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Abstract

In this paper, we analyse the iterated collocation method for Hammerstein equations with

smooth and weakly singular kernels. The paper expands the study which began in [14] con-

cerning the superconvergence of the iterated Galerkin method for Hammerstein equations.

We obtain in this paper a similar superconvergence result for the iterated collocation method

for Hammerstein equations. We also discuss the discrete collocation method for weakly sin-

gular Hammerstein equations. Some discrete collocation methods for Hammerstein equations

with smooth kernels were given previously in [3] and [18].
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1 Introduction

In this paper, we investigate the superconvergence property of the iterated collocation method for

Hammerstein equations. In the recent paper [14], the superconvergence of the iterated Galerkin

method for Hammerstein equations with smooth as well as weakly singular kernels was estab-

lished. The paper generalizes the previously reported results on the superconvergence of the

iterated Galerkin method for the Fredholm integral equations of the second kind [8], [9] [20]. A

more important contribution made in [14] lies in the fact that the superconvergence result was

established under weaker assumptions (Theorem 3.3 [14]). The approach used in [14] to establish

the superconvergence of the iterated Galerkin method can easily be adopted to prove the results

of Graham, Joe and Sloan [8], Joe [9] and Sloan [20] under weaker conditions imposed upon

the Fredholm equations. This will be demonstrated in Section 3. In Section 2, we review the

collocation method for Hammerstein equations as well as some necessary known results that will

be pertinent to the matreials in the ensuing sections. We recall that the collocation method for

weakly singular Hammerstein equations was discussed and some superconvergence results of the

numerical solutions at the collocation points were discovered by Kaneko, Noren and Xu in [11]. In

Section 3, the supereconvergence of the iterated collocation method for Hammerstein equations is

established. The results obtained there encompass Hammerstein equations with smooth as well
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as weakly singular kernels. Finally, in Section 4, we discuss the discrete collocation method for

Hammerstein equations with weakly singular kernels. The result obtained in this section extends

the results of [3] and [18] which deals with the discrete collocation methods for Hammeratein

equations with smooth kernels. Some examples are also included in this section.

We note that there have been several other research papers published in recent years that

describe various numerical methods for Hammerstein equations. A variant of Nystöm method

was proposed by Lardy [19]. The degenerate kernel method was studied by Kaneko and Xu

[16]. We point out that a superconvergence of the iterates of the degenerate kernel method was

recently observed when a decomposition of the kernel is done properly. This will be reported in

a future paper [17]. The reader who is interested in more information on numerical methods for

a wider class of nonlinear integral equations may find necessary materials in [2] and [5].

2 The Collocation Method

In this section, the collocation method for Hammerstein equations is presented. Some materials

from the approximation theory are also reviewed in this section to make the present paper self-

contained. We consider the following Hammerstein equation

x(t)−
∫ 1

0
k(t, s)ψ(s, x(s))ds = f(t), 0 ≤ t ≤ 1, (2.1)

where k, f and ψ are known functions and x is the function to be determined. Define kt(s) ≡

k(t, s) for t, s ∈ [0, 1] to be the t section of k. We assume throughout this paper unless stated

otherwise, the following conditions on k, f and ψ:

1. limt→τ ‖kt − kτ‖∞ = 0, τ ∈ [0, 1];

2. M ≡ supt

∫ 1
0 |k(t, s)|ds <∞;

3. f ∈ C[0, 1];

4. ψ(s, x) is continuous in s ∈ [0, 1] and Lipschitz continuous in x ∈ (−∞,∞), i.e., there exists

a constant C1 > 0 for which

|ψ(s, x1)− ψ(s, x2)| ≤ C1|x1 − x2|, for all x1, x2 ∈ (−∞,∞);

5. the partial derivative ψ(0,1) of ψ with respect to the second variable exists and is Lipschitz

continuous, i.e., there exists a constant C2 > 0 such that

|ψ(0,1)(t, x1)− ψ(0,1)(t, x2)| ≤ C2|x1 − x2|, for all x1, x2 ∈ (−∞,∞); (2.2)
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6. for x ∈ C[0, 1], ψ(., x(.)), ψ(0,1)(., x(.)) ∈ C[0, 1].

We let

(KΨ)(x)(t) ≡
∫ 1

0
k(t, s)ψ(s, x(s))ds.

