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Abstract 

In this paper, we continue our study that began in the papers [2], [3] and 
[4] concerning the Taylor-expansion method for approximating the 
solution of integral equations. The Taylor-expansion methods require 
taking the derivatives of the kernel of an integral equation. In practical 
applications, these derivatives must be approximated due to the 
complexities of the kernels involved. This paper addresses this issue. 

1. Introduction 

Recently, in a series of papers [2], [3] and [4], the present authors 
generalized the idea which was first proposed by Ren et al. [8]. The idea 
was to use the Taylor-expansion method to approximate the solution of 
the Fredholm integral equations of the second kind having convolution 
type kernels. Taylor-series expansion method developed in [8] relies 
heavily upon the condition that a kernel ( )stk −  of convolution type 
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decays rapidly as st −  increases. As stated in [4], the method of Ren et 
al., therefore, does not apply to a wider class of the second kind Fredholm 
integral equations having kernels of different variations. Also, the 
accuracy of approximation depends critically upon the rate at which a 
convolution kernel approaches zero as .∞→− st  The present authors 
[2], recently generalized the results in [8] to obtain a new Taylor-series 
expansion method which is applicable to a larger class of Fredholm 
equations. The new method is also capable of delivering more accurate 
approximations. Another important characteristic of the new Taylor-
expansion method is that the method lends itself to a parallel 
computation environment. Most techniques used to approximate the 
solution of an integral equation such as the method of Galerkin, 
collocation or least squares, calculate the solution over the entire 
interval. This result, for many cases, in a large system of linear equations 
in which matrix involved is usually dense and thus expensive to solve its 
corresponding system. In contrast, the current Taylor-expansion method 
is capable of computing a solution at a single point s. Also, the size of 
matrix involved is much smaller than the size of matrices used in the 
Galerkin, collocation or least-squares method. Finally, the new Taylor-
expansion method not only approximates the solution of an integral 
equation but also approximates the derivatives of the solution 
concurrently, the feature none of the aforementioned numerical methods 
can claim to possess. 

We note that in [3], the new expansion method was extended to 
obtain approximation of the solution of nonlinear Hammerstein equation 
and in [4], the new technique was extended to approximate the solution 
of a Volterra equation. 

The Taylor-expansion method requires taking derivatives of a kernel 
of an integral equation. In practical applications, these derivatives must 
be approximated due to the complexities of the kernels involved. This 
paper addresses this issue. 

This paper is organized as follows: The main point of discrete Taylor-
expansion method is given in Section 2. A list of quadratures used in 
numerical experiments and results of the numerical experiments are 
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given in Section 3. In Section 4, we generalize the method to systems of 
Fredholm integral equations. 

2. Discrete Taylor-expansion Method 

We begin this section by first outlining the recently established 
Taylor-expansion method. The method is demonstrated relative to the 
Fredholm integral equation of the second kind. Fredholm equation of the 
second kind can be written as 

 ( ) ( ) ( ) ( )∫ ≤≤=−
1

0
,10,, ssydttxtsksx  (2.1) 

where it is assumed that 1 is not the eigenvalue of the operator 

( ) ( ) ( )∫≡
1

0
., dttxtsksTx  

We assume throughout the paper that [ ] [ ]( )1,01,0 ×∈ nCk  so that the 

operator T is a compact linear operator of [ ]1,0C  into [ ].1,0C  Fredholm 
equation of the second kind plays an important role in many physical 
applications which include potential theory and Dirichlet problems, 
particle transport problems of astrophysics and radiative heat transfer 
problems. A reader may consult the references provided in [8] for these 
applied problems. 

The Taylor-expansion method begin by first writing 

 ( ) ( ) ( ) ( ) ( )( ) ( ) .!
1 nn stsxnstsxsxtx −++−′+≈  (2.2) 

Substituting (2.2) for ( )tx  in the integral in (2.1), we obtain 

( ) ( ) ( ) ( ) ( ) −′⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
− ∫∫ sxdtsttsksxdttsk

1

0

1

0
,,1  

( ) ( ) ( )( ) ( ) .10,,!
1 1

0
<<≈⎥

⎦

⎤
⎢
⎣

⎡
−− ∫ ssysxdtsttskn

nn  (2.3) 

This represents an nth order linear ordinary differential equation with 
variable coefficients, which can be solved if n boundary conditions are 
known. These boundary conditions are normally supplied from a physical 
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experiment and thus they may not be always readily available. To 
circumvent the problem, we differentiate (2.1) n times to get 

