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Abstract

The purpose of this paper is two-fold. First, we develop the Petrov-Galerkin method

and the iterated Petrov-Galerkin method for a class of nonlinear Hammerstein equations.

Alpert [1] established a class of wavelet basis and applied it to approximate solutions of the

Fredholm second kind integral equations by the Galerkin method. He then demonstrated an

advantage of a wavelet basis application to such equations by showing that the corresponding

linear system is sparse. The second purpose of this paper is to study how this advantage of

the sparsity can be extended to nonlinear Hammerstein equations.

1 Introduction

In this paper we study the Hammerstein integral equation

u(t)−
∫ 1

0
k(s, t)ψ(s, u(s))ds = f(t), 0 ≤ t ≤ 1. (1.1)

For known functions k, ψ and f , an unknown solution u is to be approximated. We establish

in this paper the Petrov-Galerkin and iterated Petrov-Galerkin methods to approximate u.

Equation (1.1) arises as a reformulation of two-point boundary value problems with a certain

nonlinear boundary condition, [7]. Also multi-dimensional analogues of equation (1.1) appear

as various reformulations of an elliptic partial differential equation with nonlinear boundary

conditions; see, e.g., [3, 4]. We shall discuss the present methods in relation to one-dimensional

Hammerstein equation of (1.1), however, the theory developed in this paper can be extended

straightforwardly to multi-dimensional cases.

The Galerkin and collocation methods are two commonly used methods for the numerical

solution of the second kind Fredholm equations as well as for the Hammerstein equation (1.1).

Many papers have appeared on these methods and a large part of the results presented in these

papers were recently compiled in the monograph by Atkinson, [2]. The superconvergence of

the iterated Galerkin method and that of the iterated collocation method for Hammerstein

equation (1.1) were obtained recently in [9] and in [8] respectively. On the other hand, the
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Petrov-Galerkin and iterated Petrov-Galerkin methods are established in [5] for the second kind

Fredholm equation

u(t)−
∫ 1

0
k(s, t)u(s)ds = f(t), 0 ≤ t ≤ 1. (1.2)

It is noted in [5] that the Petrov-Galerkin method includes the Galerkin, collocation, and least

squares methods as well as many other nonstandard but useful methods as special cases. Unlike

the standard Galerkin method, the Petrov-Galerkin method allows the trial space sequence

Xn ⊂ X and the test space sequence Yn ⊂ X∗ (the dual of X) to be different. This feature

provides a greater freedom in choosing a pair of space sequences {Xn, Yn} so as to improve the

computational efficiency over the standard Galerkin method while preserving its convergence

order.

In [6], Chen, Micchelli and Xu established the Petrov-Galerkin method for equation (1.2)

using a class of orthogonal multiwavelets on [0,1]. Results of this paper show that the wavelet

Petrov-Galerkin method for second kind Fredholm integral equations yields linear systems hav-

ing numerically sparse coefficient matrices whose condition number is bounded. They also

developed a truncation strategy that leads to linear systems having sparse coefficient matrices,

thus providing a framework for fast algorithms for obtaining approximate solutions. Moreover,

their approximate solutions have almost optimal order of convergence. In this paper, we use

the wavelet basis constructed by Alpert in [1] to examine closely how the advantage of sparsity

obtained by the application of the wavelet basis for the linear equations would manifest itself in

the nonlinear equations (1.1).

Throughout this paper we will make the following assumptions on ψ, k and f .

1. lim
t→τ

‖ kt − kτ ‖∞= 0, τ ∈ [0, 1] (ka(b) ≡ k(a, b));

2. M1 ≡ sup
0≤t≤1

∫ 1
0 |k(t, s)|ds <∞;

3. f ∈ C[0, 1];

4. ψ(s, x) is continuous on [0, 1]×R and there exists C1 > 0 such that |ψ(s, x1)−ψ(s, x2)| ≤

C1|x1 − x2| for all x1, x2 ∈ R;

5. There is a constant C2 such that the partial derivative ψ(0,1) of ψ with respect to the

second variable satisfies |ψ(0,1)(t, x1)− ψ(0,1)(t, x2)| ≤ C2|x1 − x2| for all x1, x2 ∈ R;

6. For x ∈ C[0, 1], ψ(·, x(·)), ψ(0,1)(·, x(·)) ∈ C[0, 1].

2



Although 2 follows from 1 by compactness of [0, 1] and continuity, we list 2 explicitly for

convenience.

Our first objective in this paper is to establish the Petrov-Galerkin and iterated Petrov-

Galerkin methods for the Hammerstein equation (1.1). We will use the theoretical framework of

Chen and Xu [5], and a detailed analysis similar to that of Kaneko and Xu [9], and to Vainikko

[11]. Our main theorems in this regard are Theorems 2.6 and 2.7.

Our second objective is to establish a framework for fast algorithms for obtaining approximate

solutions. As was stated earlier, a utilization of wavelet basis in approximating a solution of

the second kind Fredholm equation results in a matrix system that is sparse, see [1] and [6].

