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Abstract

In this note, we make a few comments concerning the paper of Hughes and Akin [4]. Our

primary goal is to demonstrate that the rate of convergence of numerical solutions of the

finite element method with singular basis functions depends upon the location of additional

collocation points associated with the singular elements.
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1 Finite Element Method With Singular Basis Functions

In the paper [4], Hughes and Akin made an interesting observation concerning the finite element

analysis that incorporates singular element functions. A need for introducing some singular

elements as part of basis functions in certain finite element analysis arises out of the following

considerations. The solution of certain problems, such as a field problem [1], exhibits highly

singular behavior due to geometric features of the spatial domain. On the other hand, in other

circumstances, the solution is overwhelmingly affected by the nature of loading and the problem

of singularity can be ignored. To satisfy both situations just described, it is thought that

an incorporation of singular elements that emulate the solution with the standard polynomial

elements may perhaps be desirable. This is the point that was exploited in [4] by Hughes and

Akin. In order to make the computations of the finite element method with singular elements

more efficient, they consider the following algorithm for constructing interpolation functions.

A construction of such algorithm was motivated by the idea that “it is of practical interest to

develop techniques for systematically defining shape functions for singularity modeling (and for

developing special elements in general), which circumvent the interpolation problem” ([5] p.176).

The algorithm that they developed goes as follows:

ALGORITHM Suppose that there are n shape functions Na, a = 1, 2, . . . , n which satisfy the

interpolation property on the first m nodes rb, viz., Na(rb) = δab, a, b = 1, 2, . . . ,m (m < n).

Their idea here is to reshape Na’s so that the interpolation property is satisfied on all n nodes.

The algorithm is given by

Step 1 Nm+1 ←
Nm+1(r)−

∑
a=1mNm+1(ra)Na(r)

Nm+1(rm+1)−
∑m

a=1
Nm+1(ra)Na(rm+1)

Step 2 Na(r)← Na(r)−Na(rm+1)Nm+1(r), a = 1, 2, . . . ,m

Step 3 If m + 1 < n, replace m by m + 1 and repeat Steps 1 to 3.

If m + 1 = n, stop.

Before we comment on the algorithm, we would like to draw the reader’s attention to the

recent paper by Dydo and Busby [3]. They observed that “using the algorithm as a subroutine

during the finite element shape function generation requires re-evaluation of all terms of the

shape functions at each nodal point and eventually leads to excessive round-off error”. To

prevent this difficulty, they develop an equivalent algorithm in matrix form to generate finite
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elements with special properties. The results reported in [3] demonstrate a considerable increase

in computational efficiency.

We now return to our discussion of the algorithm. To demonstrate this algorithm, we borrow

one of the examples from [5]. Let r1 = 0, r2 = 1
2 and r3 = 1. The shape functions that we

reconstruct are N1(r) = 1 − 2r, N2(r) = 2r and N3(r) = rα where α representing some real

number. Note that Na(rb) = δab, 1 ≤ a, b ≤ 2. An application of the above algorithm gives

N1(r) ← 1− 2r +
[

rα−2( 1
2
)αr

1−2( 1
2
)α

]
N2(r) ← 2r − 2

[
rα−2( 1

2
)αr

1−2( 1
2
)α

]
N3(r) ←

rα−2( 1
2
)αr

1−2( 1
2
)α .

Of course, the newly defined shape functions satisfy

Na(rb) = δab 1 ≤ a, b ≤ 3. (1)

It is important to note at this point that the algorithm is subject to the location of the interpo-

lation points rb, m+1 ≤ b ≤ n. Clearly, step 1 of algorithm is sensitive to the location. Namely,

if these interpolation points are such that

Nm+1(rm+1)−
m∑

a=1

Nm+1(ra)Na(rm+1) = 0 (2)

then the algorithm does not work. Out of this observation, there seems to arise a profound and

difficult problem in the area of approximation theory. The problem is important in that the

success of the finite element method using the collocation scheme with singular basis functions

hinges on a resolution of this problem. To describe it, let W k
p denote the Sobolev space,

W k
p = {f |f (k) ∈ Lp(Ω)}

where f (k) denote the kth generalized derivative and Ω is a bounded region in R. The theory

extends easily to higher dimensions. Now let U ≡ span[Na]na=m+1 where {Na}na=m+1 represent

the singular elements. Also denote by Sk
h the approximation space spanned by {Na}ma=1. Here

Sk
h is usually taken as the space of piecewise polynomials of degree k − 1 with length of each

subinterval h. Our goal is to approximate each element of U ⊕W k
p by an element from U ⊕ Sk

h

by interpolation. That is, if {rb}mb=1 is such that Na(rb) = δab for 1 ≤ a, b ≤ m, then for each

f ∈ U ⊕W k
p , we must find v ∈ U ⊕ Sk

h that satisfies

v(rb) = f(rb) b = 1, . . . , n, (3)
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where {rb}nb=m+1 are specified interpolation points for {Na}na=m+1. Denote the interpolation

projector of U ⊕W k
p to U ⊕ Sk

h by Ph. Namely Ph is defined so that

Phf(s) = v(s) s ∈ Ω. (4)