 

( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( ),,

,

1

0

1

0

sydttxtsksx

sydttxtsksx

nn
s

n

s

=−

′=′−′

∫

∫
 (2.4) 

where ( )( ) ( ) ....,,1,,, nitsk
s

tsk i

i
i

s =
∂

∂=  Now, replace each ( )tx  in (2.4) by 

the right side of (2.2) to obtain 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( )( ).1,!
1

,,

,!
1

1,,

1

0

1

0

1

0

1

0

1

0

1

0

sysxdtsttskn

sxdtsttsksdtxtsk

sysdtxsttskn

sxdtsttsksdtxtsk

nnnn
s

n
s

n
s

nn
s

ss

≈⎥
⎦

⎤
⎢
⎣

⎡
−−−

−′−−−

′≈−′−

−′⎥
⎦

⎤
⎢
⎣

⎡
−−′−′−

∫
∫ ∫

∫
∫ ∫

 

 (2.5) 

Combining equations (2.3) and (2.5), we obtain the following system 
of linear equations, the solutions of which we denote by ( ) ( ) ...,,, sxsx ′  
( )( )sx n  for an arbitrary but fixed [ ],1,0∈s  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−

−′−−′−′−

−−−−−

∫∫∫

∫∫∫
∫∫∫

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

,!
11,,

,!
1,1,

,!
1,,1

dtsttskndtsttskdttsk

dtsttskndtsttskdttsk

dtsttskndtsttskdttsk
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s

n
s

n
sss

n
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( )

( )

( )

( )

( )

( )( )

.

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′
×

sy

sy

sy

x

sx

sx

nn

 (2.6) 

The size n of the matrix in (2.6) depends on the degree of Taylor 
polynomial used in approximation and our numerical experiments show 
that the scale of 5=n  or 6 is more than enough to provide accurate 
approximations for most problems. Recall that in a method such as 
Galerkin or collocation, the resulting size of the matrix is much larger. 
For example, in the Galerkin method with quadratic spline basis 
functions applied over 100 equally spaced elements, the size of the matrix 
is .300300 ×  However, it should be pointed out that the current method 
is applicable to integral equations with smooth kernels and therefore, in 
the case of Fredholm equations with weakly singular kernels, it is 
recommended that the Galerkin or collocation method is used to obtain 
accurate solutions. For recent advances in the numerical treatments of 
linear as well as nonlinear integral equations, see, e.g., [5-7] and 
references cited within the related literature. 

In order to implement the Taylor-expansion method, the components 
of the matrix in (2.6) must be computed. In practical applications, they 
must be numerically approximated due to the complexity of the kernel. In 

this paper, we discuss this issue. Suppose that we approximate ( )( )tsk i
s ,  

by 

 ( ( )( )) ( )∑
=

=
im

j

i
j

i
j

ii tskatskQ
0

,,,  (2.7) 

where j
ia ’s are weights of the quadrature and j

is ’s are prescribed points 

which depend upon s, ni ≤≤0  and .0 mj ≤≤  Then equation (2.6) 
transforms into the following, the solutions of the system are denoted by 

( ) ( ) ( )( )sxsxsx n∗∗′∗ ...,,,  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ⎥
⎥
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⎥
⎥
⎥
⎥
⎥
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⎥
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⎢
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 (2.8) 

In order to construct an error analysis, we denote (2.6) and (2.8), 
respectively, by 

 ,yxA =  (2.9) 

and 

 .yxA =∗∗  (2.10) 

Then the following are straightforward and its proofs can be found in any 
standard textbook of numerical analysis, e.g., see [1]. In what follows ⋅  
denotes a vector and its corresponding matrix norm. 

Theorem 1. Suppose A is nonsingular so that equation (2.9) has a 

unique solution. Also, assume that ∗∗ δ+= AAA  and that 

1
1
−

∗ ≤δ
A

A  

so that ∗A  is also nonsingular. With ,∗∗ δ+= xxx  we have 

 .
1

A
A

A
AcondA

condA
x
x ∗

∗

∗ δ
⋅

δ
−

≤
δ  (2.11) 
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Error ( )( ) ( )( ) ,sxsx ii −  for each ,...,,1,0 ni =  can be found as follows. 
This was established in [2] but we include it here for completeness of 
analysis. In order to analyze the error term of the current method, 
substituting ( )tx  in (2.1) by its Taylor series, we obtain 

