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Abstract

In this paper, we analyse the iterated collocation method for Hammerstein equations with
smooth and weakly singular kernels. The paper expands the study which began in [14] con-
cerning the superconvergence of the iterated Galerkin method for Hammerstein equations.
We obtain in this paper a similar superconvergence result for the iterated collocation method
for Hammerstein equations. We also discuss the discrete collocation method for weakly sin-
gular Hammerstein equations. Some discrete collocation methods for Hammerstein equations

with smooth kernels were given previously in [3] and [18].
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1 Introduction

In this paper, we investigate the superconvergence property of the iterated collocation method for
Hammerstein equations. In the recent paper [14], the superconvergence of the iterated Galerkin
method for Hammerstein equations with smooth as well as weakly singular kernels was estab-
lished. The paper generalizes the previously reported results on the superconvergence of the
iterated Galerkin method for the Fredholm integral equations of the second kind [8], [9] [20]. A
more important contribution made in [14] lies in the fact that the superconvergence result was
established under weaker assumptions (Theorem 3.3 [14]). The approach used in [14] to establish
the superconvergence of the iterated Galerkin method can easily be adopted to prove the results
of Graham, Joe and Sloan [8], Joe [9] and Sloan [20] under weaker conditions imposed upon
the Fredholm equations. This will be demonstrated in Section 3. In Section 2, we review the
collocation method for Hammerstein equations as well as some necessary known results that will
be pertinent to the matreials in the ensuing sections. We recall that the collocation method for
weakly singular Hammerstein equations was discussed and some superconvergence results of the
numerical solutions at the collocation points were discovered by Kaneko, Noren and Xu in [11]. In
Section 3, the supereconvergence of the iterated collocation method for Hammerstein equations is

established. The results obtained there encompass Hammerstein equations with smooth as well



as weakly singular kernels. Finally, in Section 4, we discuss the discrete collocation method for
Hammerstein equations with weakly singular kernels. The result obtained in this section extends
the results of [3] and [18] which deals with the discrete collocation methods for Hammeratein
equations with smooth kernels. Some examples are also included in this section.

We note that there have been several other research papers published in recent years that
describe various numerical methods for Hammerstein equations. A variant of Nystom method
was proposed by Lardy [19]. The degenerate kernel method was studied by Kaneko and Xu
[16]. We point out that a superconvergence of the iterates of the degenerate kernel method was
recently observed when a decomposition of the kernel is done properly. This will be reported in
a future paper [17]. The reader who is interested in more information on numerical methods for

a wider class of nonlinear integral equations may find necessary materials in [2] and [5].

2 The Collocation Method

In this section, the collocation method for Hammerstein equations is presented. Some materials
from the approximation theory are also reviewed in this section to make the present paper self-

contained. We consider the following Hammerstein equation

(t) — /01 k(t, ) (s, 2(s))ds = f(t), 0<t<1, (2.1)

where k, f and v are known functions and z is the function to be determined. Define k(s) =
k(t,s) for t,s € [0,1] to be the ¢ section of k. We assume throughout this paper unless stated

otherwise, the following conditions on k, f and :
1. limy—; ||kt — kr|looc = 0, T € [0,1];
2. M = sup, fol |k(t, s)|ds < oo
3. feC0,1];

4. (s, x) is continuous in s € [0, 1] and Lipschitz continuous in = € (—o0, 00), i.e., there exists

a constant C7 > 0 for which

[P (s, 1) — (s, x2)] < Cilxy — 2|, for all z1,29 € (—00, 00);

5. the partial derivative 1/1(0’1) of v with respect to the second variable exists and is Lipschitz

continuous, i.e., there exists a constant Cy > 0 such that

|1/J(D’1)(t,x1) — ¢(071)(t,x2)\ < Colzy — wo|, for all zy, x9 € (—00, 0); (2.2)



6. for z € C[0,1], ¥(.,z(.)), vV (., z(.)) € C[0,1].
We let
1
(KU)(2)(t) = /O k(t, s)(s, 2(s))ds.