With this notation, equation (2.1) takes the following operator form

x−KΨx = f. (2.3)

For any positive integer n, we let

Πn : 0 = t0 < t1 < ... < tn−1 < tn = 1

be a partition of [0, 1]. Let r and ν be nonnegative integers satisfying 0 ≤ ν < r. Let Sν
r (Πn)

denote the space of splines of order r, continuity ν, with knots at Πn, that is

Sν
r (Πn) = {x ∈ Cν [0, 1] : x|[ti,ti+1] ∈ Pr−1, for each i = 0, 1, . . . , n− 1}

where Pr−1 denotes the space of polynomials of degree ≤ r − 1. For the collocation method,

we are interested in the cases ν = 0 or 1. That is, it is possible to work with the space of

piecewise polynomials with no continuity at the knots or with the space of continuous piecewise

polynomials with no continuity requirement on the derivatives at the knots. We assume that

the sequence of partitions Πn of [0, 1] satisfies the condition that there exists a constant C > 0,

independent of n, with the property:

max1≤i≤n(ti − ti−1)
min1≤i≤n(ti − ti−1)

≤ C, for all n. (2.4)

In many cases, equation (2.1) possesses multiple solutions (see e.g. [16]). Hence, it is assumed

for the remainder of this paper that we treat an isolated solution x0 of (2.1). Let Ii = (ti−1, ti)

for each i = 1, . . . , n. Then for ν = 0, we let τi1, τi2, . . . , τir be the Gaussian points (the zeros of

the rth degree Legendre polynomial on [−1, 1]) shifted to the interval Ii. We define

G0 = {τij : 1 ≤ i ≤ n, 1 ≤ j ≤ r}. (2.5)

The points in G0 give rise to the piecewise collocation method where no continuity between

polynomials is assumed. This is the approach taken by Graham, Joe and Sloan [8]. Joe [9], on

the other hand, considered the continuous piecewise polynomial collocation method. His method

corresponds with taking ν = 1. Here we define the set G1 of the collocation points to be the

set consisting of the knots along with the Labatto points (the zeros of the first derivative of the

r − 1th degree Legendre polynomial) shifted to the interval Ii. Namely, let ξr−1 = 1 and for
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1 ≤ l ≤ r − 2 (r ≥ 3), let ξl denotes the lth Labatto point. If |Ii| denotes the length of Ii, then

G1 contains

τ(i−1)(r−1)+l+1 =
1
2
(ti−1 + ti + |Ii|ξl), 1 ≤ i ≤ n, 1 ≤ l ≤ r − 1, and τ1 = t0 = 0 (2.6)

The analyses of [8] and [9] are very similar. We therefore confine ourselves to developing the

collocation method for Hammerstein equations that is analogous to the method of [8]. An

obvious extension to the continuous piecewise collocation method will be left to the reader.

Define the interpolatory projection Pn from C[0, 1] + Sν
r (Πn) to Sν

r (Πn) by requiring that, for

x ∈ C[0, 1] + Sν
r (Πn),

Pnx(τij) = x(τij), for all τij ∈ G0. (2.7)

Then we have, for x ∈ C[0, 1] + Sν
r (Πn)

Pnx→ x, as n→∞ (2.8a)

and consequently

sup
n
‖Pn‖ < c. (2.8b)

The collocation equation corresponding to (2.3) can be written as

xn − PnKΨxn = Pnf (2.9)

where xn ∈ Sν
r (Πn). Now we let

T̂ x ≡ f +KΨx

and

Tnxn ≡ Pnf + PnKΨxn

so that equations (2.3) and (2.9) can be written respectively as x = T̂ x and xn = Tnxn. We

obtain;

Theorem 2.1 Let x0 ∈ C[0, 1] be an isolated solution of equation (2.3). Assume that 1 is not an

eigenvalue of the linear operator (KΨ)′(x0), where (KΨ)′(x0) denotes the Fréchet derivative of

KΨ at x0. Then the collocation approximation equation (2.9) has a unique solution xn ∈ B(x0, δ)

for some δ > 0 and for sufficiently large n. Moreover, there exists a constant 0 < q < 1,

independent of n, such that
αn

1 + q
≤ ‖xn − x0‖∞ ≤ αn

1− q
, (2.10)

where αn ≡ ‖(I − T ′n(x0))−1(Tn(x0)− T̂ (x0))‖∞. Finally,

En(x0) ≤ ‖xn − x0‖∞ ≤ CEn(x0), (2.11)

where C is a constant independent of n and En(x0) = infu∈Sν
r (Πn) ‖x0 − u‖∞.
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A proof is a straight application of Theorem 2 of Vainikko [23] and is demonstrated in the

proof of Theorem 2.1 [11]. We denote by Wm
p [0, 1], 1 ≤ p ≤ ∞, the Sobolev space of functions g

whose m-th generalized derivative g(m) belongs to Lp[0, 1]. The space Wm
p [0, 1] is equipped with

the norm

‖g‖W m
p
≡

m∑
k=0

‖g(k)‖p.

