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Abstract

The purpose of this paper is two-fold. First, we develop the Petrov-Galerkin method
and the iterated Petrov-Galerkin method for a class of nonlinear Hammerstein equations.
Alpert [1] established a class of wavelet basis and applied it to approximate solutions of the
Fredholm second kind integral equations by the Galerkin method. He then demonstrated an
advantage of a wavelet basis application to such equations by showing that the corresponding
linear system is sparse. The second purpose of this paper is to study how this advantage of

the sparsity can be extended to nonlinear Hammerstein equations.

1 Introduction

In this paper we study the Hammerstein integral equation

u(t) — /Olk(s,t)w(s,u(s))ds —f(1), O0<t<l (1.1)

For known functions k, ¥ and f, an unknown solution u is to be approximated. We establish
in this paper the Petrov-Galerkin and iterated Petrov-Galerkin methods to approximate wu.
Equation (1.1) arises as a reformulation of two-point boundary value problems with a certain
nonlinear boundary condition, [7]. Also multi-dimensional analogues of equation (1.1) appear
as various reformulations of an elliptic partial differential equation with nonlinear boundary
conditions; see, e.g., [3, 4]. We shall discuss the present methods in relation to one-dimensional
Hammerstein equation of (1.1), however, the theory developed in this paper can be extended
straightforwardly to multi-dimensional cases.

The Galerkin and collocation methods are two commonly used methods for the numerical
solution of the second kind Fredholm equations as well as for the Hammerstein equation (1.1).
Many papers have appeared on these methods and a large part of the results presented in these
papers were recently compiled in the monograph by Atkinson, [2]. The superconvergence of
the iterated Galerkin method and that of the iterated collocation method for Hammerstein

equation (1.1) were obtained recently in [9] and in [8] respectively. On the other hand, the



Petrov-Galerkin and iterated Petrov-Galerkin methods are established in [5] for the second kind
Fredholm equation

u@%ikaJM@Ms:f@L 0<t<l (1.2)
It is noted in [5] that the Petrov-Galerkin method includes the Galerkin, collocation, and least
squares methods as well as many other nonstandard but useful methods as special cases. Unlike
the standard Galerkin method, the Petrov-Galerkin method allows the trial space sequence
X, C X and the test space sequence Y;, C X* (the dual of X) to be different. This feature
provides a greater freedom in choosing a pair of space sequences {X,,Y,} so as to improve the
computational efficiency over the standard Galerkin method while preserving its convergence
order.

In [6], Chen, Micchelli and Xu established the Petrov-Galerkin method for equation (1.2)
using a class of orthogonal multiwavelets on [0,1]. Results of this paper show that the wavelet
Petrov-Galerkin method for second kind Fredholm integral equations yields linear systems hav-
ing numerically sparse coefficient matrices whose condition number is bounded. They also
developed a truncation strategy that leads to linear systems having sparse coefficient matrices,
thus providing a framework for fast algorithms for obtaining approximate solutions. Moreover,
their approximate solutions have almost optimal order of convergence. In this paper, we use
the wavelet basis constructed by Alpert in [1] to examine closely how the advantage of sparsity
obtained by the application of the wavelet basis for the linear equations would manifest itself in
the nonlinear equations (1.1).

Throughout this paper we will make the following assumptions on %, k and f.

LoJim [ by~ by o= 0, 7€ [0.1] (ka(b) = k(a,b));

2. My = sup fol |k(t, s)|ds < oo

0<t<1

3. feCo,1];

4. (s, x) is continuous on [0, 1] x R and there exists C; > 0 such that |¢(s, 1) — (s, x2)| <

Cy|zy — 22| for all x1, 29 € R;

5. There is a constant Cs such that the partial derivative (%1 of ¢ with respect to the

second variable satisfies |¢(0’1)(t, x1) — w(ovl)(t, x9)| < Calz1 — x2| for all x1, 29 € R;

6. For z € C[0,1], (-, z(-)), OV (-, z(-) € C[0,1].



Although 2 follows from 1 by compactness of [0, 1] and continuity, we list 2 explicitly for
convenience.

Our first objective in this paper is to establish the Petrov-Galerkin and iterated Petrov-
Galerkin methods for the Hammerstein equation (1.1). We will use the theoretical framework of
Chen and Xu [5], and a detailed analysis similar to that of Kaneko and Xu [9], and to Vainikko
[11]. Our main theorems in this regard are Theorems 2.6 and 2.7.

Our second objective is to establish a framework for fast algorithms for obtaining approximate
solutions. As was stated earlier, a utilization of wavelet basis in approximating a solution of
the second kind Fredholm equation results in a matrix system that is sparse, see [1] and [6].
The sparsity is obtained from two important characteristics of the wavelet bases; the property
of vanishing moments and the property that each wavelet basis element away from the diagonal
has a small support. In section 3, we discuss the Petrov-Galerkin method with wavelet bases and
its related topics. The main theorem is Theorem 3.4. In section 4, we address the problem of
obtaining sparsity results for the Hammerstein equations (1.1). The substitution z = (-, u(-))
used in [10] will allow us to accomplish this in the setting of nonlinear equations. With this
substitution, it will be shown that the sparsity takes place in the Jacobian matrix during the

application of the Newton’s iterative method.