The sparsity is obtained from two important characteristics of the wavelet bases; the property

of vanishing moments and the property that each wavelet basis element away from the diagonal

has a small support. In section 3, we discuss the Petrov-Galerkin method with wavelet bases and

its related topics. The main theorem is Theorem 3.4. In section 4, we address the problem of

obtaining sparsity results for the Hammerstein equations (1.1). The substitution z = ψ(·, u(·))

used in [10] will allow us to accomplish this in the setting of nonlinear equations. With this

substitution, it will be shown that the sparsity takes place in the Jacobian matrix during the

application of the Newton’s iterative method.

2 The Petrov-Galerkin Method for Hammerstein Equation

We begin this section with a brief review of the Petrov-Galerkin method. We follow closely the

paper by Chen and Xu, [5]. Let X be a Banach space and X∗ its dual space of continuous linear

functionals. For each positive integer n, we assume that Xn ⊂ X, Yn ⊂ X∗, and Xn and Yn are

finite dimensional vector spaces with

dimXn = dimYn.

We further assume the following approximation property.

(H) If x ∈ X and y ∈ Y , then there are sequences {xn}, {yn} with xn ∈ Xn, yn ∈ Yn for all n

such that xn → x, and yn → y.
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Define K by

Ku(t) =
∫ 1

0
k(s, t)u(s)ds

and Ψ by

Ψx(t) = ψ(t, x(t)).

With the assumption K, Ψ : X → X, equation (1.1) can be written as

u−KΨu = f, f ∈ X. (2.1)

Define, for x ∈ X, an element Pnx ∈ Xn called the generalized best approximation from Xn

to x with respect to Yn by the equation

〈x− Pnx, yn〉 = 0 for all yn ∈ Yn. (2.2)

It is proved in [5], [Proposition 2.1], that for each x ∈ X, the generalized best approximation

from Xn to x with respect to Yn exists uniquely if and only if

Yn

⋂
X⊥

n = {0}, (2.3)

where X⊥
n = {x∗ ∈ X∗ : 〈x, x∗〉 = 0 for all x ∈ Xn}. When condition (2.3) is satisfied, Pn defines

a projection; P 2
n = Pn. Throughout the remainder of this paper, condition (2.3) is assumed.

In order to formulate the Petrov-Galerkin method as part of the general projection scheme

and render an appropriate error analysis accordingly, it is important to establish that Pn con-

verges pointwise to the identity operator I. To this end, the notion of regular pair is introduced.

Assume that, for each n, there is a linear operator Πn:Xn → Yn with ΠnXn = Yn and satisfying

the following two conditions.

(H-1) ‖ xn ‖≤ C1〈xn,Πnxn〉1/2 for all xn ∈ Xn.

(H-2) ‖ Πnxn ‖≤ C2 ‖ xn ‖ for all xn ∈ Xn.

Here C1 and C2 are constants independent of n.

If a pair of space sequences {Xn} and {Yn} satisfy (H-1) and (H-2) , we call {Xn, Yn}

a regular pair. It is shown in [5], [Proposition 2.4], that, if a regular pair {Xn, Yn} satisfies

dimXn = dimYn and condition (H), then the corresponding generalized projection Pn satisfies:
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(P1) ‖ Pnx− x ‖→ 0 as n→∞ for all x ∈ X,

(P2) ‖ Pn ‖≤ C, n = 1, 2, 3, ..., for some constant C, and

(P3) ‖ Pnx− x ‖≤ c ‖ Qnx− x ‖, n = 1, 2, 3, ..., for some constant c,

where Qnx is the best approximation from Xn to x.

The Petrov-Galerkin approximation to the Fredholm second kind equation (1.2) is obtained

by solving for un of the following equation:

〈un −Kun, yn〉 = 〈f, yn〉 for all yn ∈ Yn. (2.4)

This is consistent with the basic principle that underlies the projection method, which requires

the residual rn ≡ un−Kun−f to disappear under a projection. Using the generalized projection

Pn, equation (2.4) can be written in operator form as

un − PnKun = Pnf. (2.5)

Therefore, the Petrov-Galerkin method is a projection method.

We recall the following three theorems that will become instrumental in establishing our

main theorems in this section.

Theorem 2.1 (see, e.g.,[2]) Let X be a Banach space and {Xn} a sequence of finite-dimensional

subspaces of X. Assume that K:X → X is a compact linear operator not having 1 as an

eigenvalue. Let P̂n : X → Xn be a sequence of linear projections that converges pointwise to the

identity operator I in X. Then, for sufficiently large n, the equation

un − P̂nKun = P̂nf (2.6)

has a unique solution un ∈ Xn with

‖ un − u ‖≤ C ‖ u− P̂nu ‖,

where C is a constant independent of n and u is the unique solution of equation (1.1).

Theorem 2.2 ([5]) Let X be a Banach space and K:X → X a compact linear operator. Assume

that 1 is not an eigenvalue of the operator K. Suppose that {Xn, Yn} is a regular pair that satisfies

dimXn = dimYn and condition (H). Then, for any given f ∈ X, there exists a positive integer
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N such that, for all n ≥ N , the Petrov-Galerkin equation (2.6) has a unique solution un ∈ Xn

that satisfies

‖ u− un ‖≤ C inf
xn∈Xn

‖ u− xn ‖, n ≥ N,

where C is a constant independent of n and u ∈ X is the unique solution of equation (1.1).

We will establish an analogous result to Theorem 2.2 for the Hammerstein equation (2.1). To

this end, we recall the third theorem below which is due to Vainikko [11]. This useful theorem

describes the conditions that are necessary to approximate a solution of a class of nonlinear

operator equation.