With this notation, equation (2.1) takes the following operator form
r— KVx = f. (2.3)
For any positive integer n, we let
M, : 0=ty <t, <..<t, i <t,=1

be a partition of [0,1]. Let r and v be nonnegative integers satisfying 0 < v < r. Let S¥(II,,)

denote the space of splines of order r, continuity v, with knots at II,, that is
Sy (Ily) = {z € C”[0,1] : x|y, 4;,,) € Pr—1, foreach i =0,1,...,n -1}

where P,._1 denotes the space of polynomials of degree < r — 1. For the collocation method,
we are interested in the cases v = 0 or 1. That is, it is possible to work with the space of
piecewise polynomials with no continuity at the knots or with the space of continuous piecewise
polynomials with no continuity requirement on the derivatives at the knots. We assume that
the sequence of partitions II,, of [0, 1] satisfies the condition that there exists a constant C' > 0,
independent of n, with the property:

maxi<i<n(ti — ti—1)
ming<j<n(t;i —ti—1)

< C, for all n. (2.4)

In many cases, equation (2.1) possesses multiple solutions (see e.g. [16]). Hence, it is assumed
for the remainder of this paper that we treat an isolated solution xg of (2.1). Let I; = (¢;—1,t;)
for each ¢ = 1,...,n. Then for v = 0, we let 71, 42, ..., Tir be the Gaussian points (the zeros of

the rth degree Legendre polynomial on [—1, 1]) shifted to the interval I;. We define
G():{Tijilﬁign,lﬁjﬁr}. (25)

The points in Gg give rise to the piecewise collocation method where no continuity between
polynomials is assumed. This is the approach taken by Graham, Joe and Sloan [8]. Joe [9], on
the other hand, considered the continuous piecewise polynomial collocation method. His method
corresponds with taking v = 1. Here we define the set G of the collocation points to be the
set consisting of the knots along with the Labatto points (the zeros of the first derivative of the

r — 1th degree Legendre polynomial) shifted to the interval I;. Namely, let &_; = 1 and for



1<1<r—2(r>3),let § denotes the Ith Labatto point. If |I;| denotes the length of I;, then

(1 contains
1 .
T(i—1)(r—1)+1+1 = §(ti_1 + 1t + ‘Ii’§l>7 1<i<n, 1<I<r—1l,and 1 =t =0 (2.6)

The analyses of [8] and [9] are very similar. We therefore confine ourselves to developing the
collocation method for Hammerstein equations that is analogous to the method of [8]. An
obvious extension to the continuous piecewise collocation method will be left to the reader.
Define the interpolatory projection P, from C|0,1] 4+ S¥(IL,,) to S¥(II,) by requiring that, for
z € C0,1] + Sy (I1,,),

Px(1ij) = x(mi5), for all 7; € Gy. (2.7)
Then we have, for x € C[0,1] + S¥(I1,,)

P,z — z, as n — 00 (2.8a)

and consequently

sup || Pl < e. (2.8b)

The collocation equation corresponding to (2.3) can be written as
Zp — PoaK Uz, = Py f (2.9)

where z,, € S¥(Il,). Now we let
Tz = f+ KV

and

Twxy, =P, f + P,KVz,

so that equations (2.3) and (2.9) can be written respectively as z = Tz and z, = Thz,. We

obtain;

Theorem 2.1 Let xy € C|0, 1] be an isolated solution of equation (2.3). Assume that 1 is not an
eigenvalue of the linear operator (KV)'(xg), where (KWV)'(xo) denotes the Fréchet derivative of
KY at xg. Then the collocation approximation equation (2.9) has a unique solution x,, € B(xg, )
for some 6 > 0 and for sufficiently large n. Moreover, there exists a constant 0 < q < 1,

independent of n, such that

(a7% Qn
< — < 2.10
2 < o — mullo < 122, (2.10)
where an = ||(I =T/ (20)) " (Th(z0) — T(20))||so. Finally,
En(z0) < ||zn — z0llcc < CER(x0), (2.11)

where C'is a constant independent of n and E,(xo) = inf,cqv (1, |70 — U/ co-
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A proof is a straight application of Theorem 2 of Vainikko [23] and is demonstrated in the
proof of Theorem 2.1 [11]. We denote by W;"[0,1], 1 <p < oo, the Sobolev space of functions g
whose m-th generalized derivative g™ belongs to Lp[0,1]. The space W;"[0, 1] is equipped with

the norm
m
lgllwy =S g™l
k=0

It is known from Demko [6] and De Vore [7] that if 0 <v <7, 1 <p < oo, m >0 and x € W,
then for each n > 1, there exists u, € S¥(II,,) such that

[ = unllp < CAH|[xflyyy, (2.12)

where g = min{m,r} and h = max;<;<p(t; — t;—1). The inequality (2.12) when combined with