It is known from Demko [6] and De Vore [7] that if 0 ≤ ν < r, 1 ≤ p ≤ ∞, m ≥ 0 and x ∈ Wm
p ,

then for each n ≥ 1, there exists un ∈ Sν
r (Πn) such that

‖x− un‖p ≤ Chµ‖x‖W µ
p
, (2.12)

where µ = min{m, r} and h = max1≤i≤n(ti − ti−1). The inequality (2.12) when combined with

Theorem 2.1 yields the following theorem;

Theorem 2.2 Let x0 be an isolated solution of equation (2.3) and let xn be the solution of

equation (2.9) in a neighborhood of x0. Assume that 1 is not an eigenvalue of (KΨ)′(x0). If

x0 ∈W l
∞, then

‖x0 − xn‖∞ = O(hµ),

where µ = min{l, r}. If x0 ∈W l
p (1 ≤ p <∞), then

‖x0 − xn‖∞ = O(hν),

where ν = min{l − 1, r}.

When the kernel k is of weakly singular type, namely if

k(t, s) = m(t, s)gα(|t− s|), (2.13)

where m ∈ Cµ+1([0, 1]× [0, 1]) and

gα(s) =

 sα−1, 0 < α < 1,

log s, α = 1.
(2.14)

then the solution x0 of equation (2.3) does not, in general, belong to Wm
p . To better characterize

the regularity of the soution of (2.3) with weakly singular kernel, consider a finite set S in [0, 1]

and define the function ωS(t) = inf{|t − s| : s ∈ S}. A function x is said to be of Type(α, k, S),

for −1 < α < 0, if

|x(k)(t)| ≤ C[ωS(t)]α−k t /∈ S,

and for α > 0, if the above condition holds and x ∈ Lip(α). Here Lip(α) = {x: |x(t) − x(s)| ≤

C|t − s|α}. It was proved by Kaneko, Noren and Xu [12] that if f is of Type(β, µ, {0, 1}),
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then a solution of equation (2.1) with the kernel defined by (2.13) is of Type(γ, µ, {0, 1}), where

γ = min{α, β}. The optimal rate of convergence of the collocation solution xn to x0 can be

recovered by selecting the knots that are defined by

ti = (1/2)(2i/n)q, 0 ≤ i ≤ n/2,

ti = 1− tn−i, n/2 < i ≤ n,
(2.15)

where q = r/γ denotes the index of singularity. Details can be found in [11].

3 The Iterated Collocation Method

The faster convergence of the iterated Galerkin method for the Fredholm integral equations of

the second kind compared to the Galerkin method was first observed by Sloan in [21] and [22].

On the other hand, the superconvergence of the iterated collocation method was studied in [8]

and [9]. Given the equation of the second kind

x−Kx = f, (3.1)

where K is a compact operator on X ≡ C[0, 1] and x, f ∈ X, the collocation approximation xn

is the solution of the following projection equation

xn − PnKxn = Pnf. (3.2)

Here Pn is the interpolatory projection of (2.7). The iterated collocation method obtains a

solution xI
n by

xI
n = f +Kxn. (3.3)

Under the assumption of

‖KPn −K‖ → 0 as n→∞ (3.4)

it can be shown that

‖x− xI
n‖ ≤ ‖(I −KPn)−1‖‖K(x− Pnx)‖. (3.5)

The assumption (3.4) is satisfied if X = L2 and Pn is the orthogonal projection satisfying

‖Png − g‖ → 0 for all g in the closure of the range of the adjoint K∗ of K since in this case

‖KPn − K‖ = ‖PnK
∗ − K∗‖. The results of Sloan were recently generalized to the iterated

Galerkin method for Hammerstein equations by Kaneko and Xu [14]. The main theorem of [14],

Theorem 3.3, that guarantees the superconvergence of the iterates was proved by making use of

the collectively compact operator theory.
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The purpose of this section is to study the superconvergence of the iterated collocation

method. For the collocation solution xn of (2.9), we define

xI
n = f +KΨxn. (3.6)

A standard argument shows that xI
n satisfies

xI
n = f +KΨPnx

I
n. (3.7a)

We denote the right side of (3.7a) by Snx
I
n, namely

Snx
I
n ≡ f +KΨPnx

I
n. (3.7b)

We recall the following two lemmas from [14].

Lemma 3.1 Let x0 ∈ C[0, 1] be an isolated solution of (2.3). Assume that 1 is not an eigenvalue

of (KΨ)′(x0). Then for sufficiently large n, the operators I−S′n(x0) are invertible and there exists

a constant L > 0 such that

‖(I − S′n(x0))−1‖∞ ≤ L, for sufficiently large n.

Lemma 3.2 Let x0 ∈ C[0, 1] be an isolated solution of equation (2.3) and xn be the unique

solution of (2.9) in the sphere B(x0, δ1). Assume that 1 is not an eigenvalue of (KΨ)′(x0). Then

for sufficiently large n, xI
n defined by the iterated scheme (3.6) is the unique solution of (3.7) in

the sphere B(x0, δ). Moreover, there exists a constant 0 < q < 1, independent of n, such that

βn

1 + q
≤ ‖xI

n − x0‖∞ ≤ βn

1− q
,

where βn = ‖(I − S′n(x0))−1[Sn(x0)− T̂ (x0)]‖∞. Finally,

‖xI
n − x0‖∞ ≤ CEn(x0).

