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Abstract

In this note, we make a few comments concerning the paper of Hughes and Akin [4]. Our
primary goal is to demonstrate that the rate of convergence of numerical solutions of the
finite element method with singular basis functions depends upon the location of additional

collocation points associated with the singular elements.
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1 Finite Element Method With Singular Basis Functions

In the paper [4], Hughes and Akin made an interesting observation concerning the finite element
analysis that incorporates singular element functions. A need for introducing some singular
elements as part of basis functions in certain finite element analysis arises out of the following
considerations. The solution of certain problems, such as a field problem [1], exhibits highly
singular behavior due to geometric features of the spatial domain. On the other hand, in other
circumstances, the solution is overwhelmingly affected by the nature of loading and the problem
of singularity can be ignored. To satisfy both situations just described, it is thought that
an incorporation of singular elements that emulate the solution with the standard polynomial
elements may perhaps be desirable. This is the point that was exploited in [4] by Hughes and
Akin. In order to make the computations of the finite element method with singular elements
more efficient, they consider the following algorithm for constructing interpolation functions.
A construction of such algorithm was motivated by the idea that “it is of practical interest to
develop techniques for systematically defining shape functions for singularity modeling (and for
developing special elements in general), which circumvent the interpolation problem” ([5] p.176).

The algorithm that they developed goes as follows:

ALGORITHM Suppose that there are n shape functions N,, a = 1,2,...,n which satisfy the
interpolation property on the first m nodes 74, viz., Ng(rp) = 6ap, a,b = 1,2,...,m (m < n).
Their idea here is to reshape N,’s so that the interpolation property is satisfied on all n nodes.

The algorithm is given by

Nm41(r)= - a=1"Npj1(ra)Na(r)
Nm+1("'m+1)_2;n:1 Nm+1(7’a)Na(7"m+l)

Step 2 Ng(r) «— No(r) — No(rimt1) Not1 (1), a=1,2,...,m

Step 1 Nppy1

Step 3 If m 4+ 1 < n, replace m by m + 1 and repeat Steps 1 to 3.
If m + 1 = n,stop.

Before we comment on the algorithm, we would like to draw the reader’s attention to the
recent paper by Dydo and Busby [3]. They observed that “using the algorithm as a subroutine
during the finite element shape function generation requires re-evaluation of all terms of the
shape functions at each nodal point and eventually leads to excessive round-off error”. To

prevent this difficulty, they develop an equivalent algorithm in matrix form to generate finite



elements with special properties. The results reported in [3] demonstrate a considerable increase
in computational efficiency.

We now return to our discussion of the algorithm. To demonstrate this algorithm, we borrow
one of the examples from [5]. Let r1 = 0, r, = 1 and r3 = 1. The shape functions that we
reconstruct are Ni(r) = 1 — 2r, Na(r) = 2r and N3(r) = r® where « representing some real

number. Note that Ny (rp) = dap, 1 < a,b < 2. An application of the above algorithm gives

Of course, the newly defined shape functions satisfy
Na(Tb) = (5ab 1 < a, b < 3. (1)

It is important to note at this point that the algorithm is subject to the location of the interpo-
lation points rp, m+1 < b < n. Clearly, step 1 of algorithm is sensitive to the location. Namely,
if these interpolation points are such that

m

Nm+1(7”m+1) - Z Nm+1(7“a)Na(7“m+1) =0 (2)

a=1
then the algorithm does not work. Out of this observation, there seems to arise a profound and
difficult problem in the area of approximation theory. The problem is important in that the
success of the finite element method using the collocation scheme with singular basis functions

hinges on a resolution of this problem. To describe it, let Wf denote the Sobolev space,
Wy = {f1/" € Ly(2)}

where f(*) denote the kth generalized derivative and Q is a bounded region in R. The theory
extends easily to higher dimensions. Now let U = span[N,|i_,,,; where {Ny}7_, . represent
the singular elements. Also denote by S¥ the approximation space spanned by {N,}™ . Here
S,’f is usually taken as the space of piecewise polynomials of degree k — 1 with length of each
subinterval h. Our goal is to approximate each element of U & Wﬁ by an element from U & S,’f
by interpolation. That is, if {ry}}", is such that Ng(ry) = 04 for 1 < a,b < m, then for each
feUo® Wlf, we must find v € U @ SF that satisfies

v(ry) = f(rp) b=1,...,n, (3)



where {ry};_, ., are specified interpolation points for {Ny}j_,, 1. Denote the interpolation

projector of U & sz to U & S,’f by Pp. Namely P is defined so that
Prf(s) =v(s) s €. (4)