Theorem 2.3 Let T and T̃ be continuous over an open set Ω in a Banach space X. Let the

equation

x = T̃ x

have an isolated solution x̃0 ∈ Ω and let the following conditions be satisfied:

(a) The operator T is Fréchet differentiable in some neighborhood of the point x̃0 while the

linear operator I − T ′(x̃0) is continuously invertible;

(b) Suppose that for some δ > 0, and 0 < q < 1, the following inequalities are valid (the

number δ is assumed to be so small that the sphere ‖ x− x̃0 ‖≤ δ is contained within Ω)

sup
‖x−x̃0‖≤δ

‖ (I − T ′(x̃0))−1(T ′(x)− T ′(x̃0)) ‖≤ q, (2.7)

α ≡‖ (I − T ′(x̃0))−1(T (x̃0)− T̃ (x̃0)) ‖≤ δ(1− q). (2.8)

Then the equation x = Tx has in the sphere ‖ x− x̃0 ‖≤ δ a unique solution x0. Moreover,

the inequality
α

1 + q
≤‖ x0 − x̃0 ‖≤

α

1− q
(2.9)

is valid.

The Petrov-Galerkin method for the Hammerstein equation (2.1) is defined by

〈un −KΨun, yn〉 = 〈f, yn〉 for all yn ∈ Yn. (2.10)
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Equation (2.10) is equivalent, in operator form, to

un − PnKΨun = Pnf. (2.11)

Let

T̃ x ≡ KΨx+ f (2.12)

and

Tnxn ≡ PnKΨxn + Pnf, (2.13)

Then equations (2.1) and (2.11) can be written as

u = T̃ u (2.14)

and

un = Tnun (2.15)

respectively. We are now ready to state and prove our first theorem.

Theorem 2.4 Let u0 be an isolated solution of equation (2.1) in the Banach space X = L∞[0, 1].

Assume that 1 is not an eigenvalue of KΨ′(u0), where Ψ′(x0) denotes the Fréchet derivative of

Ψ at x0. Then the Petrov-Galerkin approximation equation (2.11) has, for each sufficiently large

n, a unique solution un in some ball of radius δ centered at x0, B(x0, δ). Further, there exists

0 < q < 1, independent of n, such that if

αn ≡‖ (I − T ′n(u0))−1(Tn(u0)− T̃ (u0)) ‖

then
αn

1 + q
≤‖ un − u ‖∞≤

αn

1− q
. (2.16)

Finally, if the distance from u0 to Xn is En(u0) ≡ infx∈Xn ‖ u0 − x ‖∞, then there exists a

constant C, independent of n, such that

En(u0) ≤‖ un − u0 ‖∞≤ C{En(KΨ(u0)) + En(f)}. (2.17)

Proof: We will apply Theorem 2.3 of Vainikko. It requires that Tn be Fréchet differentiable in

some neighborhood of u0 and that I − T ′n(u0) be continuously invertible. But these follow from

assumption 5 of Section 1 and from (P1)-(P3) above. Hence, condition (a) of Theorem 2.3 is
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verified. We next check condition (b) of Theorem 2.3. To establish (2.7), we need the uniform

boundedness of (I − T ′n(u0))−1 for all sufficiently large n and the local Lipschitz condition

‖ T ′n(u0)− T ′n(u) ‖∞≤M ‖ u0 − u ‖∞ (2.18)

for all u in some neighborhood of u0. (Here and throughout the remainder of the paper we use

M to denote a generic constant the exact value of which may change at each occurrence.) Then,

choosing δ sufficiently small, (2.7) holds. But (2.18) holds because for each ‖ u ‖∞≤ 1,

‖ T ′n(u0)[x]− T ′n(u)[x] ‖∞= ‖ PnKΨ′(u0)x− PnKΨ′(u)x ‖∞

≤ C sup0≤t≤1 |
∫ 1
0 k(t, s)[ψ

(0,1)(s, u0(s))− ψ(0,1)(s, u(s))]x(s) ds|

≤ C C2M1 sup0≤t≤1 |u0(t)− u(t)| = M ‖ u0 − u ‖∞ .

where C and C2 are constants defined earlier in proposition 2.4 of [5] and in assumption 5 of

Section 1 respectively.

The fact that, for sufficiently large n, I − T ′n(u0) is invertible and ‖ (I − T ′n(u0))−1 ‖ is

uniformly bounded can be established by observing that for each x ∈ X,

‖ T ′n(u0)[x]− T ′(u0)[x] ‖∞=‖ PnKΨ′(u0)[x]−KΨ′(u0)[x] ‖∞→ 0

by Proposition 2.4, [5]. Thus T ′n(u0) converges in operator norm to T ′(u0), and the result follows

from the hypothesis that (I − T ′(u0))−1 exists and from the fact that the set of continuously

invertible operators is an open set. Hence (2.7) is satisfied.

To check (2.8), we use the previous result;

αn ≤M ‖ Tn(u0)− T̃ (u0) ‖∞

≤M{‖ Pnf − f ‖∞ + ‖ PnKΨ(u0)−KΨ(u0) ‖∞}

→ 0, as n→∞.