The definitions of δ and δ1 are described in [14]. Following the development made in [14], we

let

ψ(s, y) = ψ(s, y0) + ψ(0,1)(s, y0 + θ(y − y0))(y − y0), (3.8)

where θ := θ(s, y0, y) with 0 < θ < 1. Also let

g(t, s, y0, y, θ) = k(t, s)ψ(0,1)(s, y0 + θ(y − y0)),

(Gnx)(t) =
∫ 1

0
g(t, s, Pnx0(s), Pnx

I
n(s), θ)x(s)ds,

and (Gx)(t) =
∫ 1
0 gt(s)x(s)ds, where gt(s) = k(t, s)ψ(0,1)(s, x0(s)). Now we are ready to state

and prove our main theorem of this paper. The proof is a combination of the idea used in [14]

(Theorem 3.3) and the one used in [8] (Theorem 4.2).
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Theorem 3.3 Let x0 ∈ C[0, 1] be an isolated solution of equation (2.3) and xn be the unique

solution of (2.9) in the sphere B(x0, δ1). Let xI
n be defined by the iterated scheme (3.7). Assume

that 1 is not an eigenvalue of (KΨ)′(x0). Assume that x0 ∈ W l
1 (0 < l ≤ 2r) and gt ∈ Wm

1

(0 < m ≤ r) with ‖gt‖W m
1

bounded independently of t. Then

‖x0 − xI
n‖∞ = O(hγ), where γ = min{l, r +m}.

Proof: From equations (2.3) and (3.7), we obtain

x0 − xI
n = K(Ψx0 −ΨPnx

I
n) = K(Ψx0 −ΨPnx0) +K(ΨPnx0 −ΨPnx

I
n). (3.9)

Using (3.8), the last term of (3.9) can be written as

K(ΨPnx0 −ΨPnx
I
n)(t) = (GnPn(x0 − xI

n))(t).

Equation (3.9) then becomes

x0 − xI
n = K(Ψx0 −ΨPnx0) +GnPn(x0 − xI

n). (3.10)

Using the Lipschitz condition (2.2) imposed on ψ(0,1), for x ∈ C[0, 1],

‖(Gnx)− (Gx)‖∞ ≤ C2 sup
0≤t≤1

∫ 1

0
|k(t, s)|ds‖x‖∞(‖Pnx0 − x0‖∞ + ‖Pn‖∞‖xI

n − x0‖∞).

This shows that

‖Gn −G‖∞ ≤MC2(‖Pnx0 − x0‖∞ + c‖xI
n − x0‖∞) → 0 as n→∞.

Also, for each x ∈ C[0, 1],

sup
0≤t≤1

|(GPnx)(t)− (Gx)(t)| = sup
0≤t≤1

|
∫ 1

0
gt(s)[Pnx(s)− x(s)]ds| ≤MM1‖Pnx− x‖∞,

where

M1 = sup
0≤t≤1

|ψ(0,1)(t, x0(t))| < +∞.

It follows that GPn → G pointwise in C[0, 1] as n → ∞. Again since Pn is uniformly bounded,

we have for each x ∈ C[0, 1],

‖GnPnx−Gx‖∞ ≤ ‖Gn −G‖∞‖Pn‖∞‖x‖∞ + ‖GPnx−Gx‖∞.

Thus, GnPn → G pointwise in C[0, 1] as n→∞. By Assumptions 2, 5, and 6, we see that there

exists a constant C > 0 such that for all n

|ψ(0,1)(s, Pnx0(s) + θ(Pnx
I
n(s)− Pnx0(s)))| ≤ C2‖Pnx0 − x0‖∞ + θC2P‖xI

n − x0‖∞ +M1 ≤ C.
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This implies that {GnPn} is a family of collectively compact operators [1]. Since G = (KΨ)′(x0)

is compact and (I−G)−1 exists, it follows from the theory of collectively compact operators that

(I −GnPn)−1 exists and is uniformly bounded for sufficiently large n. Now using (3.10), we see

that

‖x0 − xI
n‖∞ ≤ C‖K(Ψx0 −ΨPnx0)‖.

Hence we need to estimate ‖K(Ψx0−ΨPnx0)‖. The following four inequalities are known (The-

orem 4.2 [8]). Let ψn ∈ S0
l (Πn) be such that

n∑
i=1

‖(x0 − ψn)(j)‖W m
1 (Ii) ≤ chl−j‖x0‖W l

1
, 0 ≤ j ≤ l, (3.11)

max
1≤i≤n

‖ψ(j)
n ‖W m

∞(Ii) ≤ c‖x0‖W l
1
, j ≥ 0. (3.12)