2 The Petrov-Galerkin Method for Hammerstein Equation

We begin this section with a brief review of the Petrov-Galerkin method. We follow closely the
paper by Chen and Xu, [5]. Let X be a Banach space and X* its dual space of continuous linear
functionals. For each positive integer n, we assume that X,, C X, Y, C X*, and X,, and Y,, are

finite dimensional vector spaces with
dim X,, = dimY,,.
We further assume the following approximation property.

(H) If x € X and y € Y, then there are sequences {z,}, {yn} with x,, € X,,, yn, € Y}, for all n

such that z,, — z, and y, — y.



Define K by

and ¥ by
a(t) = v(t ().

With the assumption K, ¥ : X — X equation (1.1) can be written as

u—Kbu=f feX. (2.1)

Define, for z € X, an element P,z € X,, called the generalized best approrimation from X,

to x with respect to Y,, by the equation
(x — Ppz,yn) =0 forall vy, €Y,. (2.2)

It is proved in [5], [Proposition 2.1], that for each € X, the generalized best approximation

from X, to z with respect to Y, exists uniquely if and only if

Y. ()X = {0}, (2.3)

where X;- = {z* € X* : (x,2*) = 0 for all € X,,}. When condition (2.3) is satisfied, P,, defines
a projection; P? = P,. Throughout the remainder of this paper, condition (2.3) is assumed.

In order to formulate the Petrov-Galerkin method as part of the general projection scheme
and render an appropriate error analysis accordingly, it is important to establish that P, con-
verges pointwise to the identity operator I. To this end, the notion of regular pair is introduced.
Assume that, for each n, there is a linear operator I1,: X,, — Y,, with 11, X,, = Y,, and satisfying

the following two conditions.

(H-1) || z, || < C1(xp, M) Y2 for all z, € X,,.

(H-2) || oz ||[< Co || 2 | for all z, € X,

Here C'; and Cs are constants independent of n.
If a pair of space sequences {X,} and {Y,} satisfy (H-1) and (H-2) , we call {X,,Y,}
a regular pair. It is shown in [5], [Proposition 2.4|, that, if a regular pair {X,,Y,} satisfies

dim X,, = dim Y, and condition (H), then the corresponding generalized projection P, satisfies:



(P1) || Pz —z || = 0asn — oo for all z € X,
(P2) || P, | C, n=1,2,3,..., for some constant C, and

(P3) | Phz—z||<cl| Quz—=a|, n=1,23,.., for some constant c,

where @,z is the best approximation from X,, to z.
The Petrov-Galerkin approximation to the Fredholm second kind equation (1.2) is obtained

by solving for u,, of the following equation:

(U, — K, yn) = (f, yn) forall y, € Y,. (2.4)

This is consistent with the basic principle that underlies the projection method, which requires
the residual r,, = u, — Ku, — f to disappear under a projection. Using the generalized projection

P, equation (2.4) can be written in operator form as
up — PyKu, = P, f. (2.5)

Therefore, the Petrov-Galerkin method is a projection method.
We recall the following three theorems that will become instrumental in establishing our

main theorems in this section.

Theorem 2.1 (see, e.g.,[2]) Let X be a Banach space and {X,,} a sequence of finite-dimensional
subspaces of X. Assume that K: X — X is a compact linear operator not having 1 as an
etgenvalue. Let B, X — X,, be a sequence of linear projections that converges pointwise to the

identity operator I in X. Then, for sufficiently large n, the equation
up — PoKup, = P, f (2.6)
has a unique solution u, € X, with
= [|[< C | u— Poull,
where C' is a constant independent of n and u is the unique solution of equation (1.1).

Theorem 2.2 ([5]) Let X be a Banach space and K: X — X a compact linear operator. Assume
that 1 is not an eigenvalue of the operator K. Suppose that {X,,, Y} is a reqular pair that satisfies

dim X,, = dimY,, and condition (H). Then, for any given f € X, there exists a positive integer



N such that, for all n > N, the Petrov-Galerkin equation (2.6) has a unique solution u, € X,
that satisfies

lu=w |<C inf Ju=a,l, n>N,

where C' is a constant independent of n and w € X is the unique solution of equation (1.1).

We will establish an analogous result to Theorem 2.2 for the Hammerstein equation (2.1). To
this end, we recall the third theorem below which is due to Vainikko [11]. This useful theorem
describes the conditions that are necessary to approximate a solution of a class of nonlinear

operator equation.