(2.19)

Thus, (2.8) is implied, and (2.16) follows from Theorem 2.3.

For (2.17), the first inequality is trivial, as un ∈ Xn. The second inequality follows from

(2.16), (2.19) and the fact proved in Proposition 2.4 of [5] that

‖ PnKΨ(u0)−KΨ(u0) ‖∞≤M ‖ QnKΨ(u0)−KΨ(u0) ‖∞ .

2
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2.1 Iterated Petrov-Galerkin Method

.

In this subsection, we discuss the iterated Petrov-Galerkin method. This extends the result

of the iterated Galerkin method for Hammerstein equation obtained in [9]. Define the iterated

approximation for Hammerstein equation by

x′n = f +KΨxn. (2.20)

Then as in [10], [9], we find that the iterated approximation x′n satisfies

x′n −KΨPnx
′
n = f. (2.21)

Define T̂n by

T̂nx = KΨPnx+ f. (2.22)

The following is instrumental to the stability of the iterated approximation whose effectiveness

will be demonstrated in Theorem 2.6 below.

Theorem 2.5 Let x0 ∈ L∞[0, 1] be an isolated solution of (1.1). Assume 1 is not an eigenvalue

of (KΨ)′(x0). Then, I−T̂ ′n(x0) is invertible and there exists L > 0 such that ‖ (I−T̂ ′n(x0))−1 ‖≤

L for all sufficient large n,

Proof: By Hölder’s inequality and hypotheses 2 and 5,

‖ T̃ ′(x0)[x] − T̂ ′n(x0)[x] ‖∞

=‖
∫ 1
0 k(s, ·)ψ(0,1)(s, x0(s))x(s)− k(s, ·)ψ(0,1)(s, Pnx0(s))x(s)ds ‖∞

≤M1 ‖ (ψ(0,1)(·, x0)− ψ(0,1)(·, Pnx0)x ‖∞

≤MC2 ‖ x0 − Pnx0 ‖∞ ‖ x ‖∞→ 0, n→∞.

Thus T̂ ′n(x0) converges to T̃ ′(x0) pointwise.

Note also that

‖ ψ(0,1)(·, Pnx0) ‖∞ ≤‖ ψ(0,1)(·, Pnx0)− ψ(0,1)(·, x0) ‖∞ + ‖ ψ(0,1)(·, x0) ‖∞

≤ C2 ‖ Pnx0 − x0 ‖∞ + ‖ ψ(0,1)(·, x0) ‖∞

→‖ ψ(0,1)(·, x0) ‖∞ n→∞.

Thus ‖ ψ(0,1)(·, Pnx0) ‖∞ is bounded uniformly in n, say ‖ ψ(0,1)(·, Pnx0) ‖∞≤M2. Then

‖ T̂ ′n(x0)[x] ‖∞=‖ KΨ′(Pnx0)[x] ‖∞≤M1M2 ‖ x ‖∞ .
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This implies that T̂ ′n is collectively compact. By [1], ‖ (I− T̂ ′0(x0))−1 ‖∞ exists for all sufficiently

large n and there exists L > 0 such that ‖ (I − T̂ ′n(x0))−1 ‖∞≤ L for these n. 2

Theorem 2.6 Let x0 ∈ L∞[0, 1] be an isolated solution of (1.1). Assume 1 is not an eigenvalue

of (KΨ)′(x0). Then there exists δ > 0 such that equation (2.21) has, for each sufficiently large

n, a unique solution x′n in B(x0, δ). Further if

βn ≡‖ (I − T̂ ′n(x0))−1(T̂n(x0)− T̃ (x0)) ‖∞,

then x′n satisfies
βn

1 + q
≤‖ x0 − x′n ‖∞≤

βn

1− q
,

for some 0 < q < 1.

Proof: First notice that hypothesis (a) of Theorem 2.3 holds; for

‖ (I − T̂ ′n(x0))−1[T̂ ′n(x)− T̂ ′n(x0) ‖∞ ≤M ‖ T̂ ′n(x)− T̂ ′n(x0) ‖∞

=‖ KΨ′(Pnx)−KΨ′(Pnx0) ‖∞ .

But for y ∈ C[0, 1], we have

‖ KΨ′(Pnx)[y] −KΨ′(Pnx0)[y] ‖∞

=‖
∫ 1
0 k(s, ·)[ψ(0,1)(s, Pnx(s))− ψ(0,1)(s, Pnx0(s))]y(s)ds ‖∞

≤‖
∫ 1
0 |k(s, ·)|C2|Pnx(s)− Pnx0(s)| |y(s)|ds ‖∞

≤M1C2 ‖ Pnx− Pnx0 ‖∞‖ y ‖∞ .

The two previous results and Theorem 3.4 of [5], concerning the uniform boundedness of the

generalized projection Pn, yield a constant C such that

‖ (I − T̂ ′n(x0))−1[T̂ ′n(x)− T̂ ′n(x0)] ‖∞ ≤M1C2 ‖ Pnx− Pnx0 ‖∞

≤ C ‖ x− x0 ‖∞ .

Next, by the Lipschitz condition on ψ,

βn ≡‖ (I − T̂ ′n(x0))−1(T̂n(x0)− T̃ (x0)) ‖∞

≤M ‖ KΨPnx0 −KΨx0 ‖∞

= M ‖
∫ 1
0 k(s, ·)[ψ(s, Pnx0(s))− ψ(s, x0(s)]ds ‖∞

≤M1MC1 ‖ Pnx0 − x0 ‖∞→ 0 as n→∞.