Also for each t ∈ [0, 1], there exists ϕn,t ∈ S0
m(Πn) such that

n∑
i=1

‖(gt − ϕn,t)(j)‖W m
1 (Ii) ≤ chm−jKm, 0 ≤ j ≤ m, (3.13)

max
1≤i≤n

‖ϕ(j)
n,t‖W m

∞(Ii) ≤ cKm, j ≥ 0, (3.14)

where Km = sup0≤t≤1 ‖kt‖W m
1
<∞. Now for t ∈ [0, 1] we have

K(Ψx0 −ΨPnx0)(t) = (gt − ϕn,t, x0 − Pnx0) + (ϕn,t, (I − Pn)(x0 − ψn))

+(ϕn,t, (I − Pn)ψn).
(3.15)

Using equations (3.11)-(3.14) along with the arguments from [8] (p.362) we can show that each

of the three terms is bounded by chγ uniformly in t. This completes our proof. 2

One way to establish the superconvergence of the iterated collocation method for the Fredholm

equation is to assume (3.4). In the context of the present discussion, (3.4) is equivalent to

assuming

‖(KΨ)′(x0)(I − Pn)|C[a,b]‖∞ → 0 as n→∞. (3.16)

Theorem 3.3 was thus proved under weaker assumptions. The idea used to prove Theorem 3.3

originates from [4] (section 6) in which the superconvergence of the iterated collocation method

for the Fredholm equations was established by showing that {KPn} is a family of collectively

compact operators.

Finally in this section, we investigate the superconvergence of the iterated collocation method

for weakly singular Hammerstein equation. Specifically, we consider equation (2.3) with kernel

given by (2.13) and (2.14). An enhancement in the rate of convergence is given in the following

theorem.
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Theorem 3.4 Let x0 ∈ C[0, 1] be an isolated solution of equation (2.3) and xn be the unique

solution of (2.9) in the sphere B(x0, δ1) with kernel defined by (2.13) and (2.14) and knots defined

by (2.15). Let xI
n be defined by the iterated scheme (3.7). Assume that 1 is not an eigenvalue of

(KΨ)′(x0) and that ψ(0,1)(·, x0(·)) is of Type(α, r, {0, 1}) for α > 0 whenever x0 is of the same

type. Then

‖x0 − xI
n‖∞ = O(hr+α).

Proof: We follow the proof of Theorem 3.3 exactly the same way to (3.15), which is

K(Ψx0 −ΨPnx0)(t) = (gt − ϕn,t, x0 − Pnx0) + (ϕn,t, (I − Pn)(x0 − ψn))

+(ϕn,t, (I − Pn)ψn).

The difference in superconvergence arises from the degree to which we may bound the first term.

As in Kaneko and Xu [14] (Theorem 3.6), using an argument similar to [15], it can be proved

that there exists u ∈ Sν
r (Πn) with knots Πn given by (2.15) such that ‖gt − u‖1 = O(hα). Here

h = max1≤i≤n{xi − xi−1}. Then

|(gt − ϕn,t, x0 − Pnx0)| ≤ ‖gt − ϕn,t‖1‖x0 − Pnx0‖∞
= O(hα+r).

The rest of proof follows in the same way as described in [8] (p.362).2

4 The Discrete Collocation Method for Weakly Singular Ham-

merstein Equations

Several papers have been written on the subject of the discrete collocation method. Joe [10]

gave an analysis of discrete collocation method for second kind Fredholm integral equations. A

discrete collocation-type method for Hammerstein equations was described by Kumar in [18].

Most recently Atkinson and Flores [3] put together the general analysis of the discrete colloca-

tion methods for nonlinear integral equations. In this section, we describe a discrete collocation

method for weakly singular Hammerstein equations. In the aforementioned papers [10, 18, 3],

their discussions are primarily concerned with integral equations with smooth kernels. Even

though, in principle, an analysis for the discrete collocation method for weakly singular Ham-

merstein equations is similar to the one given in [3], we feel that a detailed discussion on some

specific points pertinent to weakly singular equations, -e.g.,a selection of a particular quadrature

scheme and a convergence analysis etc, will be of great interest to practioners. Our convergence

analysis of the discrete collocation method presented in this section is different from the one given
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in [3] in that it is based upon theorem 2 of Vainikko [23]. The idea of the quadrature used here

was recently developed by Kaneko and Xu [15] and a complete Fortran program based on the

idea is being developed by Kaneko and Padilla [13]. A particular case of the quadrature schemes

developed in [14] is concerned with an approximation of the integral

I(f) =
∫ 1

0
f(s)ds, (4.1)

where f ∈ Type(α, 2r, S) with α > −1. For simplicity of demonstration, we assume S = {0}.

