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Abstract

In this paper, we continue our study that began in the papers [2], [3] and
[4] concerning the Taylor-expansion method for approximating the
solution of integral equations. The Taylor-expansion methods require
taking the derivatives of the kernel of an integral equation. In practical
applications, these derivatives must be approximated due to the
complexities of the kernels involved. This paper addresses this issue.

1. Introduction

Recently, in a series of papers [2], [3] and [4], the present authors

generalized the idea which was first proposed by Ren et al. [8]. The idea

was to use the Taylor-expansion method to approximate the solution of

the Fredholm integral equations of the second kind having convolution

type kernels. Taylor-series expansion method developed in [8] relies

heavily upon the condition that a kernel k(¢ -s|) of convolution type
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decays rapidly as |t — s| increases. As stated in [4], the method of Ren et

al., therefore, does not apply to a wider class of the second kind Fredholm
integral equations having kernels of different variations. Also, the
accuracy of approximation depends critically upon the rate at which a

convolution kernel approaches zero as |t - s| — o, The present authors

[2], recently generalized the results in [8] to obtain a new Taylor-series
expansion method which is applicable to a larger class of Fredholm
equations. The new method is also capable of delivering more accurate
approximations. Another important characteristic of the new Taylor-
expansion method is that the method lends itself to a parallel
computation environment. Most techniques used to approximate the
solution of an integral equation such as the method of Galerkin,
collocation or least squares, calculate the solution over the entire
interval. This result, for many cases, in a large system of linear equations
in which matrix involved is usually dense and thus expensive to solve its
corresponding system. In contrast, the current Taylor-expansion method
is capable of computing a solution at a single point s. Also, the size of
matrix involved is much smaller than the size of matrices used in the
Galerkin, collocation or least-squares method. Finally, the new Taylor-
expansion method not only approximates the solution of an integral
equation but also approximates the derivatives of the solution
concurrently, the feature none of the aforementioned numerical methods

can claim to possess.

We note that in [3], the new expansion method was extended to
obtain approximation of the solution of nonlinear Hammerstein equation
and in [4], the new technique was extended to approximate the solution

of a Volterra equation.

The Taylor-expansion method requires taking derivatives of a kernel
of an integral equation. In practical applications, these derivatives must
be approximated due to the complexities of the kernels involved. This
paper addresses this issue.

This paper is organized as follows: The main point of discrete Taylor-
expansion method is given in Section 2. A list of quadratures used in

numerical experiments and results of the numerical experiments are
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given in Section 3. In Section 4, we generalize the method to systems of
Fredholm integral equations.

2. Discrete Taylor-expansion Method

We begin this section by first outlining the recently established
Taylor-expansion method. The method is demonstrated relative to the
Fredholm integral equation of the second kind. Fredholm equation of the

second kind can be written as
1
x(s) —I k(s, t)x(t)dt = y(s), 0<s<1, (2.1)
0
where it is assumed that 1 is not the eigenvalue of the operator

1
Tx(s) = jo k(s, t)x(¢)dt.

We assume throughout the paper that k& € C"([0, 1]x [0, 1]) so that the
operator T is a compact linear operator of C[0, 1] into C[0, 1]. Fredholm

equation of the second kind plays an important role in many physical
applications which include potential theory and Dirichlet problems,
particle transport problems of astrophysics and radiative heat transfer
problems. A reader may consult the references provided in [8] for these
applied problems.

The Taylor-expansion method begin by first writing
x(t) = w(s) + (6) ¢ = 8) + -+ 2 (s) ¢ - 5)". 2.2)

Substituting (2.2) for x(¢) in the integral in (2.1), we obtain

{1 - j: (s, t)dt}x(s) - “: ks, t)(t s)dt}x'(s) .

1
= {%j k(s, t)(t - s)ndt}x(n)(s) ~ys), O0<s<1l. (2.3
o

This represents an nth order linear ordinary differential equation with
variable coefficients, which can be solved if n boundary conditions are

known. These boundary conditions are normally supplied from a physical



142 P. HUABSOMBOON, B. NOVAPRATEEP and H. KANEKO

experiment and thus they may not be always readily available. To
circumvent the problem, we differentiate (2.1) n times to get

1
ORI CRIOEE
(2.4)

W) [ KOG, a0t = 3s),

. i
where kgl)(s, t) = a—ik(s, t), i =1, ..., n. Now, replace each x(t) in (2.4) by
0s
the right side of (2.2) to obtain
1 1
- I k) (s, ¢)dtx(s) - { j Ey(s, 0)(t — s)dt — 1}5'(3) e
0 0