The application of Theorem 2.3 completes the proof. 2
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Our next task is to establish the superconvergence of the iterated Petrov-Galerkin approxi-

mation x′n. Notice that a necessary and sufficient condition for the superconvergence is

βn = o(αn). (2.23)

Let us obtain (2.23) by estimating βn using the method to prove theorem 3.3, [9]. First of all,

βn ≤M ‖ T̂n(x0)− T̂ (x0) ‖∞

= M ‖ K[Ψ(Pnx0)−Ψ(x0)] ‖∞

= M ‖
∫ 1
0 k(s, ·)[ψ(s, Pnx0(s))− ψ(s, x0(s))]ds ‖∞ .

(2.24)

Define

d(t) ≡ |
∫ 1

0
k(s, t)[ψ(s, Pnx0(s))− ψ(s, x0(s))]ds|.

By the mean value theorem, there exists 0 < θ < 1 such that

d(t) = |
∫ 1

0
k(s, t)ψ(0,1)(s, x0(s) + θ(Pnx0(s)− x0(s)))(x0(s)− Pnx0(s))ds|

Note that
∫ 1
0 u(s)[x0(s)−Pnx0(s)]ds =< u, x0−Pnx0 >= 0 for all u ∈ Yn. Thus, for all u ∈ Yn,

d(t) = |
∫ 1
0 k(s, t)[ψ

(0,1)(s, x0(s) + θ(Pnx0(s)− x0(s)))− u(s)][x0(s)− Pnx0(s)]ds|

≤ |
∫ 1
0 k(s, t)ψ

(0,1)(s, x0(s) + θ(Pnx0(s)− x0(s)))[x0(s)− Pnx0(s)]

−k(s, t)ψ(0,1)(s, x0(s))[x0(s)− Pnx0(s)]ds|

+|
∫ 1
0 k(s, t)[ψ

(0,1)(s, x0(s))− u(s)][(x0(s)− Pnx0(s)]ds|

≡ T1(t) + T2(t).

Assuming that x0 ∈ L∞[0, 1], we proceed as follows:

T1(t) ≤ C1
∫ 1
0 |k(s, t)|θ|Pnx0(s)− x0(s)|2ds

≤ C ‖ Pnx0 − x0 ‖2
∞

∫ 1
0 |k(s, t)|ds,

So

‖ T1 ‖∞≤M1 ‖ Pnx0 − x0 ‖2
∞ . (2.25)

We also have

T2(t) ≤ [
∫ 1

0
|k(s, t)|ψ(0,1)(s, x0(s))− u(s)|qds]1/q[

∫ 1

0
|x0(s)− Pnx0(s)|pds]1/p. (2.26)

where 1
p + 1

q = 1, p, q ≥ 1 with p = 1 and q = ∞.

Summarizing the discussion above, we arrive at the following theorem establishing the su-

perconvergence of the iterated Petrov-Galerkin approximation for Hammerstein equations. It

generalizes theorem 3.3 of [9] by extending the condition x0 ∈ C[0, 1] to x0 ∈ L∞[0, 1].

11



Theorem 2.7 Under the hypotheses of Theorem 2.3, there is a constant C such that

‖ x0 − x′n ‖∞ ≤ C{‖ Pnx0 − x0 ‖2
∞

+
∫ 1
0 |k(s, t)|ψ(0,1)(s, x0(s))− u(s)|qds]1/q[

∫ 1
0 |x0(s)− Pnx0(s)|pds]1/p}.

3 The Wavelet Petrov-Galerkin Method

Alpert [1] constructed a class of wavelet basis in L2[0, 1] and applied it to approximate the

solution of the Fredholm equation (1.2). The numerical method employed in [1] is the Galerkin

method. The sparsity of the matrix in the associated linear system is obtained using the van-

ishing moment property of the wavelets as well as using the notion of ‘separation from the

diagonal’ for the supports of the wavelet basis elements. We provide below a brief review of

Alpert’s wavelets and how they can be applied to produce this sparsity. The wavelet basis for

L2[0, 1] is comprised of dilates and translates of a set of functions h1, h2, . . . , hk. In particular,

for k a positive integer, and for m = 0, 1, . . . we define a space Sk
m of piecewise polynomial

functions,

Sk
m = {f : the restriction of f to the interval (2−mn, 2−m(n+ 1)) is a polynomial

of degree less than k, for n = 0, . . . , 2m − 1, and f vanishes elsewhere}.
(3.1)

Note that dimSk
m = 2mk and

Sk
0 ⊂ Sk

1 ⊂ · · ·Sk
m ⊂ · · · .

The orthogonal complement of Sk
m in Sk

m+1 is denoted by Rk
m so that dimRk

m = 2mk and

Sk
m ⊕Rk

m = Sk
m+1, Rk

m⊥Sk
m.

Note that

Sk
m = Sk

0 ⊕Rk
0 ⊕Rk

1 ⊕ · · · ⊕Rk
m−1. (3.2)

The set of functions h1, h2, . . . , hk mentioned above is taken as an orthonomal basis for Rk
0 .