We define q = 2r+1
α+1 and a partition

πα: s0 = 0, s1 = n−q, sj = jqs1, j = 2, 3, . . . , n. (4.2)

Now we construct a piecewise polynomial Sr of degree r − 1 by the following rule; Sr(s) = 0,

s ∈ [s0, s1) and Sr(s) is the Lagrange polynomial of degree r − 1 interpolating f at {u(i)
j }r

j=1 for

s ∈ [si, si+1), i = 1, 2, . . . , n − 2 and for x ∈ [xn−1, xn]. Here {u(i)
j }r

j=1 denote the zeros of the

rth degree Legendre polynomial transformed into [si, si+1). Our approximation process consists

of two stages. First, I(f) is approximated by

Î(f) =
∫ 1

x1

f(s)ds =
n−1∑
i=1

∫ si+1

si

f(s)ds. (4.3)

Second, Î(f) is approximated by Î(Sr) =
∫ 1
s1
Sr(s)ds. A computation of Î(Sr) can be accom-

plished as follows; let θ: [si, si+1] → [−1, 1] be defined by θ = 2s−(si+1+si)
si+1−si

so that

Î(f) =
∫ 1

−1
Ff (θ)dθ (4.4)

where

Ff (θ) =
n−1∑
i=1

1
2
(si+1 − si)f(

1
2
(si+1 − si)θ +

1
2
(si+1 + si)).

If {ui: i = 1, 2 . . . , r} denotes the zeros of the Legendre polynomial of degree r, then

Sr(s) =
r∑

i=1

Ff (ui)li(s)

with li(s) the fundamental Lagrange polynomial of degree r − 1 so that

Î(Sr) =
r∑

i=1

wiFf (ui), where wi =
∫ 1

−1
li(s)ds. (4.5)

It was proved in [15] that

|I(f)− Î(Sr)| = O(n−2r). (4.6)
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In this section, we examine equation (2.1) with the kernel k defined by (2.13) and (2.14). When

the knots are selected according to (2.15), as stated earlier, it was shown in [11] that the solution

xn of the collocation equation (2.9) converges to the solution x of (2.1) in the rate that is optimal

to the degree of polynomials used. Specifically, xn must be found by solving

xn(u(i)
j )−

∫ 1

0
gα(|u(i)

j − s|)m(u(i)
j , s)ψ(s, xn(s))ds = f(u(i)

j ) (4.7)

where i = 0, 1, . . . n− 1 and j = 1, 2, . . . r.

The discrete collocation method for equation (2.1) is obtained when the integral in (4.7) is

replaced by a numerical quadrature given in (4.5). Let kij(s) ≡ gα(|u(i)
j − s|)m(u(i)

j , s). Then

∫ 1
0 gα(|u(i)

j − s|)m(u(i)
j , s)ψ(s, xn(s))ds =

∫ 1
0 kij(s)ψ(s, xn(s))ds

=
∫ u

(i)
j

0 +
∫ 1

u
(i)
j

kij(s)ψ(s, xn(s))ds.
(4.8)

The integrals in the last expression of (4.8) represent two weakly singular integrals which can be

approximated to within O(n−2r) order of accuracy by (4.5) by transforming them to [−1, 1] and

selecting the points in (4.2) appropriately.

Writing (4.7) as

Pnxn − PnKΨxn = Pnf, (4.9)

we consider the approximation x̃n to xn defined as the solution of

x̃n = Qnx̃n ≡ PnKnΨx̃n + Pnf, (4.10)

where Kn is the discrete collocation approximation to the integrals in (4.8) described above.

We will use Theorem 2 of [23] to find a unique solution to (4.10) in some δ neighborhood of xn,

where n is sufficiently large. Clearly, Q′n(x) = PnKnΨ′(x), where Ψ′(x)[y](s) = ψ(0,1)(s, x(s))y(s).

For sufficiently large n, (4.9) has a unique solution in some δ neighborhood of x. To see that

I−Q′n(xn) is continuously invertible with {(I−Q′n(xn))−1}∞n=N uniformly bounded, it is enough

to observe that {Q′n(xn)}∞n=1 is collectively compact, and to do this we will show that

| Q′n(xn)[x](t)−Q′n(xn)[x](t′) |=| PnKnΨ′(xn)x(t)− PnKnΨ′(xn)x(t′) |→ 0 (4.11)

as t→ t′, for each x ∈ C[0, 1], [1]. Here N is some sufficiently large number.

If we show (4.11), then part (a) of Theorem 2 [23] is also verified. In order to verify part

(b) of Theorem 2 [23], we only need to establish (because of the uniform boundedness of {(I −

Qn(xn))−1}∞n=N ) that

‖ Q′n(x)−Q′n(xn) ‖∞≤ L ‖ x− xn ‖∞≤ Lδ, (4.12)

12



for some constant L, and

‖ Qn(xn)− Tn(xn) ‖→ 0 as n→∞. (4.13)

Once this is done, Theorem 2 [23] applies yielding a unique solution x̃n in some neighborhood

of xn (for sufficiently large n) and

‖ xn − x̃n ‖≤ Lα̃n ≤ L ‖ Qn(xn)− Tn(xn) ‖∞ . (4.14)

(Here and throughout the remainder of the section, L denotes a generic constant, the exact

value of which may differ at each occurance.) This inequality will be used to obtain the order of

convergence.