Theorem 2.1 yields the following theorem:;

Theorem 2.2 Let z¢ be an isolated solution of equation (2.3) and let x, be the solution of
equation (2.9) in a neighborhood of xo. Assume that 1 is not an eigenvalue of (K¥) (x). If
zg € W, then

[z0 — #nlloc = O(R*),

where p = min{l,r}. If xg € W}i (1 <p< ), then
[0 = Znlleo = O(R"),
where v = min{l — 1,7}.
When the kernel k is of weakly singular type, namely if
k(t,s) = m(t, s)ga(|t — s), (2.13)

where m € CH*1([0,1] x [0,1]) and

s 0<ac<l,
Ja(s) = (2.14)
logs, a=1.

then the solution xg of equation (2.3) does not, in general, belong to W, To better characterize
the regularity of the soution of (2.3) with weakly singular kernel, consider a finite set S in [0, 1]
and define the function wg(t) = inf{|t — s| : s € S}. A function x is said to be of Type(a, k, S),
for -1 < a <0, if

) (6)] < Clws(D)]** t ¢S,

and for a > 0, if the above condition holds and = € Lip(«). Here Lip(a) = {x:|x(t) — z(s)| <
C|t — s|*}. It was proved by Kaneko, Noren and Xu [12] that if f is of Type(5, u,{0,1}),



then a solution of equation (2.1) with the kernel defined by (2.13) is of T'ype(y, 11, {0,1}), where
v = min{«, }. The optimal rate of convergence of the collocation solution z,, to xy can be

recovered by selecting the knots that are defined by

ti = i1/2)(2i/n)q7 0<i<n/2 (2.15)
t =

—tn_i, n/2 <i<mn,

where g = r/~ denotes the index of singularity. Details can be found in [11].

3 The Iterated Collocation Method

The faster convergence of the iterated Galerkin method for the Fredholm integral equations of
the second kind compared to the Galerkin method was first observed by Sloan in [21] and [22].
On the other hand, the superconvergence of the iterated collocation method was studied in [8]

and [9]. Given the equation of the second kind
r— Kz =f, (3.1)

where K is a compact operator on X = C[0,1] and z, f € X, the collocation approximation z,

is the solution of the following projection equation
Ty — PoKay, = P, f. (3.2)

Here P, is the interpolatory projection of (2.7). The iterated collocation method obtains a

solution ! by

al = f+ K. (3.3)
Under the assumption of
|KP, — K| —0 as n — oo (3.4)
it can be shown that
lz — 2yl < (I = KP) 1K (x — Paz)]|- (3-5)

The assumption (3.4) is satisfied if X = Lo and P, is the orthogonal projection satisfying
|Png — g|| — 0 for all g in the closure of the range of the adjoint K* of K since in this case
|KP, — K|| = ||P,K* — K*||. The results of Sloan were recently generalized to the iterated
Galerkin method for Hammerstein equations by Kaneko and Xu [14]. The main theorem of [14],
Theorem 3.3, that guarantees the superconvergence of the iterates was proved by making use of

the collectively compact operator theory.



The purpose of this section is to study the superconvergence of the iterated collocation

method. For the collocation solution x,, of (2.9), we define
el = f+ KUz, (3.6)
A standard argument shows that ! satisfies
zl = f+ KUP,xl. (3.7a)
We denote the right side of (3.7a) by S,z., namely
Spal = f+ KUP,a!. (3.7b)
We recall the following two lemmas from [14].

Lemma 3.1 Let zy € C|0, 1] be an isolated solution of (2.3). Assume that 1 is not an eigenvalue
of (KW) (x0). Then for sufficiently large n, the operators I —S!,(xo) are invertible and there exists
a constant L > 0 such that

(I — S (x0)) oo < L, for sufficiently large n.

Lemma 3.2 Let 9 € C[0,1] be an isolated solution of equation (2.3) and x, be the unique
solution of (2.9) in the sphere B(xg,01). Assume that 1 is not an eigenvalue of (KWV)'(xo). Then
for sufficiently large n, xf defined by the iterated scheme (3.6) is the unique solution of (3.7) in
the sphere B(xg,0). Moreover, there exists a constant 0 < q < 1, independent of n, such that

Br I Br
< — <
1+q—Hxn xOHOO— l_qv

where By, = ||(I — S/, (20)) " [Sn(z0) — T(20)]||00- Finally,

lzy, = zolloc < OBy (o).