Since Rk
0 is orthogonal to Sk

0 , the first k moments of h1, h2, . . . , hk vanish,∫ 1

0
hj(s)si dx = 0, i = 0, 1, . . . , k − 1. (3.3)
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The wavelet basis of Alpert is constructed by defining orthonormal systems

hn
j,m(s) = 2m/2hj(2ms− n), j = 1, . . . , k; m,n ∈ Z. (3.4)

We refer the reader to [1] for detailed constructions of h1, h2, . . . , hk. The functions hn
j,m gener-

ated in (3.4) become an orthonomal basis for Rk
m;

Rk
m = linear span {hn

j,m: j = 1, . . . , k;n = 0, . . . , 2m − 1}.

If we let {u1, . . . , uk} denote an orthonormal basis for Sk
0 , then the orthonormal system

Bk = {uj : j = 1, . . . , k}

∪{hn
j,m: j = 1, . . . , k;m = 0, 1, . . . ;n = 0, 1, . . . , 2m − 1}

becomes the multiwavelet basis of order k for L2[0, 1]. In practice, we take an arbitrarily large

but a fixed value for m and use

B̃k = {uj : j = 1, . . . , k} ∪ {hn
j,m: j = 1, . . . , k;n = 0, 1, . . . , 2m − 1}

≡ {bj}k(2m+1)
j=1

(3.5)

for an orthonormal basis for Sk
m. The approximating power of the wavelets is given as follows

[1]:

Lemma 3.1 Let Qk
m be the orthogonal projection of L2[0, 1] onto Sk

m. If f ∈ Ck[0, 1], then

‖Qk
mf − f‖ ≤ 2−mk 2

4kk!
sup

x∈[0,1]
|f (k)(x)|.

The Galerkin method for approximating the solution of the Fredholm equation (1.2) using

the basis bj in (3.5) requires computations of

Kij =
∫ 1

0

∫ 1

0
k(t, s)bi(t)bj(s) dtds. (3.6)

What Alpert observed at this point is that a large majority of Kij can be neglected from actual

computations because of their insignificant sizes, resulting in a sparse matrix for the linear system

for the Galerkin method. More precisely, he defined the following regarding the separation from

the diagonal of a support of bi ⊗ bj .

Definition We say that a rectangular region [t, t + a] × [s, s + b] ⊂ R2 is separated from the

diagonal if a+ max{a, b} ≤ s− t or b+ max{a, b} ≤ t− s.

For k(t, s) = log |t− s|, the following are proved in [1].
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Lemma 3.2 Suppose that k(t, s) = log |t− s| is given and Bk is the multiwavelet basis of order

k. Denote the supports of bi(t) and bj(s) in (3.6) by [x0, x0 + a] and Ij = [y0, y0 + b] respectively

and assume that they are separated from the diagonal. Then

|Kij | ≤
√
ab

2k · 3k−1
.

Lemma 3.3 Suppose that I1, I2, . . . , In are the nonincreasing intervals of support of the first n

functions of the basis bk. Of the n2 rectangular regions Ii × Ij, we denote the number separated

from the diagonal by S(n) and the number “near” the diagonal by N(n) = n2 − S(n). Then

N(n) = ©(n log n).

Equation (2.11), when approximated by the Galerkin method with the wavelet basis , requires

computations of the following integrals. Here the approximate solution is written as un(s) =∑n
i=1 aibi(s) for some ai ∈ R.∫ 1

0

∫ 1

0
k(t, s)ψ(x,

n∑
i=1

aibi(s))bj(t)dsdt. (3.7)

The unknowns ai are, in many applications, found by an iterative scheme. Note that, at each

step of iteration, the integrals in (3.7) must be recomputed as each ai has different values,

making the computations costly. To circumvent the difficulty, we use the technique that was

developed in [10]. If we let

z = Ψu,

in (2.11), then

u = Kz + f.

Hence z satisfies

z = Ψ(Kz + f). (3.8)

We approximate this equation by

zn(t) = ψ(t,
∫ 1

0
zn(s)k(t, s)ds+ f(t)),

where zn(t) =
∑n

i=1 aibi(t) ∈ Xn is computed via

< zn, y >=< Ψ(Kzn + f), y >, y ∈ Yn. (3.9)
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We note that the Petrov-Galerkin method used in (3.9) is distinct from the collocation method

of Kumar and Sloan in [10] to solve equation (3.8). Equation (3.9) is equivalent to (compare

this with (3.7))
n∑

i=1

ai

∫ 1

0
bi(t)b∗j (t)dt =

∫ 1

0
ψ(t,

n∑
i=1

ai

∫ 1

0
k(t, s)bi(s)ds+ f(t))b∗j (t)dt, j = 1, . . . n. (3.9′)

where {b∗j} is a wavelet basis for Yn. Note that the unknown ai’s now appear outside the third

integral, allowing us to compute the integral
∫ 1
0 k(t, s)bi(s) ds for each i only once throughout

the iterative process for approximating ai’s. It is important to maintain the condition dimXn =

dimYn. In operator notation, equation (3.9) becomes

zn = PnΨ(Kzn + f), (3.10)

where Pn is the generalized projection onto Yn. Define Tn by

Tnz ≡ PnΨ(Kz + f).

Then (3.10) can be written as

zn = Tnzn.