Notice that P 2
h = Ph. In order to achieve a convergence by the collocation scheme in the finite

element method, we must examine the following inequality. Here we assume that the number of

singular basis functions, n−m, is fixed.

|det[Na(rb)]|na,b=1 ≥ ε > 0 for all n. (5)

This inequality is a necessary and sufficient condition for the algorithm of Hughes and Akin

to work. It is important to remark at this point that the success of algorithm depends upon

the existence of a solution to the interpolation problem (3) which in turn is equivalent to the

condition (5). For each fixed index n (hence for fixed m) , it is not difficult to find n − m

interpolation points rb, m + 1 ≤ b ≤ n, that correspond to the singular basis elements Na,

m + 1 ≤ a ≤ n for which the inequality in (5) is satisfied. What is difficult here is the question

of locating n −m points for as many singular elements for which condition (5) is satisfied for

all n. The problem of finding n−m interpolation points for singular basis functions that work

for all n is currently under investigations. In the following section, we proceed our discussion

of the interpolation problem which leads to a finite element analysis with singular elements.

The discussion will provide information concerning the rate of approximation of interpoalation.

Interpolation examples at the end of the section show that rates of convergence are quite sensitive

to locations of interpolation points for singular elements.

2 Convergence Analysis

When condition (5) is satistied, one can deduce the rate of convergence of the projector Ph to

the identity operator I. As is well known -e.g., [5], the convergence rate of such interpolation

projectors determine the rate of convergence of the finite element method that uses collocation

scheme. The following theorem of Cao and Xu [2] is useful. We sketch a proof for completeness.

Lemma 2.1 Let X be a Banach space. Assume that U1 and U2 are two subspaces of X with

U1 ⊆ U2. Moreover assume that P1:X → U1 and P2:X → U2 are linear operators. If P2 is a

projection, then

‖x− P2x‖X ≤ (1 + ‖P2‖X)‖x− P1x‖X for all x ∈ X.

4



Proof: Let x ∈ X. We write

x− P2x = (x− P1x) + (P1x− P2x).

Since P1x ∈ U1 and U1 ⊆ U2, we have P2P1x = P1x. Hence,

x− P2x = x− P1x + P2P1x− P2x

= (I − P2)(x− P1x).

It follows that

‖x− P2x‖X ≤ (1 + ‖P2‖X)‖x− P1x‖X for all x ∈ X.

2

This lemma seems to suggest a reason for which the method of interpolation using a set of

singular elements is sensitive to the location of interpolation points corresponding to the singular

basis functions. We let P1 be the interpolatory projection of U ⊕W k
p onto Sk

h, namely for each

f ∈ U ⊕W k
p , P1f ∈ Sk

h is defined by

P1f(ra) = f(ra), a = 1, . . . ,m.

Theorem 2.2 Assume that y = u+ v with u ∈ U and v ∈W k
p . Let Ph be the projection defined

by (4). Then

‖Phy − y‖p ≤ (1 + ‖Ph‖p)‖y − P1y‖p

where 1 ≤ p ≤ ∞.

We make two observations here. First, condition (5) plays the essential role for the pointwise

convergence of Ph to the identity operator I, which, in turn, by the uniform bounded principle,

guarantees the uniform boundedness of ‖Ph‖ for h > 0. Second, because of a singular compo-

nent present in y, it is expected that ‖y − P1y‖p does not converge at the optimal rate. Two

observations seem to provide some explanations to the phenomenon revealed in the example

below. A comprehensive study of the power of approximations by splines can be found in [8].

A similar study of incorporating the singular elements into an approximating basis was given

in the numerical analysis for the weakly singular Fredholm equations. The results from [2] were

recently generalized to a class of nonlinear Hammerstein equations in [6], which in turn extends

the work in [7]. These papers are concerned with the singularity preserving Galerkin methods

and the analysis associated with these methods appear more straightforward. We close this note

by demonstrating the sensitivity of the location of interpolation points for singular elements.
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EXAMPLE: Let f(x) =
√

x +
√

1− x + x2. We wish to approximate f over [0, 1] by an

element from U⊕S2
h, where U = span[

√
x,
√

1− x]. Let {xi}ni=0 be the uniform partition of [0, 1]

defined by xi = i
n , i = 0, 1, . . . , n and h = 1

n . The interpolation points used to define an element

from S2
h are taken to be the zeros of the second degree Legendre polynomials transformed into

[xi−1, xi] for i = 1, 2, . . . , n. The following data shows that (a) when the interpolation points for

the singular elements are taken to be t1 = 1
5 and t2 = 4

5 for each n, the convergence is O(h1/2),

whereas (b) when t1 = 1
2n and t2 = 1− t1, then the convergence is of the order O(h2).

interpolation point t1 = 1/2n 1/5

n = 4 0.0513168 0.0513168

n = 6 0.0008437 0.0235540

convergence exponent = 1.99 0.56

Table 1. Error and convergence rate data for the example
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