The definitions of 6 and 0 are described in [14]. Following the development made in [14], we
let

B(s,y) = b(s,90) + ¥V (5,50 + 0y — 10)) (¥ — o), (3.8)

where 0 := 6(s,y0,y) with 0 < § < 1. Also let
g(ta 5,90, Y, 9) = k(ta 5)¢(0’1) (57 Yo + e(y - yO))a

1
(Gn)(t) = /0 g(t, 5, Pazo(s), Pazl (), 0)a(s)ds,

and (Gz)(t) = fol gi(s)x(s)ds, where gi(s) = k(t,s)1 OV (s, 20(s)). Now we are ready to state
and prove our main theorem of this paper. The proof is a combination of the idea used in [14]

(Theorem 3.3) and the one used in [8] (Theorem 4.2).



Theorem 3.3 Let xg € C[0,1] be an isolated solution of equation (2.3) and x, be the unique
solution of (2.9) in the sphere B(xq,01). Let x! be defined by the iterated scheme (3.7). Assume
that 1 is not an eigenvalue of (KW)'(xq). Assume that xg € Wi (0 < 1 < 2r) and g; € W{"
(0 <m <) with ||gtl|lwy bounded independently of t. Then

|zo — 2L || = O(RY), where v = man{l,r + m}.
Proof: From equations (2.3) and (3.7), we obtain
xo — xl = K(Uxg — UP,zl) = K (Vg — UP,x0) + K(VP,xg — UP,2l). (3.9)

Using (3.8), the last term of (3.9) can be written as

K (VP — WPyy)(t) = (G Po(wo — a,))(1).
Equation (3.9) then becomes

zo — 2t = K(Wxg — UP,x0) + GnPp(z0 — z1). (3.10)
Using the Lipschitz condition (2.2) imposed on (), for z € €0, 1],

1(Got) = ()l < Co sup [ 1, sl P ~ ol + 1P, = 0l
This shows that
Gn — Glloo < MCy(||Pato — xo||oo + ¢l — 20]jos) — 0 as n — oo.
Also, for each z € C|0, 1],
1

sup |(GP,x)(t) — (Gz)(t)] = sup | | gi(s)[Paz(s) — 2(s)lds| < MM |[Prx — oo,
0<t<1 0<t<1 Jo

where

M, = sup |¢(0’1)(t,x0(t))| < +o00.
0<t<1

It follows that GP, — G pointwise in C[0, 1] as n — oco. Again since P, is uniformly bounded,

we have for each z € C|0, 1],
[GnPrz — Gzlloo < |Gn = Gl || Pallool|Z]l oo + |G P — G| o

Thus, G, P,, — G pointwise in C[0, 1] as n — co. By Assumptions 2, 5, and 6, we see that there

exists a constant C' > 0 such that for all n

1OV (s, Poao(s) + O(Poal(s) — Pazo(s)))| < Cal|Pawo — 2o||ee + 0Co P2 — 20|00 + My < C.



This implies that {G,, P, } is a family of collectively compact operators [1]. Since G = (KV)'(z0)
is compact and (I — G) ™! exists, it follows from the theory of collectively compact operators that
(I — G, P,)~ ! exists and is uniformly bounded for sufficiently large n. Now using (3.10), we see
that

2o — 2 [loe < C|IK (P20 — WP,z0)].

Hence we need to estimate ||K(¥xg— W P,x¢)||. The following four inequalities are known (The-
orem 4.2 [8]). Let v, € SP(II,,) be such that

n

Sl — )Py < kol 0<i<L (3.11)
=1
max [0 gy < claolwy, 20 (3.12)

Also for each t € [0, 1], there exists ¢, € SY,(I,,) such that

ZH (9t = en) D wpy S ™ K, 0<j<m, (3.13)
nax letlwe ) < cKm: 520, (3.14)

where K, = supg<;< [|kt|lwm < oo. Now for ¢ € [0, 1] we have

K(‘I’ffo - \IanfL'O)(t) = (gt — Pn,t, To — an()) + (Son,ta (I - Pn)(l‘o - wn))

(3.15)
+(nts (I = Po)tn).