Theorem 2.3 Let T and T be continuous over an open set Q in a Banach space X. Let the
equation

x=Tx
have an isolated solution Tg € Q0 and let the following conditions be satisfied:

(a) The operator T is Fréchet differentiable in some neighborhood of the point Ty while the

linear operator I — T'(Zg) is continuously invertible;

(b) Suppose that for some 6 > 0, and 0 < q < 1, the following inequalities are valid (the

number 0 is assumed to be so small that the sphere || x — Zo ||[< § is contained within Q)

LS T =T @) (T @) ~ T (@) IS g, (2.7)

a = (I =T'(20))" (T (%) — T(0)) |< 6(1 — q)- (2.8)

Then the equation © = Tx has in the sphere | x — &g ||< 6 a unique solution xo. Moreover,
the inequality

[0
— <z -0 I — (2.9)
q —q

18 valid.

The Petrov-Galerkin method for the Hammerstein equation (2.1) is defined by

(U, — KU, yn) = (f, yn) forall y, € Y. (2.10)



Equation (2.10) is equivalent, in operator form, to

Uy — P KWu, = P,f. (2.11)

Let
Te=KUz+ f (2.12)

and
Thxy = PoKVYx, + P,f, (2.13)

Then equations (2.1) and (2.11) can be written as
u="Tu (2.14)

and

Uy, = Thun (2.15)

respectively. We are now ready to state and prove our first theorem.

Theorem 2.4 Let ug be an isolated solution of equation (2.1) in the Banach space X = L*°[0,1].
Assume that 1 is not an eigenvalue of KW' (ug), where W' (xy) denotes the Fréchet derivative of
U at zg. Then the Petrov-Galerkin approzimation equation (2.11) has, for each sufficiently large

n, a unique solution u, in some ball of radius § centered at xo, B(xo,0). Further, there exists

0 < g <1, independent of n, such that if
an =|| (I =Ty (uo)) ™ (Tn(uo) — T'(uo)) |

then

Qp, Qnp
< — < . 2.16
1+¢ < un — v flo< 1—g ( )

Finally, if the distance from ug to X, is Ep(ug) = infyex, || uo — = ||oo, then there exists a

constant C, independent of n, such that
En(uo) <|| un — o [loo< C{ER (K ¥ (ug)) + En(f)}- (2.17)

Proof: We will apply Theorem 2.3 of Vainikko. It requires that 7}, be Fréchet differentiable in
some neighborhood of uy and that I — T}, (up) be continuously invertible. But these follow from

assumption 5 of Section 1 and from (P1)-(P3) above. Hence, condition (a) of Theorem 2.3 is



verified. We next check condition (b) of Theorem 2.3. To establish (2.7), we need the uniform

boundedness of (I — T (ug))~! for all sufficiently large n and the local Lipschitz condition
1T (u0) = Ty (w) floo< M || ug — u [loc (2.18)

for all v in some neighborhood of ug. (Here and throughout the remainder of the paper we use
M to denote a generic constant the exact value of which may change at each occurrence.) Then,

choosing § sufficiently small, (2.7) holds. But (2.18) holds because for each || u ||oo< 1,

1T (o)) = T, ()] [loo= | PaKW (u0)z — Pa KW (u)2 [|oo

< C'supgeray | o Bt s) [ OV (s, uo(s)) — OV (s, u(s))]a(s) ds|
< C OaMysupg<i<q [uo(t) —u(t)| = M || uo — u || -

where C' and C3 are constants defined earlier in proposition 2.4 of [5] and in assumption 5 of
Section 1 respectively.
The fact that, for sufficiently large n, I — T/ (ug) is invertible and | (I — T/, (ug))~* || is

uniformly bounded can be established by observing that for each x € X,
I T3 (o) [x] — T (uo) [2] [|oo=] PaB¥ (uo)[z] — K’ (ug)[2] [|oc— O

by Proposition 2.4, [5]. Thus 7 (ug) converges in operator norm to 7”(ug), and the result follows
from the hypothesis that (I — T"(ug))™! exists and from the fact that the set of continuously
invertible operators is an open set. Hence (2.7) is satisfied.

To check (2.8), we use the previous result;

an <M || Ty (uo) — T'(uo) [loo
< M{|[ Pof = f lloo + | PaK®(uo) — K (uo) [[oc} (2.19)
— 0, asn — 0.
Thus, (2.8) is implied, and (2.16) follows from Theorem 2.3.
For (2.17), the first inequality is trivial, as u, € X,. The second inequality follows from
(2.16), (2.19) and the fact proved in Proposition 2.4 of [5] that

| PaKW (ug) = KW (uo) [loo< M || QnE W () — KW (uo) [loo -



2.1 Iterated Petrov-Galerkin Method

In this subsection, we discuss the iterated Petrov-Galerkin method. This extends the result
of the iterated Galerkin method for Hammerstein equation obtained in [9]. Define the iterated

approximation for Hammerstein equation by

2, =f+ KUz, (2.20)

Then as in [10], [9], we find that the iterated approximation z/, satisfies

2, — KPPz, = f. (2.21)
Define 7, by
Thx=KVUP,x+ f. (2.22)

The following is instrumental to the stability of the iterated approximation whose effectiveness

will be demonstrated in Theorem 2.6 below.