Considering (4.11), the right hand side is bounded by T1 + T2 + T3, where

T1 =| PnKnΨ′(xn)x(t)− PnKΨ′(xn)x(t) |,

T2 =| PnKΨ′(xn)x(t)− PnKΨ′(xn)x(t′) |,

T3 =| PnKnΨ′(xn)x(t′)− PnKnΨ′(xn)x(t′) | .

Let ε > 0. Since {Pn}∞n=1 is uniformly bounded, T1 + T3 <
2ε
3 by applying (4.6) with f(s) =

ψ(0,1)(s, xn(s))x(s) and letting n be sufficiently large. For T2 we have

T2 ≤M
∫ 1
0 | k(t, s)− k(t′, s) | ds ≤M(S1 + S2),

where

S1 =
∫ 1

0
gα(| s− t |) | m(t, s)−m(t′, s) | ds

and

S2 =
∫ 1

0
| gα(| t− s |)− gα(| t′ − s |) || m(t′, s) | ds.

but

S1 ≤ sup
0≤s≤1

| m(t, s)−m(t′, s) |
∫ 1

0
gα(| t− s |)ds

≤ L sup
0≤s≤1

| m(t, s)−m(t′, s) |→ 0 as t→ t′,

and
S2 ≤ L

∫ 1
0 | gα(| t− s |)− gα(| t′ − s |) | ds

= L
α{| t

α − (t′)α | + | (1− t)α − (1− t′)α | + 4
2α | t− t′ |α}

→ 0 as t→ t′.

Hence (4.11) holds. For (4.12),

‖ Q′n(x)−Q′n(xn) ‖∞=‖ PnKn(Ψ′(x)−Ψ′(xn)) ‖≤MC ‖ x− xn ‖≤Mδ = q < 1

13



for δ sufficiently small. Note that we have used the uniform boundedness of {Pn}, {Kn} and

because Ψ(0,1)(s, y(s)) is locally Lipschitz, so is the operator

Ψ′ : C[0, 1] → B(C[0, 1], C[0, 1]) (the space of bounded linear operators from C[0, 1] into C[0, 1]).

For (4.13), we have

‖ Qn(xn)−Tn(xn) ‖∞=‖ Pn(KnΨxn−KΨxn) ‖≤ L ‖ (Kn−K)Ψ(xn) ≤ L(R1+R2+R3) (4.15)

where

R1 =‖ KnΨ(xn)−KnΨ(x0) ‖, R2 =‖ KnΨ(x0)−KΨ(x0) ‖, R3 =‖ KΨ(x0)−KΨ(xn) ‖ . (4.16)

But

R1 ≤ L ‖ Ψ(xn)−Ψ(x0) ‖≤ C1L ‖ xn − x0 ‖ (4.17)

because Ψ is a Lipschitz operator and {Kn} is uniformly bounded, and also

R3 ≤M ‖ Ψ(x0)−Ψ(xn) ‖≤ C1M ‖ xn − x0 ‖ . (4.18)

Finally,

R2 = O(n−2r) (4.19)

by (4.6) using f(s) = Ψ(x, x0(s)).

Thus Vainikko’s Theorem yields a unique solution x̃n for n sufficiently large and (4.14) holds.

Now (4.14) and (4.15) - (4.19) show that

‖ xn − x̃n ‖= O(n−β) (4.20)

where β is the minimum of 2r and the order of convergence of ‖ x0 − xn ‖. We summerize the

results obtained above in the following theorem:

Theorem 4.1 Let x0 be an isolated solution of equation (2.3) and let xn be the solution of

equation (2.9) in a neighborhood of x0. Moreover, let x̃n be the solution of (4.10). Assume that

1 is not an eigenvalue of (KΨ)′(x0). If x0 ∈W l
∞, then

‖x0 − x̃n‖∞ = O(hµ),

where µ = min{l, r}. If x0 ∈W l
p (1 ≤ p <∞), then

‖x0 − x̃n‖∞ = O(hν),

where ν = min{l − 1, r}.
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5 Numerical Examples

In this section we present two numerical examples. Let k(s, t) = es−t and Ψ(s, x(s)) = cos(s +

x(s)). The spline coefficients were obtained using a Newton-Raphson algorithm. Also, the Gauss-

type quadrature algorithm described in [15] is used to calculate all integrations. The computed

errors for the solution and the iterated solution are shown in the following table.

Errors

n non-iterated iterated

2 .153571593748756e-1 .286029074365e-4

3 .71758714356116e-2 .47721991441e-5

4 .41291276625525e-2 .14180649575e-5

5 .26770046422053e-2 .5636996160e-6

convergence rate ≈ 2 4

For the second example, let k(s, t) = log(|s−t|) and Ψ(s, x(s)) = cos(s+x(s)). The computed

errors for the solution and iterated solution of the weakly singular integral are shown in the

following table.

