂ U , respectively such that T (x0) ∩ U 6= ∅, there

exists in X an open neighborhood V of x0 such that T (x) ⊂ U for all x ∈ V , respectively

such that T (x) ∩ U 6= ∅ for all x ∈ V . Finally, T :X → CB(X) is said to be upper Haus-

dorff semi-continuous (u.H.s.c.) at x0, respectively lower Hausdorff semi-continuous

(l.H.s.c.) at x0, if limn→∞ xn = x0 implies limn→∞ supg∈T (xn) d(g, T (x0)) = 0, respectively

limn→∞ supg∈T (x0) d(g, T (xn)) = 0.

Lemma 3.3 Let (X, d) be a metric space and let T :X → CB(X) and let {xn} be a sequence

such that xn+1 ∈ T (xn), for n ∈ N . Suppose that xn → x0 and that T is u.s.c., u.K.s.c. or

u.H.s.c., then x0 ∈ T (x0), i.e., x0 is a fixed point of T .

Proof: Let T be u.s.c. and suppose that x0 /∈ T (x0). Let 0 < ε < 1
3d(x0, T (x0)) be given.

Define V ≡ {y ∈ X|d(y, T (x0)) < ε}. Since T is u.s.c., there is δ > 0 such that d(x, x0) < δ

implies T (x) ⊂ V . We choose δ < 1
3d(x0, T (x0)). Now choose n0 such that n ≥ n0 implies

d(xn, x0) < δ. Then T (xn) ⊂ V . But since xn+1 ∈ T (xn), we have xn+1 ∈ V . Hence, for

n ≥ n0 + 1, we have d(xn, x0) > 1
3d(x0, T (x0)). This contradiction proves this lemma.

If T is u.K.s.c., then by the definition of u.K.s.c. the result follows immediately.

If T is u.H.s.c., then xn → x0 implies that supx∈T (xn) d(x, T (x0)) → 0. Since d(x0, T (x0)) ≤

d(x0, xn)+d(xn, T (x0)) ≤ d(x0, xn)+supx∈T (xn−1) d(x, T (x0)) and since the last two terms tend

to 0 as n → ∞, we conclude that d(x0, T (x0)) = 0 and x0 ∈ T (x0). (We note that this last

result in fact takes care of u.s.c. case, since u.s.c. implies u.H.s.c. [8;p.56]) 2

Theorem 3.2 can now be improved vastly using the lemma 3.3.

Theorem 3.4 Let (X, d) be a complete metric space and T :X → P (X) be u.s.c., u.K.s.c. or
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u.H.s.c. Suppose further that T satisfies

H(PTx(x), PTy(y)) ≤ d(x, y)− ϕ(x, y) for all x, y ∈ X

where ϕ is compactly positive. Then T has a unique fixed point.

REMARK 4: Lemma 3.3 does not hold when T is l.s.c., l.K.s.c. or l.H.s.c. This can be seen by

the following example. Let T :R → CB(R) be defined by T (x) = [0, 1] for x 6= 0 and T (0) = {1}.

Then T is l.s.c., l.K.s.c., and l.H.s.c. But it is not true that if xn → x0 and xn+1 ∈ T (xn), then

x0 ∈ T (x0). Let {xn} be a sequence in (0, 1] which converges to 0. Then xn+1 ∈ T (xn) = [0, 1]

for every n, but x = 0 /∈ T (0) = {1}. Of course this example does not provide a counterexample

to Theorem 3.2. It is interesting to investigate whether or not the continuity conditions on T

can be further weakened.

REMARK 5: The condition of Theorem 3.2 can be replaced by the following stronger condi-

tion.

H(PTx(x), PTy(y)) ≤ Φ(d(x, y)),

where Φ: R+ → R+ satisfies Φ(t) < t and lim sups→t Φ(s) < t, for all t > 0. Indeed, defining

ϕ(t) = t − Φ(t), we have H(PTx(x), PTy(y)) ≤ d(x, y) − ϕ(d(x, y)). To see that ϕ is compactly

positive, consider the interval [a, b], 0 < a ≤ b < ∞. If inf{ϕ(s)|s ∈ [a, b]} = 0, then there

is a sequence {sn} in [a, b] such that limn→∞ ϕ(sn) = 0. If sn → s for some s ∈ [a, b], then

limn→∞(sn − Φ(sn)) = s − limn→∞Φ(sn) = 0 so that limn→∞Φ(sn) = s. This contradiction

proves that ϕ is compactly positive.

REMARK 6: It is interesting to ask whether or not the condition lim sups→t Φ(s) < t, for all

t > 0 in REMARK 5 can be replaced by the condition lim sups→t+ Φ(s) < t, for all t > 0

9
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