1 1!
o | ks 0 - 9 dex™(s) ~ y(s)
ntJo

- I ks, t)dta(s) - j1k§n>(s, £)(t - s)dtx'(s) - -
0 0
. {l, j (s, 0t - s)'dt - 1}&”)(8) ~ y™(s).
nlJo

(2.5)

Combining equations (2.3) and (2.5), we obtain the following system
of linear equations, the solutions of which we denote by x(s), x'(s), ...,

x"(s) for an arbitrary but fixed s < [0, 1],

. j:k(s, t)dt —I;k(s, 0 —s)dt - —% :k(s, £)(t - s)'dt
—Jlk;(s, t)dt 1—Jlk;(s, 0t —s)dt - —l,jlk;(s, 0t - sY'di
0 0 n.Jo

1 1 1
—j EM(s, ¢)dt _j KOs, 6)(t - s)dt - 1- j kP (s, 1) (t - s)'dt
L Jo 0 ntJo i
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x(s)| | V()
I (2.6)

] [y(s)]

The size n of the matrix in (2.6) depends on the degree of Taylor
polynomial used in approximation and our numerical experiments show
that the scale of n =5 or 6 is more than enough to provide accurate
approximations for most problems. Recall that in a method such as
Galerkin or collocation, the resulting size of the matrix is much larger.
For example, in the Galerkin method with quadratic spline basis
functions applied over 100 equally spaced elements, the size of the matrix
1s 300 x 300. However, it should be pointed out that the current method
is applicable to integral equations with smooth kernels and therefore, in
the case of Fredholm equations with weakly singular kernels, it is
recommended that the Galerkin or collocation method is used to obtain
accurate solutions. For recent advances in the numerical treatments of
linear as well as nonlinear integral equations, see, e.g., [5-7] and

references cited within the related literature.

In order to implement the Taylor-expansion method, the components
of the matrix in (2.6) must be computed. In practical applications, they

must be numerically approximated due to the complexity of the kernel. In
this paper, we discuss this issue. Suppose that we approximate kgi)(s, t)

by

. . mL . .
Q' (EV(s, ) = Z alk(st, t), @.7)
j=0
where aij ’s are weights of the quadrature and sij ’s are prescribed points

which depend upon s, 0 <i<n and 0 < j < m. Then equation (2.6)

transforms into the following, the solutions of the system are denoted by

x*(s), ¥ (5), ..., x*(s)
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1 1
1- J. k(s, t)dt - l, k(s, ¢)(t — s)"dt
0 niJo
! m 1 1 1 1 my 1 1 n
_Jozjzoajk(sj, tdt - _mj‘ozjzoajk(sj,t)(t_s) dt

_—Jozjzoajk(sj,t)dt 1—mjozj=0ajk(sj,t)(t—s) at|

x"(s) [ ¥(s) ]

x*(s) y'(s)
X = . (2.8

_x*(n)(s)_ _y(n)(s)_

In order to construct an error analysis, we denote (2.6) and (2.8),
respectively, by

Ax =y, (2.9
and
A'x" =y (2.10)

Then the following are straightforward and its proofs can be found in any
standard textbook of numerical analysis, e.g., see [1]. In what follows | - ||

denotes a vector and its corresponding matrix norm.

Theorem 1. Suppose A is nonsingular so that equation (2.9) has a

unique solution. Also, assume that A" = A + 8A" and that

* 1
1347 < ~—
|A™

so that A™ is also nonsingular. With x* = x + dx*, we have

[ 8| - condA [347]

x| s TAl
1=l L conaa 134" 1A
Y

(2.11)
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Error |x(i)(s) - E(i)(s)|, for each i = 0, 1, ..., n, can be found as follows.

This was established in [2] but we include it here for completeness of
analysis. In order to analyze the error term of the current method,
substituting x(¢) in (2.1) by its Taylor series, we obtain

o) [ G t{ 31206 gy XD gt s - i), (212

— (n+1)!

for 0 < s < 1. From the first equation of (2.6),
1 = (r)
w(s) - [ K 0y = —sydr - f5) 0<s<1 @19
0 ~
From (2.12) and (2.13),

()S x S
o) - 5060 [ G, t)Z )26y

x(n+) s .
) (ni_(lé)(!)).[: Ks (¢ = )"t (2.14)

Proceeding similarly for the remaining equations in (2.6), the errors

x"(s)=x")(s), r =0, 1, .., n can be computed by solving

) -x6) 1 | W [ 01 Ko, ) — syt |
A x - : . (2.15)
(n+1) g(s N
=0) =) | 1), ))j W, (-5t