Using equations (3.11)-(3.14) along with the arguments from [8] (p.362) we can show that each
of the three terms is bounded by ch” uniformly in ¢. This completes our proof. O

One way to establish the superconvergence of the iterated collocation method for the Fredholm
equation is to assume (3.4). In the context of the present discussion, (3.4) is equivalent to
assuming

[(K®) (z0)(I = Pa)lcjaplloco = 0 asn — oo. (3.16)

Theorem 3.3 was thus proved under weaker assumptions. The idea used to prove Theorem 3.3
originates from [4] (section 6) in which the superconvergence of the iterated collocation method
for the Fredholm equations was established by showing that {KP,} is a family of collectively
compact operators.

Finally in this section, we investigate the superconvergence of the iterated collocation method
for weakly singular Hammerstein equation. Specifically, we consider equation (2.3) with kernel
given by (2.13) and (2.14). An enhancement in the rate of convergence is given in the following

theorem.



Theorem 3.4 Let xg € C[0,1] be an isolated solution of equation (2.3) and x, be the unique
solution of (2.9) in the sphere B(xg,61) with kernel defined by (2.13) and (2.14) and knots defined
by (2.15). Let x& be defined by the iterated scheme (3.7). Assume that 1 is not an eigenvalue of
(KUY (x0) and that OV (-, z0(-)) is of Type(a,r,{0,1}) for a > 0 whenever xq is of the same
type. Then

lzo — a4 ]|oc = O(R+).
Proof: We follow the proof of Theorem 3.3 exactly the same way to (3.15), which is

K(‘I’xo - \ijnxo)(t) = (gt — Pnt, Lo — an()) + (Spn,ta (I - Pn)(xo - ¢n))
+(en,ts (I = Pa)tn).

The difference in superconvergence arises from the degree to which we may bound the first term.
As in Kaneko and Xu [14] (Theorem 3.6), using an argument similar to [15], it can be proved
that there exists u € Sy (II,) with knots II,, given by (2.15) such that ||g: — u|[1 = O(h®). Here

h = maxlgign{xi — .732‘_1}. Then

gt — Pn,t, L0 — L'ndo > {19t — Pnytl|1]|T0 — £'nZ0]|oo
I( Ppxo)| < || [1llzo — Praol|
_ O(ho""r).

The rest of proof follows in the same way as described in [8] (p.362).0

4 The Discrete Collocation Method for Weakly Singular Ham-

merstein Equations

Several papers have been written on the subject of the discrete collocation method. Joe [10]
gave an analysis of discrete collocation method for second kind Fredholm integral equations. A
discrete collocation-type method for Hammerstein equations was described by Kumar in [18].
Most recently Atkinson and Flores [3] put together the general analysis of the discrete colloca-
tion methods for nonlinear integral equations. In this section, we describe a discrete collocation
method for weakly singular Hammerstein equations. In the aforementioned papers [10, 18, 3],
their discussions are primarily concerned with integral equations with smooth kernels. Even
though, in principle, an analysis for the discrete collocation method for weakly singular Ham-
merstein equations is similar to the one given in [3], we feel that a detailed discussion on some
specific points pertinent to weakly singular equations, -e.g.,a selection of a particular quadrature
scheme and a convergence analysis etc, will be of great interest to practioners. Our convergence

analysis of the discrete collocation method presented in this section is different from the one given
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in [3] in that it is based upon theorem 2 of Vainikko [23]. The idea of the quadrature used here
was recently developed by Kaneko and Xu [15] and a complete Fortran program based on the
idea is being developed by Kaneko and Padilla [13]. A particular case of the quadrature schemes

developed in [14] is concerned with an approximation of the integral

1= [ se)as (4.1)

where f € Type(a,2r,S) with > —1. For simplicity of demonstration, we assume S = {0}.

We define ¢ = % and a partition

Ta:50 = 0,51 =n" %, 55 = jisq, ji=23,...,n. (4.2)
Now we construct a piecewise polynomial S, of degree r — 1 by the following rule; S,(s) = 0,
s € [s0,s1) and Sy(s) is the Lagrange polynomial of degree r — 1 interpolating f at {ugz) iy for
s € [8i,8i+1), 1 = 1,2,...,n — 2 and for = € [z,_1,2,|. Here {ugl) %_y denote the zeros of the

rth degree Legendre polynomial transformed into [s;, s;+1). Our approximation process consists

of two stages. First, I(f) is approximated by

n—1 Sit1
0= [ seas=3 [ sispas. (43)
xq i=1 7S

Second, I(f) is approximated by I(S,) = fsll S.(s)ds. A computation of I(S,) can be accom-
plished as follows; let 6: [s;, si41] — [—1,1] be defined by 6 = 2=(it1550) o5 that