Theorem 2.5 Let xg € L0, 1] be an isolated solution of (1.1). Assume 1 is not an eigenvalue
of (KUY (x0). Then, I—T" (xo) is invertible and there exists L > 0 such that || (I—=T(x0))~! ||<

L for all sufficient large n,

Proof: By Holder’s inequality and hypotheses 2 and 5,

1 T/ (z0)[2] = T}, (w0)[a] [|oe
=[| Jo ks, )0V (s,20(s))x(s) — k(s, )bV (s, Pawo(s))a(5)ds oo
< My || (9 OV (- 20) = OV (, Poao)z [|oo
< MCsy || xo — Ppzo ||oo || Z [loo— 0, 1 — 0.
Thus 77 () converges to T'(x0) pointwise.

Note also that

19OV, Pazo) lloo <[ 9OV, Pazo) = 9OV 20) lloo + | 9OV (-, 20) oo
< C || Pazo = 20 lloo + [ ¥V (-, 20) l|oo

= OV, 20) loo 1 — 00

Thus || OV (., P20) ||e is bounded uniformly in n, say || O (-, P,20) ||ee< Ma. Then

| T3 (20)[2] lloo=Il KV’ (Pao)[] [lao< MiMa || @ ||oc -



This implies that 77, is collectively compact. By [1], || (I —=T4(x0)) ™" ||o exists for all sufficiently

large n and there exists L > 0 such that || (I — 77 (20)) " ||ec< L for these n. O

Theorem 2.6 Let xg € L*>°[0,1] be an isolated solution of (1.1). Assume 1 is not an eigenvalue
of (KW) (xg). Then there exists § > 0 such that equation (2.21) has, for each sufficiently large

n, a unique solution x), in B(xg,d). Further if

B =| (I =T, (20)) ™ (T (o) — T(x0)) floc,

then x), satisfies

B B

1—g¢q

<l zo — a7, [l

)

for some 0 < g < 1.

Proof: First notice that hypothesis (a) of Theorem 2.3 holds; for
1 (I = T (o)) [Th () = Th(wo) lloo < M || Ty (x) = Tj(20) oo
=|| KV'(P,x) — KV (Ppz0) oo -
But for y € C[0, 1], we have
I KV (Pox)ly] =K' (Pazo)[y] [l
=[| Jo ks, ) OD (s, Paz(s)) — v O (s, Puo(s))]y(s)ds ||

< Jo (s, )| Cal Paa(s) — Powo(s)| [y(s)|ds ||
< MGy || Pox — Poxo [looll ¥ ||oo -

The two previous results and Theorem 3.4 of [5], concerning the uniform boundedness of the

generalized projection Py, yield a constant C' such that
| (I = T(20)) [Th(@) = Th0)] oo < MiCh || Puw — Pus |1
<Cllzxz—20 oo -
Next, by the Lipschitz condition on ),

B =l (I =Ty (w0)) ™ (Tu(x0) = T(20)) lloo
<M || KYP,z0 — KV oo

= M || Jy k(s,)[e(s, Pawo(s)) — (s, zo(s)]ds oo
< MiMCh || Phxo — 20 |[eo— 0 as n — oc.

The application of Theorem 2.3 completes the proof. O

10



Our next task is to establish the superconvergence of the iterated Petrov-Galerkin approxi-

mation z],. Notice that a necessary and sufficient condition for the superconvergence is
Bn = o(an). (2.23)
Let us obtain (2.23) by estimating 3, using the method to prove theorem 3.3, [9]. First of all,
Bn < M| Tn(xO) - T(ato) oo

=M || K[¥(Paxo) — ¥(20)] [l (2.24)

= M || Jy k(s,)[¥(s, Pawo(s)) = (s, 0(s))lds ||oo -
Define

1
=1 [ bl 10 (s. Pao(s)) = (s, z0(s)]ds|.

By the mean value theorem, there exists 0 < 6 < 1 such that

1
= | /0 k(s, )Y (s, 20(s) + 0(Pnzo(s) — 20(s)))(wo(s) — Puwo(s))ds|
Note that fol u(s)[zo(s) — Prxo(s)|ds =< u,zg — Pyxg >= 0 for all u € Y,,. Thus, for all u € Y,,,

d(t) =1y k(s, ) OV (s,20(s) + 0(Pazo(s) — zo(s))) — u(s)][zo(s) — Pazo(s)]ds|
< | Jy k(s ) OV (s, 20(s) + 0(Prao(s) — z0(s)))[z0(s) — Pazo(s)]
—k(s, )9O (s, 20(s)) [20(5) — Pawo(s)]ds|
+H Jo ks, ) [ OV (5, 20(s)) — uls)][(wo(s) — Pazo(s)]ds]
= Ty(t) + To(t).
Assuming that zp € L*°[0, 1], we proceed as follows:
Ti(t) < Ci fy |k(s,t)|0]Pawo(s) — xo(s)|?ds
< C || Paxo — 0 I3 Jo 1k(s,1)lds,
So
I T floo< My || Pazo — 20 13 - (2.25)

We also have

1 1
0 < ([ k(s 01 (s,20(s)) = u(s)|ds] /9] [ Jao(s) = Para(o)Pds] 7. (2:26)

Where%+%:1,p,q21withp:1andq:oo
Summarizing the discussion above, we arrive at the following theorem establishing the su-
perconvergence of the iterated Petrov-Galerkin approximation for Hammerstein equations. It

generalizes theorem 3.3 of [9] by extending the condition zo € C|0, 1] to xo € L*°[0, 1].