Right side of equation (2.15) reveals that the Taylor-expansion
method finds a solution exactly if the computation is carried out without
round-off errors provided that the solution is a polynomial. It also
confirms that the error of the approximation of the Taylor-expansion

method converges to zero as n — o under the current assumption of
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smooth kernel. Denote (2.15) by AE = F' so that the vector E of errors

can be bounded as
-1
I E] <A™ F |- (2.16)
From (2.11) and (2.15), we obtain the following:
Theorem 2. For each s € [0, 1], let x(s) be the solution of (2.1) and
x = [x(s), x'(s), ..., x(")(s)]T. Also, let x* denote the solution of (2.10). Then

condA [ 8A|

sa*| [TA]
1- condAl—
IA]

| -2 < JATH F ]+

lx].  (@17)

3. Quadratures and Numerical Examples

For demonstration, we use a collection of central difference
approximations for kgi)(s, t) all of whose local truncation error is O(h?)

(see Table 1). However, the forward or backward difference formulas will
be used when s = 0 or s =1 (at the lower or upper limit of an integration),

respectively. Those difference formulas are given in Tables 2 and 3.

Table 1. Central difference formulas of order O(h?)

f@+h) - fz - h)

! (x) =
f' () oh
() ~ flx+h) - '2_): g:c) 4+ f(z—h)
3
£ (1) ~ flez+2h)—-2f(x+h) +'Qf (z = h) = f(z -~ 2h)
2h3
f{d] (z) ~ flz+2h)—4f(z+ h) +(ifh(:1::|:] —4f(x—h)+ f(z—2h)
5 flz+38h)—4Af(z+2h)+5f(z+h)—5f(x—h)+4f(x — 2h) — f(xz — 3h)
7@ (@) =

2h5

flz+3h)—6f(x+2h)+15f(z+ h) —20f (z) + 15f (x — h) — 6f (xz — 2h) + f (z — 3h)

F8) () = 5
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Table 2. Forward difference formulas of order O(h?)

, —flz 4 2h) + 4f(z + h) — 3f(z)
fiz)=
2h
" —f (x4 3h) + 4f (x + 2h) — 5f (= + h) + 2f(x)
iz = g
h?

) (1) = —3f (x + 4h) + 14f (z + 3h) — 24f (x + 2h) 4 18f (z + h) — 5f(x)

= 2h3
£ (2) = —2f (& + 5h) + 11f (z + 4h) — 241 (x + 3h) + 267 (= + 2h) — 14f (= + h) + 3f(x)

- hi
1) (2) = —5f (x + 6h) + 32f (z + 5h) — 85f (z + 4h) + 120f (z + 3h) — 95f (= + 2h) + 40f (x + h) — Tf(z)

2h5
16 (2 —3f (& + Th) + 22f (x + 6h) — 69f (x + 5h) + 120f (= + 4h) — 125f (x + 3h) + T8 (& + 2h) — 27F (= + h) + 4f (=)
x) ==

he

Table 3. Backward difference formulas of order O(h?)

__ 3f(z) —af(z — h) + f(z — 2h)

() Zh
" 2f(z) — 5f (x — h) 4+ 4f (z — 2h) — f(z — 3h)
) = .
h
£3) () = 5f(z) — 18f (z — h) + 24f (z — 2h) — 14f (= — 3h) + 3f(z — 4h)
253

£ () 2 3f (z) — 14f (z — h) + 26 (z — 2h) — 24f (= — 3h) + 11f (= — 4h) — 2f(z — 5h)

x) = i
£05) () = Tf(z) — 40f (z — h) + 95f (z — 2h) — 120f (z — 3h) + 85F (z — 4h) — 32f (z — 5h) + 5f(z — 6h)

o= 2h5
£0) () = Af (z) — 27f (= — h) + T8f (z — 2h) — 125§ (z — 3h) + 120f (z — 4h) — 69 (z — 5h) + 22f (& — 6h) — 3f(z — Th)

he

In this paper, all computations were done using Matlab 7.1 Release
14 on a personal computer (Intel Core2 CPU T5600 @ 1.83GHz). It took
less than one minute to get the numerical results. We used 2 = 0.01 for

the difference formulas in our computations.