Si+1—Si

1= [ Froas (14)

where

i
L

N | —

Fy(6) = 3 lse1 — 50y (sov1 = 5000 + 5 (5041 + 50).

i=1

If {u;:i=1,2...,7r} denotes the zeros of the Legendre polynomial of degree r, then
T
Sp(s) = Z Fr(ui)li(s)
i=1

with /;(s) the fundamental Lagrange polynomial of degree r — 1 so that

~ r 1

1(S,) = ZwiFf(u,;), where w; = / l;(s)ds. (4.5)

i=1 -1

It was proved in [15] that

A

[1(f) = 1(S,)| = O(n™™"). (4.6)
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In this section, we examine equation (2.1) with the kernel k£ defined by (2.13) and (2.14). When
the knots are selected according to (2.15), as stated earlier, it was shown in [11] that the solution
xy, of the collocation equation (2.9) converges to the solution x of (2.1) in the rate that is optimal

to the degree of polynomials used. Specifically, x,, must be found by solving

) = [ gallul? = sym(ul? )i s, () = £ (@)

where t =0,1,...n—1and j=1,2,...7.
The discrete collocation method for equation (2.1) is obtained when the integral in (4.7) is

replaced by a numerical quadrature given in (4.5). Let k;;(s) = ga(|u§i) - s|)m(u§i), s). Then

Jo 9o (16 — sym(ul?, ) (s, xa(s))ds = 3 kij(s)(s, za(s))ds

uf? 1 (4.8)
=’ + fu§i> kij(s)¥(s, zn(s))ds.

The integrals in the last expression of (4.8) represent two weakly singular integrals which can be
approximated to within O(n~2") order of accuracy by (4.5) by transforming them to [—1, 1] and
selecting the points in (4.2) appropriately.
Writing (4.7) as
P,x, — P,KVzx, = P,f, (4.9)

we consider the approximation Z,, to x, defined as the solution of
Tp = ann =P, K, V2, + Pnf, (4.10)

where K, is the discrete collocation approximation to the integrals in (4.8) described above.
We will use Theorem 2 of [23] to find a unique solution to (4.10) in some ¢ neighborhood of z,,
where n is sufficiently large. Clearly, Q' (x) = P,K,¥'(x), where W' (z)[y](s) = OV (s, 2(s))y(s).
For sufficiently large n, (4.9) has a unique solution in some 0 neighborhood of x. To see that
I — Q! () is continuously invertible with {(I — Q/,(x,))"1}°2 y uniformly bounded, it is enough

to observe that {Q/, (z,)}22, is collectively compact, and to do this we will show that
| Qn () [2](t) = Qp () [2] () |=| PaBn W' ()2 (t) — PoKp W' ()2 () [— 0 (4.11)

as t — t/, for each = € C|0, 1], [1]. Here N is some sufficiently large number.
If we show (4.11), then part (a) of Theorem 2 [23] is also verified. In order to verify part
(b) of Theorem 2 [23], we only need to establish (because of the uniform boundedness of {(I —

Qn(l‘n))_l zo:N) that
| Qr(2) — Qn(2n) lloo< L || & — @ [|oo< L, (4.12)
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for some constant L, and
| Qn(zyn) — Th(zy) ||— 0 as n — oc. (4.13)

Once this is done, Theorem 2 [23] applies yielding a unique solution Z,, in some neighborhood

of x,, (for sufficiently large n) and
| 2 — T [|< Lan < L || Qu(zn) — Tn(2n) (oo - (4.14)

(Here and throughout the remainder of the section, L denotes a generic constant, the exact
value of which may differ at each occurance.) This inequality will be used to obtain the order of
convergence.

Considering (4.11), the right hand side is bounded by T} + T» + T3, where

T, =| P, KV (z,)x(t) — B KV (z,)x(t) |,
Ty =| P,KY (z,)x(t) — P, KV (x,)x(t') |,
T3 =| P, K,V (z,)x(t') — P, K,V (z)z(t) | .