11



Theorem 2.7 Under the hypotheses of Theorem 2.3, there is a constant C such that

w0 =25 oo < C{Il Pazo — 20 |13

+ Jo k(s )10 (s, 20(s)) — u(s)|9ds] /[ fy lavo(s) — Pazo(s)[Pds]'/7}.

3 The Wavelet Petrov-Galerkin Method

Alpert [1] constructed a class of wavelet basis in L?[0,1] and applied it to approximate the
solution of the Fredholm equation (1.2). The numerical method employed in [1] is the Galerkin
method. The sparsity of the matrix in the associated linear system is obtained using the van-
ishing moment property of the wavelets as well as using the notion of ‘separation from the
diagonal’ for the supports of the wavelet basis elements. We provide below a brief review of

Alpert’s wavelets and how they can be applied to produce this sparsity. The wavelet basis for

L?[0,1] is comprised of dilates and translates of a set of functions h1, ha, ..., hg. In particular,
for k a positive integer, and for m = 0,1,... we define a space S¥, of piecewise polynomial
functions,

Sk = {f:the restriction of f to the interval (27n,27™(n + 1)) is a polynomial (3.1)

of degree less than k, for n =0,...,2™ — 1, and f vanishes elsewhere}.

Note that dim S¥, = 2"k and
Sgcs{fc Sk C -

m

The orthogonal complement of S¥ in S* 11 is denoted by RE so that dim RF, = 2"k and

Sy @Ry, =Sy,  RNLSY.

Note that
Sk =SfoREoRY® -0 RN _,. (3.2)
The set of functions hi, ho,..., hy mentioned above is taken as an orthonomal basis for R’g.
Since R’S is orthogonal to Sé“, the first k¥ moments of hy, ho, ..., hr vanish,
1 )
/0 hj(s)s'dx =0, i=0,1,...,k—1. (3.3)

12



The wavelet basis of Alpert is constructed by defining orthonormal systems

We refer the reader to [1] for detailed constructions of hy, ha,. .., hi. The functions h’ ., gener-
ated in (3.4) become an orthonomal basis for RE ;

an = linear span {h;-‘,m:j =1,....kn=0,...,2™ —1}.
If we let {u,...,ux} denote an orthonormal basis for Sé“, then the orthonormal system

Br= {uj:j=1,...,k}
U{h%, i =1,....kkm=0,1,...;n=0,1,...,2™ — 1}
becomes the multiwavelet basis of order k for L2[0,1]. In practice, we take an arbitrarily large
but a fixed value for m and use
By ={ujj=1,... k}U{Rl :j=1,... kn=0,1,...,2" -1}
_ {bj}f(flmﬂ)

(3.5)

for an orthonormal basis for S¥. The approximating power of the wavelets is given as follows

[1]:
Lemma 3.1 Let QF, be the orthogonal projection of L?[0,1] onto SE,. If f € C¥[0,1], then

2
QF f—fll<27™—— sup |f®(2)].
1Qm, | T xe[071]| (z)]

The Galerkin method for approximating the solution of the Fredholm equation (1.2) using

the basis b; in (3.5) requires computations of

1 1
K = /0 /0 k(t, $)bi(t)b; (s) deds. (3.6)

What Alpert observed at this point is that a large majority of K;; can be neglected from actual
computations because of their insignificant sizes, resulting in a sparse matrix for the linear system
for the Galerkin method. More precisely, he defined the following regarding the separation from

the diagonal of a support of b; ® b;.
Definition We say that a rectangular region [t,t + a] X [s, s + b] C R? is separated from the
diagonal if a + max{a,b} < s —t or b + max{a,b} <t —s.

For k(t,s) = log |t — s|, the following are proved in [1].

13



Lemma 3.2 Suppose that k(t,s) = log |t — s| is given and By, is the multiwavelet basis of order
k. Denote the supports of bi(t) and bj(s) in (3.6) by [xo, o+ a] and I; = [yo, yo + b] respectively

and assume that they are separated from the diagonal. Then

Kol < Vab
1Kijl < o35
Lemma 3.3 Suppose that 11, Is, ..., I, are the nonincreasing intervals of support of the first n

functions of the basis b,. Of the n* rectangular regions I; x I;, we denote the number separated

from the diagonal by S(n) and the number “near” the diagonal by N(n) = n? — S(n). Then
N(n)=O(nlogn).