Example 3.1. Consider (Example 2.2 in [2])
2 1
x(s)=2 [ ks O)x(O)dt = (s), 0521, (3.1)
0
where k(s, t) = [4 + (s —t)?] " and y(s) is chosen so that x(s) =1+ s> +s° is
the solution. Numerical results with n = 6 gave excellent approximations

for x as well as for its derivatives. The numerical approximation for x(s)

and its first derivative with n = 6 are shown in Table 4. And, the graph

of the numerical results with n = 2, 4 and 6 is shown in Figure 1.
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Table 4. Numerical approximation for x(s) and its first derivative in

Example 3.1 with n = 6

s x(s) '(s)

Exact  Approx. Abs. Error Exact  Approx. Abs. Error
0.0 1.00000 1.00042 4.21368x10~1 0.00000 0.00014 1.44969x10~*
0.1 1.01001 1.01024 2.29400x10~4 0.20050 0.20057 6.88810x10~°
0.2 1.04032 1.04043 1.13087x10~* 0.40800 0.40803 2.99118x10~"
0.3 1.09243 1.09248 4.90904x107 0.64050 0.64051 1.09721x10~°
0.4 117024 1.17026 1.68592x10° 0.92800 0.92800 3.30327x10°¢
0.5 1.28125 1.28125 4.57707x1078 1.31250 1.31250 1.63568x107%
0.6 143776 1.43775 1.30106x1075 1.84800 1.84800 3.36711x10°6
0.7 1.65807 1.65804 2.90853x10~° 2.60050 2.60051 7.40580x10~%
0.8 1.96768 1.96763 4.96264x107° 3.64800 3.64801 1.43322x107°
0.9 240049 2.40042 6.98985x107° 5.08050 5.08052 2.24703x107°
1.0 3.00000 2.99992 7.80123x10~° 7.00000 7.00002 2.31397x10~°

3.5

Exact x(s)

----- Aprrox. x(s) withn =2
A Aprrox. x(s)withn =4 7
O Aprrox. x(s)withn=6 i

#(s)

0_5 L 1 1 L 1 L 1 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 [ 8] 1

s

Figure 1. The numerical results from Example 3.1 with n = 2, 4 and 6.

Example 3.2. In this example (Example 2.3 in [2]), the kernel is the
same as in Example 3.1 but y(s) is chosen so that x(s) = exp(2s) is the
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solution. The numerical approximation for x(s) and its first derivative

with n = 6 are shown in Table 5. And, the graph of the numerical results

with n = 2, 4 and 6 is shown in Figure 2.

Table 5. Numerical approximation for x(s) and its first derivative in
Example 3.2 with n = 6

Exact  Approx. Abs. Error Exact Approx. Abs. Error
0.0 1.00000 1.02964 2.96438x10~2 2.00000  1.88360 1.16404x1071
0.1 1.22140 1.23974 1.83380x1072 2.44281  2.33559  1.07211x10!
0.2 149182 1.50304 1.12177x1072 2.98365 2.88976  9.38868x1072
0.3 1.82212 1.82930 7.17623x1073 3.64424  3.56701  7.72300x1072
0.4 222554 223073 5.19125x1073 4.45108  4.39307 5.80106x10~2
0.5 2.71828 2.72265 4.36755%1073 5.43656  5.39961  3.69492x10~2
0.6 3.32012 3.32412  4.00049x1073 6.64023  6.62553  1.47037x1072
0.7 4.05520 4.05884 3.64425x1073 8.11040  8.11851 8.11164x1073
0.8 4.95303 4.95620 3.16871x1073 9.90606  9.93695 3.08820x 1072
0.9 6.04965 6.05245 2.80276x1073 12.09929 12.15223 5.29338x 1072
1.0 7.38006 7.39229 3.23192x10°3 14.77811 14.85157 7.34585% 1072

8 T

T T T T T T T

Exact x(s)
c= = Aprrox. x(s) withn =2 _,’
A Aprrox. x(s)withn =4 )
7TH © Aprrox. x(s)withn=6 e

x(s)

Figure 2. The numerical results from Example 3.2 with n = 2, 4 and 6.
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4. System of Fredholm Integral Equations

In this section, we consider applying the Taylor technique described
in the previous section to systems of Fredholm integral equations of the
second kind. Consider the system of Fredholm equations of the second
kind,

1
X(s) —I K(s, 1)X(t)dt = Y(s), 0<s<1,
0
where

X(s) = [x1(s), xa(s), s X ()",

Y(s) = [1(s), ya(s), s ym ),
K(s, t) = [k(s, 1), 4,7 =1,2, .., m (4.1)

The ith equation of (3.1) is given by
1 m
5i) = [ D k(s 0x0dt = 3i(e) P12 am @)
0 =

Since
, 1
xj(0) = x(s) + () (L = ) + - + 2l s) (- 9", (4.3)
substituting (4.3) into (4.2), we obtain

x;(s) - ZAJZ‘%U:/@](S £)(t - s)rdt}xﬁ-’")(s) ~y(s) i=1,2 .. m

(4.4)