Let T̃ be defined as

T̃ z ≡ Ψ(Kz + f),

so that equation (3.8) becomes

z = T̃ z.

Theorem 3.4 Let z0 ∈ L∞[0, 1] be an isolated solution of (3.8) with f ∈ L∞[0, 1]. Assume that

1 is not an eigenvalue of Ψ′(Kz0 + f)K and that ψ(0,1)(t, (Kz)(t) + f(t)) ∈ L∞[0, 1] for each

z ∈ L∞[0, 1]. If K:L∞[0, 1] → L∞[0, 1], then there exists δ > 0 such that equation (3.9) has a

unique solution zn ∈ B(z0, δ) for sufficiently large n. Further if

αn ≡‖ (I − T ′n(z0))−1(Tnz0 − T̃ z0) ‖,

then zn satisfies
αn

1 + q
≤‖ z0 − zn ‖≤

αn

1− q
,

for some 0 < q < 1, and

‖z0 − zn‖ ≤ C2−mk 2
4kk!

sup
x∈[0,1]

|g(k)(x)|.

provided that g ≡ Ψ(Kz0 + f) ∈ Ck[0, 1].
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Proof: Since K : X → X and for z ∈ X, ψ(0,1)(t, (Kz)(t) + f(t)) ∈ X, the Fréchet derivative

T ′n exists in a neighborhood of z0 and

T ′n(z0)[z](t) = Pnψ
(0,1)(t,

∫ 1

0
k(t, s)z0(s)ds+ f(t))

∫ 1

0
k(t, s)z(s)ds.

Since Pn converges pointwise to the identity, T ′n(z0)(z) converges to Ψ′(Kz0 + f)(K(z)),

where Ψ′(x0)(x)(t) = ψ(0,1)(t, x0(t))x(t). As 1 is not an eigenvalue of Ψ′(Kz0 + f)K, we find

that I − T ′n(z0) is continuously invertible for all sufficiently large n. Thus hypothesis (a) of

Theorem 2.3 holds.

Suppose ‖ (I − T ′n(z0))−1 ‖≤ L for some L > 0. We then have

‖ (I − T ′n(z0))−1(T ′n(z)− T ′n(z0)) ‖≤ L ‖ T ′n(z)− T ′n(z0)) ‖,

and for ‖ w ‖≤ 1, using a Lipschitz condition on Ψ′, we obtain

‖ T ′n(z)(w)− T ′n(z0)(w) ‖

=‖ PnΨ′(Kz + f)(K(w))− PnΨ′(Kz0 + f)(K(w)) ‖

≤M ‖ (Ψ′(Kz + f)−Ψ′(Kz0 + f))(K(w)) ‖

≤M ‖ Ψ′(Kz + f)−Ψ′(Kz0 + f)) ‖ ‖ w ‖

≤M ‖ z − z0 ‖ .

Hence condition (2.7) in hypothesis (b) of theorem 2.3 is satisfied for δ sufficiently small

(with any q, 0 < q < 1).

Finally, since ‖ (I − T ′n(z0))−1 ‖≤ L and

‖ T̃ (z0)− Tn(z0) ‖=‖ Ψ(Kz0 + f)− PnΨ(Kz0 + f) ‖

converges to zero (by pointwise convergence of Pn to the identity), condition (2.8) in hypothesis

(b) of theorem 2.3 is satisfied.

The application of Theorem 2.3 yields

αn

1 + q
≤‖ z0 − zn ‖≤

αn

1− q
,

Finally, lemma 3.1 and (P3) give

‖z0 − zn‖ ≤ C2−mk 2
4kk!

sup
t∈[0,1]

|g(k)(t)|,
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since αn ≤ C ‖ (I − Pn)(Ψ(Kz0 + f)) ‖ . 2

We now observe the superconvergence of un to u in L∞ norm. Since u0 = Kz0 + f and

un = Kzn + f , for any φn ∈ Sk
m,

‖ u0 − un ‖∞ =‖ K(z0 − zn) ‖∞

= supt∈[0,1] |
∫ 1
0 k(t, s)(z0(s)− zn(s))ds|

= supt∈[0,1] | < kt, z0 − zn > |

= supt∈[0,1] | < kt − φn, z0 − zn > |

≤ supt∈[0,1] ‖kt − φn‖‖z0 − zn‖.

(3.11)

Let D(k)u denote the generalized derivative of u of order k. Define the Sobolev space of functions

as follows:

W k
2 = {u : D(i)u ∈ L2(0, 1), for i = 0, 1, . . . , k}.

The space is endowed with the norm

‖u‖W k
2

=
k∑

i=0

‖D(i)u‖.

From (3.11) and lemma 3.1, we have the following:

Theorem 3.5 We assume that supt∈[0,1] ‖kt‖W k
2
< ∞ and that all the hypotheses of Theorem

3.4 hold. Then

‖u0 − un‖∞ ≤ C(k) 22(1−mk),

where C(k) is a constant that depends upon k but not upon m.