Errors

n non-iterated iterated

2 .157961272540103e-1 .24257900549439e-2

3 .71150661058771e-2 .7663852778203e-3

4 .41192622669880e-2 .3210258989686e-3

5 .25982238843077e-2 .1770978040470e-3

convergence rate ≈ 2 3

For the third example, let k(s, t) = 1√
|s−t|

, Ψ(s, x(s)) = cos(s+x(s)), and x(t) = cos(t). The

computed errors for the solution and iterated solution of the weakly singular integral are shown

in the following table.

Errors

n non-iterated iterated

2 0.01540556116740788 0.005968844100471715

3 0.00722550448387438 0.002566222099442683

4 0.00416092487581254 0.001371170616411344

5 0.00269785684908008 0.000835161756464808

convergence rate ≈ 2 2.2

15



References

[1] P. M. Anselone, Collectively Compact Operator Approximation Theory and Applications to

Integral Equations, Prentice-Hall, Englewood Cliffs, N.J., (1971).

[2] K. E. Atkinson, A survey of numerical methods for solving nonlinear integral equations, J.

Int. Equ. Appl. 4 (1992), 15-46.

[3] K. E. Atkinson and J. Flores, The discrete collocation method for nonlinear integral equa-

tions, Report on Computational Mathematics, No. 10, the University of Iowa, 1991.

[4] K. E. Atkinson, I. Graham and I. Sloan, Piecewise continuous collocation for integral

equations, SIAM J. Numer. Anal. 20 (1983), 172-186.

[5] K. E. Atkinson and F. Potra, Projection and iterated projection methods for nonlinear

integral equations, SIAM J. Numer. Anal. 24 (1987), 1352-1373.

[6] S. Demko, Splines approximation in Banach function spaces, in Theory of Approximation

with Applications A. G. Law, & B. N. Sahney, eds., New York, Academic Press (1976),

146-154.

[7] R. A. De Vore, Degree of approximation, in Approximation Theory II G. G. Lorentz, C. K.

Chui, & L. L. Schumaker, eds., New York, Academic Press ( 1976), 117-161.

[8] I. Graham, S. Joe and I. Sloan, Iterated Galerkin versus iterated collocation for integral

equations of the second kind, IMA J. Numer. Anal. 5 (1985), 355-369.

[9] S. Joe, Collocation methods using piecewise polynomials for second kind integral equations,

Jl. of Comp. and Appl. Math. 12&13 (1985), 391-400.

[10] S. Joe, Discrete collocation methods for second kind Fredholm integral equations, SIAM

Jl. Numer. Anal.22 (1985), 1167-1177.

[11] H. Kaneko, R. Noren and Y. Xu, Numerical solutions for weakly singular Hammerstein

equations and their superconvergence, J. Int. Eqs. Appl. 4 (1992), 391-407.

[12] H. Kaneko, R. Noren and Y. Xu, Regularity of the solution of Hammerstein equations with

weakly singular kernels, Int. Eqs. Op. Thy. 13 (1990), 660-670.

[13] H. Kaneko and P. Padilla, Numerical Quadratures for Weakly Singular Integrals, Technical

Report NASA Langley Research Center, May (1996), Report # NCC1-213.

16



[14] H. Kaneko and Y. Xu, Superconvergence of the iterated Galerkin methods for Hammerstein

equations, SIAM Jl. Num. Anal. , 33 (1996), 1048-1064.

[15] H. Kaneko and Y. Xu, Gauss-type quadratures for weakly singular integrals and their

application to Fredholm integral equations of the second kind, Math. Comp. , 62 (1994),

739-753.

[16] H. Kaneko and Y. Xu, Degenerate kernel method for Hammerstein equations, Math. Comp.

56 (1991), 141-148.

[17] H. Kaneko, P. A. Padilla and Y. Xu, The iterated operator approximation method and its

application to superconvergence of degenerate kernel method, (in preparation).

[18] S. Kumar, A discrete collocation-type method for Hammerstein equation, SIAM J. Numer.

Anal. 25 (1988), 328-341.

[19] L. J. Lardy, A variation of Nystrom’s method for Hammerstein equations, J. Int. Eqs. 3

(1981), 43-60.

[20] I. H. Sloan, Four variants of the Galerkin methods for integral equations of the second kind,

IMA J. Numer. Anal. 4 (1984), 9-17.

[21] I. H. Sloan, Error analysis for a class of degenerate-kernel methods, Num. Math. 25 (1976),

231-238.

[22] I. H. Sloan, Improvement by iteration for compact operator equations, Math. Comp.30

(1976), 758-764.

[23] G. Vainikko, Perturbed Galerkin method and general theory of approximate methods for

nonlinear equations, Zh. Vychisl. Mat. Fiz. 7 (1967), 723-751. Engl. Translation, U.S.S.R.

Comp. Math. and Math. Phys. 7, No. 4 (1967), 1-41.

17