Differentiating (4.2) n times, we have

! S ! :
xl( )(s) - IO;kEjS)(s, t)x(t)dt = yL( )(s), i=1,2..m =1 .., n

(4.5)
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Substituting once again (4.3), this time into (4.5), we get

0= X S s 0 57 1) < 0,

j=17!
1=1,2,...m, 1=1,.., n (4.6)

Equations (4.4) and (4.6) represent a system of (n +1)m equations
in as many unknown functions, {xl(l)(S)}, i=1..,m; [ =01,.. n The

current method was tested on the following examples. Note that these
examples were tested in [2] in which the necessary derivatives were
found analytically. Numerical results below show that the discrete
Taylor-expansion method works quite well and produces numerical
results which are accurate within the truncation errors of the

quadratures.

Example 4.1. In this example, we consider the following Fredholm

system of integral equations (Example 3.1 in [2]):

56 [ - 0Pn@d - [ - 0P = 36)
4.7

0(6) - [ 6= 0tn@de - [ s - 0500t = 3206)

11 +§sz—lsgandyz(s):—i—ﬂ f 32,23

- 11
with y1(s) = 55— 355+ 3 3 30 60° 20 12

- %34. The exact solutions are x;(s) = s2 and x9(s) = —s + s2 + s5. The

numerical solutions with n = 4 are shown in Table 6.

Example 4.2. Finally, we consider the following Fredholm system of
integral equations (Example 3.2 in [2]):

1 1
x1(s) + I tcos sx; (t)dt + J ssintxy(t)dt = y;(s)
0 0 4.8

xo(s) + I;eStle(t)dt o ;(s )2 (0)dt = y(s)

coss+ssin21 e’ -1

with y(s) = 3 5t and ys(s) = 35

+coss+(s+1)sinl
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+cosl—1. The exact solutions are x;(s)=s and x9(s)=coss. The

numerical solutions with n = 4 are shown in Table 7.

Table 6. Numerical approximation for x;(s) and x9(s) in Example 4.1

with n = 4
s x1(s) xa(s)

Exact  Approx. Abs. Error Exact  Approx. Abs. Error
0.0 0.00000 -0.00001 1.41485x10~" 0.00000  0.00001  1.34590x10~°
0.1 0.01000 0.00999 1.26317x10? -0.08900 -0.08899 9.13115x10°%
0.2 0.04000 0.03999 6.53544x10~° -0.15200 -0.15200 4.22754x107°
0.3 0.09000 0.09000 2.92529x10~% -0.18300 -0.18300 1.75259x10%
0.4 0.16000 0.16000 9.29941%10~7 -0.17600 -0.17600 6.78388x107
0.5 0.25000 0.25000 5.22233x10°8 -0.12500 -0.12500 3.24046x10~7
0.6 0.36000 0.36000 3.33121%10°7 -0.02400 -0.02400 2.18999x10°7
0.7 0.49000 0.49000 8.50065x 108 0.13300 0.13300 4.56240x107%
0.8 0.64000 0.64000 1.52955x1076 0.35200  0.35200 9.77705x1077
0.9 0.81000 0.81000 4.67749%x107° 0.63900  0.63900 3.35674x10°6
1.0 1.00000 0.99996 4.10313x107° 1.00000 0.99997 3.45666% 10~

Table 7. Numerical approximation for

x1(s) and x5(s) in i%

with n = 4
5 I (b) ] (b)

Exact  Approx. Abs. Error Exact  Approx. Abs. Error
0.1 0.10000 0.10001 9.35049x10~° 0.99500 0.99493  7.85780x 10~
0.2 0.20000 0.20000 2.26520x10°6 0.98007  0.98001 5.49130x107°
0.3 0.30000 0.30000 1.88048x10 ¢ 0.95534  0.95530 3.32472x10°°
0.4 0.40000 0.40000 2.45258x10°° 0.92106 0.92104 1.64162x107°
0.5 0.50000 0.50000 1.77266x107¢ 0.87758 0.87758 4.41430x1076
0.6 0.60000 0.60000 1.78311x107% 0.82534  0.82534  9.00345x10°°
0.7 0.70000 0.70000 4.07381x10°° 0.76484 0.76488 3.90125x107°
0.8 0.80000 0.79999 1.03443x107° 0.69671 0.69682 1.16283x10*
0.9 0.90000 0.89998 2.26467x1073 0.62161  0.62191 2.98192x107*
1.0 1.00000 0.99996 4.18021x1073 0.54030 0.54099 6.88327x 104
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