Notice that P? = P,,. In order to achieve a convergence by the collocation scheme in the finite
element method, we must examine the following inequality. Here we assume that the number of

singular basis functions, n — m, is fixed.
|det[Na(7p)]|g pe1 =€ >0 for all n. (5)

This inequality is a necessary and sufficient condition for the algorithm of Hughes and Akin
to work. It is important to remark at this point that the success of algorithm depends upon
the existence of a solution to the interpolation problem (3) which in turn is equivalent to the
condition (5). For each fixed index n (hence for fixed m) , it is not difficult to find n —m
interpolation points r,, m + 1 < b < n, that correspond to the singular basis elements N,
m + 1 < a <n for which the inequality in (5) is satisfied. What is difficult here is the question
of locating n — m points for as many singular elements for which condition (5) is satisfied for
all n. The problem of finding n — m interpolation points for singular basis functions that work
for all n is currently under investigations. In the following section, we proceed our discussion
of the interpolation problem which leads to a finite element analysis with singular elements.
The discussion will provide information concerning the rate of approximation of interpoalation.
Interpolation examples at the end of the section show that rates of convergence are quite sensitive

to locations of interpolation points for singular elements.

2 Convergence Analysis

When condition (5) is satistied, one can deduce the rate of convergence of the projector P, to
the identity operator I. As is well known -e.g., [5], the convergence rate of such interpolation
projectors determine the rate of convergence of the finite element method that uses collocation

scheme. The following theorem of Cao and Xu [2] is useful. We sketch a proof for completeness.

Lemma 2.1 Let X be a Banach space. Assume that Uy and Us are two subspaces of X with
Uy C Us. Moreover assume that Py: X — Uy and Po: X — Us are linear operators. If Py is a

projection, then

|z — Pox|lx < (14 ||P2llx)||z — Piz||x forallx € X.



Proof: Let x € X. We write
r — Pyx = (x — Pix) + (Pix — Pyx).
Since Pix € Uy and Uy C Us, we have PoPix = Pyx. Hence,

r— P = x—Pix+ PPx— P
== (I—P2)($—P1$).

It follows that
|z — Pezl|x < (1+ [|P2]|x)l|r — Pix||x for all x € X.

This lemma seems to suggest a reason for which the method of interpolation using a set of
singular elements is sensitive to the location of interpolation points corresponding to the singular
basis functions. We let P; be the interpolatory projection of U & W;f onto SF, namely for each
fe UEBW;, Py f € SF is defined by

Pif(rq) = f(ra), a=1,...,m.

Theorem 2.2 Assume that y = u+v withu € U and v € Wf. Let Py, be the projection defined

by (4). Then
1Phy = yllp < (L+ [ Pallp)lly — Pryllp

where 1 < p < co.

We make two observations here. First, condition (5) plays the essential role for the pointwise
convergence of Pj, to the identity operator I, which, in turn, by the uniform bounded principle,
guarantees the uniform boundedness of ||Py|| for A > 0. Second, because of a singular compo-
nent present in y, it is expected that ||y — P1yl|, does not converge at the optimal rate. Two
observations seem to provide some explanations to the phenomenon revealed in the example
below. A comprehensive study of the power of approximations by splines can be found in [8].

A similar study of incorporating the singular elements into an approximating basis was given
in the numerical analysis for the weakly singular Fredholm equations. The results from [2] were
recently generalized to a class of nonlinear Hammerstein equations in [6], which in turn extends
the work in [7]. These papers are concerned with the singularity preserving Galerkin methods
and the analysis associated with these methods appear more straightforward. We close this note

by demonstrating the sensitivity of the location of interpolation points for singular elements.



EXAMPLE: Let f(z) = /z + /1 — 2 + 22. We wish to approximate f over [0,1] by an
element from U & S7, where U = span[y/z, /1 — z]. Let {x;}?, be the uniform partition of [0, 1]

defined by x; = %, i1=0,1,...,nand h = % The interpolation points used to define an element

from S,Ql are taken to be the zeros of the second degree Legendre polynomials transformed into

[€;—1,2;] for i = 1,2,...,n. The following data shows that (a) when the interpolation points for

the singular elements are taken to be t; = % and to = % for each n, the convergence is O(h'/?),

1

whereas (b) when ¢; = 5~ and ¢ty = 1 — ¢1, then the convergence is of the order O(h?).

interpolation point t; = 1/2m 1/5
n=4 0.0513168 0.0513168
n==06 0.0008437 0.0235540

convergence exponent = 1.99 0.56

Table 1. Error and convergence rate data for the example
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