( ) ( )
( )( ) ( )

( ) ( )( )
( ) ( ) ( ),!1!,

1

0 0

11

∫ ∑ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+
ξ+−−

=

+
+

sfdtstn
sxstr

sxtsksx
n

r

nnrr
 (2.12) 

for .10 ≤≤ s  From the first equation of (2.6), 

 ( ) ( )
( )( ) ( ) ( )∫ ∑

=

≤≤=−−
1

0 0
.10,!,

n

r

rr
ssfdtstr

sxtsksx  (2.13) 

From (2.12) and (2.13), 

( ) ( )[ ] ( ) [ ( )( ) ( )( )] ( )∫ ∑
=

−−−−
1

0 0
!,

n

r

r
rr

str
sxsxtsksxsx  

( ) ( )( )
( ) ( ) ( ) .,!1

1

0
11

∫ +
+

−
+
ξ= dtsttskn

sx nn
 (2.14) 

Proceeding similarly for the remaining equations in (2.6), the errors 
( )( ) ( )( ),sxsx rr −  nr ...,,1,0=  can be computed by solving 

( ) ( )

( )( ) ( )( )

( ) ( )( )
( ) ( ) ( )

( ) ( )( )
( )

( )( ) ( )

.

,!1

,!1

1

0
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1

0
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+
ξ

−
+
ξ

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

×

∫

∫

+
+

+
+

dtsttskn
sx

dtsttskn
sx

sxsx

sxsx

A

nn
s

n

nn

nn

 (2.15) 

Right side of equation (2.15) reveals that the Taylor-expansion 
method finds a solution exactly if the computation is carried out without 
round-off errors provided that the solution is a polynomial. It also 
confirms that the error of the approximation of the Taylor-expansion 
method converges to zero as ∞→n  under the current assumption of 
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smooth kernel. Denote (2.15) by FAE =  so that the vector E of errors 
can be bounded as 

 .1 FAE −≤  (2.16) 

From (2.11) and (2.15), we obtain the following: 

Theorem 2. For each [ ],1,0∈s  let ( )sx  be the solution of (2.1) and 

[ ( ) ( ) ( )( )] ....,,, Tn sxsxsxx ′=  Also, let ∗x  denote the solution of (2.10). Then 

 .
1

1 xA
A

A
AcondA

condAFAxx
∗

∗
−∗ δ

⋅
δ

−

+≤−  (2.17) 

3. Quadratures and Numerical Examples 

For demonstration, we use a collection of central difference 

approximations for ( )( )tsk i
s ,  all of whose local truncation error is ( )2hO  

(see Table 1). However, the forward or backward difference formulas will 
be used when 0=s  or 1=s  (at the lower or upper limit of an integration), 
respectively. Those difference formulas are given in Tables 2 and 3. 

Table 1. Central difference formulas of order ( )2hO  
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Table 2. Forward difference formulas of order ( )2hO  

 
 

Table 3. Backward difference formulas of order ( )2hO  

 
 

In this paper, all computations were done using Matlab 7.1 Release 
14 on a personal computer (Intel Core2 CPU T5600 @ 1.83GHz). It took 
less than one minute to get the numerical results. We used 01.0=h  for 
the difference formulas in our computations. 

Example 3.1. Consider (Example 2.2 in [2]) 

 ( ) ( ) ( ) ( )∫ ≤≤=
π

−
1

0
,10,,2 ssydttxtsksx  (3.1) 

where ( ) [ ( ) ] 124, −−+= tstsk  and ( )sy  is chosen so that ( ) 521 sssx ++=  is 
the solution. Numerical results with 6=n  gave excellent approximations 
for x as well as for its derivatives. The numerical approximation for ( )sx  
and its first derivative with 6=n  are shown in Table 4. And, the graph 
of the numerical results with 4,2=n  and 6 is shown in Figure 1. 
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Table 4. Numerical approximation for ( )sx  and its first derivative in 
Example 3.1 with 6=n  

 

 

 

Figure 1. The numerical results from Example 3.1 with 4,2=n  and 6. 

Example 3.2. In this example (Example 2.3 in [2]), the kernel is the 
same as in Example 3.1 but ( )sy  is chosen so that ( ) ( )ssx 2exp=  is the 
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solution. The numerical approximation for ( )sx  and its first derivative 
with 6=n  are shown in Table 5. And, the graph of the numerical results 
with ,2=n  4 and 6 is shown in Figure 2. 