Let € > 0. Since {P,}52, is uniformly bounded, T} + T35 < % by applying (4.6) with f(s) =
POV (s, 2,(s))z(s) and letting n be sufficiently large. For T we have
Ty < M [ | k(t,s) = k(t',s) | ds < M(Sy + Sa),

where
S1= [ gulls =t 1) Imit.s) ~mit,s) | ds
and .
S :/0 | ga(lt =5 1) = gallt' = s ) [ m(t,s) | ds.
but
S1< sup [m(t.s) ~m(t.5) | [ gallt— s )ds
0<s<1 0
<L sup |m(t,s)—m(t,s)|—0 as t =1,
0<s<1
and

So <Lfylga(lt—s])—ga(|t' —s])|ds
= = @ 1A= = (=0 [ = )
—0 as t—t.

Hence (4.11) holds. For (4.12),

| @n (@) = Qu(@n) loo=Il PuKn(¥'(x) = ¥'(zn)) |< MC || 2 =y |< Mo =g <1
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for 0 sufficiently small. Note that we have used the uniform boundedness of {P,},{K,} and

because WO (s, y(s)) is locally Lipschitz, so is the operator

v’ C[0,1] — B(C0,1],C[0,1]) (the space of bounded linear operators from C|0, 1] into C[0, 1]).
For (4.13), we have

| Qn(xn) =Tn(zn) o=l Po(Kn¥zn—KVzy) ||< L || (Kn—K)¥(2,) < L(R1+Re+R3) (4.15)
where
Ry =| Kp¥(zn)—Kn¥(20) ||, R =[| Kn¥(20)—K¥(x0) ||, Rs =[| K¥(2x0)—K¥(xy) | . (4.16)

But
Ry <L VY(zyp)— V(x) ||<CLL || 2y — x0 || (4.17)

because VU is a Lipschitz operator and {K,} is uniformly bounded, and also
Ry <M || ¥(zo) — U(wn) [|< CLM || 2 — 2o || - (4.18)

Finally,
Ry = O(n™2") (4.19)

by (4.6) using f(s) = ¥ (z,zo(s)).
Thus Vainikko’s Theorem yields a unique solution &,, for n sufficiently large and (4.14) holds.
Now (4.14) and (4.15) - (4.19) show that

| 2n =& = O(n7) (4.20)

where [ is the minimum of 2r and the order of convergence of || zo — z,, ||. We summerize the

results obtained above in the following theorem:

Theorem 4.1 Let x¢ be an isolated solution of equation (2.3) and let x, be the solution of
equation (2.9) in a neighborhood of xo. Moreover, let Z,, be the solution of (4.10). Assume that
1 is not an eigenvalue of (KW)(xg). If zg € W', then

[0 = Znlleo = O(RY),
where p = min{l,r}. If xg € W;é (1 <p< o), then

[0 — Znlleo = O(R"),
where v = min{l — 1,r}.
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5 Numerical Examples

In this section we present two numerical examples. Let k(s,t) = e~ and (s, x(s)) = cos(s +
z(s)). The spline coefficients were obtained using a Newton-Raphson algorithm. Also, the Gauss-
type quadrature algorithm described in [15] is used to calculate all integrations. The computed

errors for the solution and the iterated solution are shown in the following table.

Errors
n non-iterated iterated
2 .153571593748756e-1 | .286029074365¢-4
3 71758714356116e-2 | .47721991441e-5
4 41291276625525e-2 | .14180649575e-5
9 .26770046422053¢-2 .5636996160e-6
convergence rate ~ 2 4

For the second example, let k(s,t) = log(|s—t|) and ¥ (s, z(s)) = cos(s+xz(s)). The computed
errors for the solution and iterated solution of the weakly singular integral are shown in the

following table.

Errors
n non-iterated iterated
2 .157961272540103e-1 | .24257900549439¢-2
3 .71150661058771e-2 | .7663852778203e-3
4 .41192622669880e-2 | .3210258989686e-3
D .25982238843077e-2 | .1770978040470e-3
convergence rate ~ 2 3
For the third example, let k(s,t) = —2—, ¥(s,z(s)) = cos(s+ x(s)), and z(t) = cos(t). The

ls—t|’
computed errors for the solution and iterated solution of the weakly singular integral are shown

in the following table.

Errors
n non-iterated iterated
2 0.01540556116740788 | 0.005968844100471715
3 0.00722550448387438 | 0.002566222099442683
4 0.00416092487581254 | 0.001371170616411344
) 0.00269785684908008 | 0.000835161756464808
convergence rate ~ 2 2.2
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