Equation (2.11), when approximated by the Galerkin method with the wavelet basis , requires
computations of the following integrals. Here the approximate solution is written as wuy,(s) =

>, agbi(s) for some a; € R.
1 1 n
RS SOOI @)

The unknowns a; are, in many applications, found by an iterative scheme. Note that, at each
step of iteration, the integrals in (3.7) must be recomputed as each a; has different values,
making the computations costly. To circumvent the difficulty, we use the technique that was

developed in [10]. If we let

z = Vu,
in (2.11), then
u=Kz+ f.
Hence z satisfies
2=V (Kz+ f). (3.8)

We approximate this equation by
1
anlt) = 0t [ 2als)hlt. )ds + (1),
0
where z,(t) = Y it a;bi(t) € Xy, is computed via
< zZnyy >=<VY(Kz, + f),y >, yeY,. (3.9)

14



We note that the Petrov-Galerkin method used in (3.9) is distinct from the collocation method
of Kumar and Sloan in [10] to solve equation (3.8). Equation (3.9) is equivalent to (compare

this with (3.7))
n 1 1 n )
2“/0 ooy oy = | O |t ob(s)ds + sepi0dn G =1 3.9

where {7} is a wavelet basis for ;. Note that the unknown a;’s now appear outside the third
integral, allowing us to compute the integral fol k(t,s)bi(s)ds for each i only once throughout
the iterative process for approximating a;’s. It is important to maintain the condition dim X,, =

dimY,,. In operator notation, equation (3.9) becomes

zn = P2V (Kz, + f), (3.10)
where P, is the generalized projection onto Y,,. Define T}, by

Thz= P,V (Kz+ f).

Then (3.10) can be written as
Let T be defined as
so that equation (3.8) becomes

Theorem 3.4 Let zy € L>°[0,1] be an isolated solution of (3.8) with f € L>[0,1]. Assume that
1 is not an eigenvalue of V' (Kzy + f)K and that OV (¢, (Kz)(t) + f(t)) € L®[0,1] for each
z € L>®[0,1]. If K: L*°[0,1] — L*|0, 1], then there exists § > 0 such that equation (3.9) has a

unique solution z, € B(zp,0) for sufficiently large n. Further if
an =|| (I =Ty (20) " (Tuzo — T20) |,

then z, satisfies
Qp

Qn
< — <
o <llz0 = 2 1<

for some 0 < q <1, and
2
120 = zal| < C27™ == sup g™ (x)].
z€|
provided that g = W(Kz + f) € C*[0,1].
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Proof: Since K : X — X and for z € X, O (¢, (K2)(t) + f(t)) € X, the Fréchet derivative

T} exists in a neighborhood of zp and

TN = B0, [kt 9)z0(5)ds+ £0) [ Kt 5)z(o)ds
Since P, converges pointwise to the identity, 77 (z9)(z) converges to W' (Kzy + f)(K(z)),
where W/ (xo)(x)(t) = OV (t,20(t))z(t). As 1 is not an eigenvalue of W' (Kzy + f)K, we find
that I — T)(z9) is continuously invertible for all sufficiently large n. Thus hypothesis (a) of
Theorem 2.3 holds.
Suppose || (I — T/ (20))~! ||< L for some L > 0. We then have

1 (I = T3, (20)) (T (2) = Tn(20)) 1< L || T (2) = T (20)) |,

and for || w ||< 1, using a Lipschitz condition on ¥’ we obtain

I T (2)(w) = T5,(20) (w) ||
=l PaW'(Kz + f)(K(w)) = P,V (Kzo + f)(K(w)) ||
<M || (W(Kz+ f) = V(K2 + f))(K(w)) ||
SM | W(Kz+ f) = V(K2 + f) || [|w]

SMilz=z=]-

Hence condition (2.7) in hypothesis (b) of theorem 2.3 is satisfied for ¢ sufficiently small
(with any ¢, 0 < ¢ < 1).
Finally, since || (I — T/(20))"! ||< L and

I T(20) = Tu(z0) I=]l W (K20 + f) = P (K2 + f) |

converges to zero (by pointwise convergence of P, to the identity), condition (2.8) in hypothesis
(b) of theorem 2.3 is satisfied.

The application of Theorem 2.3 yields

(679

1—q’

(679

I+gq

<l 20— zn [I<
Finally, lemma 3.1 and (P3) give

2
20 — 2| < C27™FZ_ sup |g®) (1)),
20— 2l o 2 16%()
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since a, < C || (I — P,)(V(Kzo+ f)) || . O

We now observe the superconvergence of u, to u in L° norm. Since ug = Kzg+ f and

U, = Kz, + f, for any ¢, € S¥

| uo = un [loo =l K(20 — 2n) |l
= supyepo.) | Jo k(t, ) (20(s) — zn(s))ds]
= SUP¢¢(o,1] | <kt 20 — 2n > | (3.11)

= SUP¢¢(o,1] | <kt — bny20 — 2n > |

< supyeo 1) 1kt — dnllll20 — 2all-

Let D™, denote the generalized derivative of u of order k. Define the Sobolev space of functions
as follows:

W§ ={u: DWDu e L?(0,1),for i = 0,1,...,k}.