Table 5. Numerical approximation for ( )sx  and its first derivative in 
Example 3.2 with 6=n  

 
 

 

Figure 2. The numerical results from Example 3.2 with 4,2=n  and 6. 



P. HUABSOMBOON, B. NOVAPRATEEP and H. KANEKO 150 

4. System of Fredholm Integral Equations 

In this section, we consider applying the Taylor technique described 
in the previous section to systems of Fredholm integral equations of the 
second kind. Consider the system of Fredholm equations of the second 
kind, 

( ) ( ) ( ) ( )∫ ≤≤=−
1

0
,10,, ssdtttss YXKX  

where 

( ) ( ) ( ) ( )[ ] ,...,,, 21
T

m sxsxsxs =X  

( ) ( ) ( ) ( )[ ] ,...,,, 21
T

m sysysys =Y  

( ) [ ( )] ....,,2,1,,,, mjitskts ij ==K  (4.1) 

The ith equation of (3.1) is given by 

 ( ) ( ) ( ) ( )∫ ∑
=

==−
1

0 1
....,,2,1,,

m

j
ijiji misydttxtsksx  (4.2) 

Since 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ,!
1 nn

jjjj stsxnstsxsxtx −++−′+≈  (4.3) 

substituting (4.3) into (4.2), we obtain 

( ) ( ) ( ) ( )( ) ( )∑∑ ∫
= =

=≈⎥
⎦

⎤
⎢
⎣

⎡
−−

n

r

m

j
i

r
j

r
iji misysxdtsttskrsx

0 1

1

0
....,,2,1,,!

1  

 (4.4) 

Differentiating (4.2) n times, we have 

( )( ) ( )( ) ( ) ( )( )∫ ∑
=

===−
1

0 1
....,,1,...,,2,1,,

m

j

l
ij

l
ij

l
i nlmisydttxtsksx

s
 

 (4.5) 
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Substituting once again (4.3), this time into (4.5), we get 

( )( ) ( )( ) ( ) ( )( ) ( )( )∑ ∑ ∫= =
≈⎥

⎦

⎤
⎢
⎣

⎡
−−

n

r

m

j
l

i
r
j

rl
ij

l
i sysxdtsttskrsx

s0 1

1

0
,,!

1  

 ....,,1,...,,2,1 nlmi ==  (4.6) 

Equations (4.4) and (4.6) represent a system of ( )mn 1+  equations           

in as many unknown functions, { ( )( )},sx l
i  ;...,,1 mi =  ....,,1,0 nl =  The 

current method was tested on the following examples. Note that these 
examples were tested in [2] in which the necessary derivatives were 
found analytically. Numerical results below show that the discrete 
Taylor-expansion method works quite well and produces numerical 
results which are accurate within the truncation errors of the 
quadratures. 

Example 4.1. In this example, we consider the following Fredholm 
system of integral equations (Example 3.1 in [2]): 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

=−−−−

=−−−−

∫ ∫
∫ ∫

1

0

1

0
22

3
1

4
2

1

0

1

0
12

2
1

3
1

sydttxtsdttxtssx

sydttxtsdttxtssx
 (4.7) 

with ( ) 32
1 3

1
3
5

30
11

20
1 ssssy −+−=  and ( ) 32

2 12
23

20
3

60
41

30
1 ssssy ++−−=  

.3
1 4s−  The exact solutions are ( ) 2

1 ssx =  and ( ) .32
2 ssssx ++−=  The 

numerical solutions with 4=n  are shown in Table 6. 

Example 4.2. Finally, we consider the following Fredholm system of 
integral equations (Example 3.2 in [2]): 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

=+++

=++

∫ ∫
∫ ∫

1

0

1

0
2212

1

0

1

0
1211

2

sincos

sydttxtsdttxesx

sydttxtsdttxstsx

st
 (4.8) 

with ( ) ssssy ++= 2
1sin

3
cos 2

1  and ( ) ( ) 1sin1cos2
1

2 +++−= sss
esy

s
 



P. HUABSOMBOON, B. NOVAPRATEEP and H. KANEKO 152 

.11cos −+  The exact solutions are ( ) ssx =1  and ( ) .cos2 ssx =  The 
numerical solutions with 4=n  are shown in Table 7. 

Table 6. Numerical approximation for ( )sx1  and ( )sx2  in Example 4.1 
with 4=n  

 
 

Table 7. Numerical approximation for ( )sx1  and ( )sx2  in Example 3.4 
with 4=n  
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