The space is endowed with the norm

k
fullyg = 32 1Dl
From (3.11) and lemma 3.1, we have the following:

Theorem 3.5 We assume that sup,cg 1 Hk:tHWQk < oo and that all the hypotheses of Theorem
3.4 hold. Then

luo — unlloo < C(k) 220770,

where C(k) is a constant that depends upon k but not upon m.

3.1 The Iterated Solution 2/,

Equation (3.10) suggests that we investigate the iterated variant of z,. Namely, we define

2 =U(Kz, + f). (3.12)
and
u, = Kz, + f. (3.13)
From (3.10) and (3.12),
Pzl = PV (Kzy + f) = 2. (3.14)
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Equation (3.12) subsequently gives the following equation for 2],
2l = U(KP,z, + f). (3.15)

The next two theorems provide the rates of convergence of 2/, and u!, to zg. The proofs are only
outlined as they are similar to the one given for theorem 3.4. Here Tz = U(Kz + f) as defined
earlier and

Thz=W(KPyz+ f).

Theorem 3.6 Let zp € L>°[0,1] be an isolated solution of (3.8) with f € L*>[0,1]. Assume that
1 is not an eigenvalue of V'(K Pz + f)K P, and that ¢ *V(t, (K P,2)(t) + f(t)) € L>®[0,1] for
each z € L*>[0,1]. If K: L*|0,1] — L*|0, 1], then there exists 6 > 0 such thatl equation (3.14)

has a unique solution z,, € B(zo,d) for sufficiently large n. Further if

B =) (I = Tj)(20)) " (Tnzo — Tz0) |,

then 2], satisfies

e EEEA R (3.16)
for some 0 < q <1, and
/ ~mk_2 (k)
Iz0 = 2|l < C2 TR S 120 (£)]- (3.17)
provided that zy € C¥[0,1]. Finally, if sup, € [0, 1[[z0[lyz < oo, then
l20 = 2 lloe < C (k) 2207, (3.18)

where C'(k) depends only upon k.

Proof: The Fréchet derivative T), exists in a neighborhood of zy and

Ty (20)[2)(t) = W' (KPuzo + f)(KPaz)(t)
= pOD(t, [ k(t,8)Puzo(s)ds + f(t)) [ k(t,s)Puz(s)ds.

Since 1 is not an eigenvalue of 77, (o), (I—1T7,(20)) " exists and uniformly bounded for sufficiently

large n. We also note that for ||w| < 1,

I1T5(2) (w) = T (20) (w)]| < M|z~ 2]

18



Moreover,
1T (20) = T (20|l = W (K20 + ) = W(K Puzo + f)Il < M|z — Pazol.
Applications of theorem 2.3 and lemma 3.1 yield (3.16) and (3.17). To obtain (3.18),

120 — 2hlle < M| T(20) — T (20)]lo0
= V(K2 + f) = V(K Pozo + f)lloo
< M||K (20 — Pn2o)|loo

= M supejo) | < kit 20 — Pnzo > |,

and follow the argument that was used to establish theorem 3.5. O

Theorem 3.7 We assume that sup,cg 1 Hkt”WQk < oo and that all the hypotheses of Theorem
3.6 hold. Then

luo — up[|oo < C(k) 22078,
where C(k) is a constant that depends upon k but not upon m.

Proof: From (3.13), we obtain

luo — tplloe = [ K20 + f — K (2, + f)lloo = 1K (20 = 2) [ oo-

4 Sparsity in Nonlinear Equations

In this section, we examine closely some issues associated with solving equations in (3.9).
Particularly, we propose to approximate {a;} by the Newton’s method. Before we proceed,
we recall from (3.2) that dim S¥ = 2™k. With n = 2™k for some nonnegative integers m and
k, we let X,, = S¥. The main advantage of the Petrov-Galerkin method is the flexibility for
choosing Y, in the regular pair different from X,, so as to simplify the computations in (3.9”).
In the current situation, this can be attained by taking a lower order wavelet to form Y,,. Let
K <kandy, = Sﬁé,. The condition dim X,, = dimY,, demands 2™k = 2™ k’. For convenience,
we take k and k' to satisfy % = 27 for some nonnegative integer ¢q. If ¢ = 0, we have the
traditional Galerkin method. Note that m’ = m + ¢. As in section 3, we let X,, = span{b;} and

Y, = span{bj}. The following lemma generalizes Lemma 3.3.
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Lemma 4.1 Suppose that I1, I, ..., I, and I{, 15, ..., I} are the nonincreasing intervals of sup-
port of the bases elements b; and b} respectively. Of the n? rectangular regions I; x I7, we de-
note the number separated from the diagonal by S(n) and the number “near” the diagonal by

N(n) =n?—S(n). Then N(n) = O(nlogn). In particular, for n = 2"k = 2™k, we have
N(n) < 6mkn — (6 — 2°"™)kn — 9k'n + (8 + 6m)kk'.

Proof: We define S (p) to be the number of pairs (7, j) such that the rectangular region I; x I7 is
separated from the diagonal and m(l;) = m(I;) = 27P where m denotes the Lebesque measure.
We have S1(p) = (2P —1)(2P —2)kE' for p = 0,1, .... We further define Saz(p, ¢) to be the number
of pairs (4, j) such that I; x I is separated from the diagonal and m(I;) = 27F and m([}) = 279.
As in [1], So(p, q) = Si(min{p, ¢})2/P=4 for p,q =0,1,2,.... Then

S(n) =Sy (Si1(p) + Xt (Sa(p, @) + Sa(a,p)
= Yrg S+ 25yt 207
=Y (2P — 1)(2F — 2)kK/[1 4 4(2™ 1P — 1)
> [2-2mFm 2.9 _ G2 — 2m'mmS g om’
—2mHm 8 49 2™ — Gm]kk’
=n? — 6mkn + (6 — 23"™)kn + 9k'n — (8 + 6m)kE’.

This proves N(n) = O(nlogn). O

Now define
filar,az, ... an) =7 aq o bi(t)bi(t)dt
— Jo (i ai fo Kt $)bi(s)ds + F@O)b5(0)dt, j=1,...m,
(4.1)
so that
% 1

1 1 n 1
_ * — (0,1) a )b (s)ds b (5)h* . (4
oo = /0 bi()b7 (£)dt /0 01 (03 o /0 k(t, $)bi(s)ds + F(£)) /0 K(t, 5)bi(5)b% (1) dtds, (4.2)

for 1 < j,1 <n.
Let @ = (ay,as,...a,)" and F(a) = (f1(a), f2(@), ..., fu(@))”. Denote the Jacobian matrix
for F' at a by J(a), J(a) = (%)’;’k:l. Using the Newton method, with ag € R™ given,

ot = G — J(Ga) 1 F(dg), for each « = 0,1, ... (4.3)
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Let us examine the terms in (4.2). If I; x I7 is separated from the diagonal, m(/; N I7) = 0 and
1
/ bi(B)b ()t = / bu(E)b(£)dt = 0.
0 I ﬂI;

Lemma 4.1 shows thus that only (O(nlogn) of such integrals need computation. Now, consider
the second term on the right side of (4.2). If we put U(¢) = OV (¢, 3% | a; fol k(t,s)bi(s)ds +
f(t)), then by assumption 6, there is a constant M > 0 such that supco ) [V (¢)] < M, and

| Jo OO0 S0 ai fo Rt 9)bi(s)ds (1) o k(t,5)bi(s)bs (t)dtds|
= | Jo Jo W(O)k(t, $)bi(s)b7 (t)dsd]
< M| fy o k(t, $)bi(s)b:(t)dsdt].

Even though b, and b} are elements of wavelet bases of different orders, a result similar to
Lemma 3.2 can be obtained in the present setting. For k(t,s) = log|t — s| and Kj; =
fol fol k(t, s)bi(s)bj(t)dsdt, the following theorem describes the size of Kj';. Despite the dif-
ferences in the orders of wavelets, an argument can be made so that an upper bound for K7,
contains only the parameter k£ of higher order wavelet. This is because the vanishing moment
property of the wavelet basis element is utilized only relative to b; whose order is k. The wavelet
basis element b} contributes in controlling the size of K'; by virtue of the size of its support.

The proof is given here for completeness.

Lemma 4.2 Let By, and B}, be the multiwavelet bases of orders k and k' respectively, where
oM = 2™k and % = 29 for some nonnegative integer q. Denote the supports I; of by € By, and
I of b € By, by [0, 20 + a] and [yo, yo + b] respectively and assume that they are separated from
the diagonal. Then

__ Vab

K} —.
| — 2k 3k-1

Lj

Proof:
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K| \fyo“’ JEOF® k(2 5)bu(s)b7 (£)disclt|
Wt | [0t flog(zg + § — 1)
= ey (A ™ by (s)dis| b (1) it

Lota/atymlp (s)ds||b (t)]|dt

+b | prot
fyo |fx0 ¢ m= k‘m(xO{»a/th

< U] [t L S (§)™ bu(s)|ds b (2)dt
<t L W\m( )|ds|b; (t)]dt
< e ST bi(s)2ds (20 1ds (b7 (1)
< b
O
Let D be the closed disk of radius % centered at z = % and L is analytic in a domain

containing D x D C C?. Suppose that K is the restriction of L to [0, 1] x [0, 1]. With this kernel

K, the following is possible,

Lemma 4.3 Let By, and B}, be the multiwavelet bases of orders k and k' respectively, where
2mf = 2™k and % = 29 for some nonnegative integer q. Denote the supports I; of by € By, and
I7 of b € By, by [0, xo +a] and [yo, yo + b] respectively and assume that they are separated from
the diagonal. Then, for K fy°+b JEOFY K (8, )by (s)b3 (t)dsdt, where K is defined above,

a
| < —— sup |K(s,t)|.
| l,_]| 7 . 8k_1 57t€8D | ( )’
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