3.1 The Iterated Solution z′n

Equation (3.10) suggests that we investigate the iterated variant of zn. Namely, we define

z′n ≡ Ψ(Kzn + f). (3.12)

and

u′n ≡ Kz′n + f. (3.13)

From (3.10) and (3.12),

Pnz
′
n = PnΨ(Kzn + f) = zn. (3.14)
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Equation (3.12) subsequently gives the following equation for z′n,

z′n = Ψ(KPnz
′
n + f). (3.15)

The next two theorems provide the rates of convergence of z′n and u′n to z0. The proofs are only

outlined as they are similar to the one given for theorem 3.4. Here T̃ z = Ψ(Kz + f) as defined

earlier and

T̂nz ≡ Ψ(KPnz + f).

Theorem 3.6 Let z0 ∈ L∞[0, 1] be an isolated solution of (3.8) with f ∈ L∞[0, 1]. Assume that

1 is not an eigenvalue of Ψ′(KPnz0 + f)KPn and that ψ(0,1)(t, (KPnz)(t) + f(t)) ∈ L∞[0, 1] for

each z ∈ L∞[0, 1]. If K:L∞[0, 1] → L∞[0, 1], then there exists δ > 0 such that equation (3.14)

has a unique solution z′n ∈ B(z0, δ) for sufficiently large n. Further if

βn ≡‖ (I − T̂ ′n(z0))−1(T̂nz0 − T̃ z0) ‖,

then z′n satisfies
βn

1 + q
≤‖ z0 − z′n ‖≤

βn

1− q
, (3.16)

for some 0 < q < 1, and

‖z0 − z′n‖ ≤ C2−mk 2
4kk!

sup
t∈[0,1]

|z(k)
0 (t)|. (3.17)

provided that z0 ∈ Ck[0, 1]. Finally, if supt ∈ [0, 1]‖z0‖W 2
t
<∞, then

‖z0 − z′n‖∞ ≤ C(k) 22(1−mk), (3.18)

where C(k) depends only upon k.

Proof: The Fréchet derivative T̂ ′n exists in a neighborhood of z0 and

T̂ ′n(z0)[z](t) = Ψ′(KPnz0 + f)(KPnz)(t)

= ψ(0,1)(t,
∫ 1
0 k(t, s)Pnz0(s)ds+ f(t))

∫ 1
0 k(t, s)Pnz(s)ds.

Since 1 is not an eigenvalue of T̂ ′n(z0), (I−T̂ ′n(z0))−1 exists and uniformly bounded for sufficiently

large n. We also note that for ‖w‖ < 1,

‖T̂ ′n(z)(w)− T̂ ′n(z0)(w)‖ ≤M‖z − z0‖.
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Moreover,

‖T̃ (z0)− T̂n(z0)‖ = ‖Ψ(Kz0 + f)−Ψ(KPnz0 + f)‖ ≤M‖z0 − Pnz0‖.

Applications of theorem 2.3 and lemma 3.1 yield (3.16) and (3.17). To obtain (3.18),

‖z0 − z′n‖∞ ≤M‖T̃ (z0)− T̂n(z0)‖∞

= ‖Ψ(Kz0 + f)−Ψ(KPnz0 + f)‖∞

≤M‖K(z0 − Pnz0)‖∞

= M supt∈[0,1] | < kt, z0 − Pnz0 > |,

and follow the argument that was used to establish theorem 3.5. 2

Theorem 3.7 We assume that supt∈[0,1] ‖kt‖W k
2
< ∞ and that all the hypotheses of Theorem

3.6 hold. Then

‖u0 − u′n‖∞ ≤ C(k) 24(1−mk),

where C(k) is a constant that depends upon k but not upon m.

Proof: From (3.13), we obtain

‖u0 − u′n‖∞ = ‖Kz0 + f −K(z′n + f)‖∞ = ‖K(z0 − z′n)‖∞.

2

4 Sparsity in Nonlinear Equations

In this section, we examine closely some issues associated with solving equations in (3.9’).

Particularly, we propose to approximate {ai} by the Newton’s method. Before we proceed,

we recall from (3.2) that dimSk
m = 2mk. With n ≡ 2mk for some nonnegative integers m and

k, we let Xn = Sk
m. The main advantage of the Petrov-Galerkin method is the flexibility for

choosing Yn in the regular pair different from Xn so as to simplify the computations in (3.9’).

In the current situation, this can be attained by taking a lower order wavelet to form Yn. Let

k′ < k and Yn ≡ Sk′
m′ . The condition dimXn = dimYn demands 2mk = 2m′

k′. For convenience,

we take k and k′ to satisfy k
k′ = 2q for some nonnegative integer q. If q = 0, we have the

traditional Galerkin method. Note that m′ = m+ q. As in section 3, we let Xn = span{bi} and

Yn = span{b∗j}. The following lemma generalizes Lemma 3.3.
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Lemma 4.1 Suppose that I1, I2, . . . , In and I∗1 , I
∗
2 , . . . , I

∗
n are the nonincreasing intervals of sup-

port of the bases elements bi and b∗j respectively. Of the n2 rectangular regions Ii × I∗j , we de-

note the number separated from the diagonal by S(n) and the number “near” the diagonal by

N(n) = n2 − S(n). Then N(n) = ©(n log n). In particular, for n = 2mk = 2m′
k′, we have

N(n) ≤ 6mkn− (6− 23−m)kn− 9k′n+ (8 + 6m)kk′.

Proof: We define S1(p) to be the number of pairs (i, j) such that the rectangular region Ii×I∗j is

separated from the diagonal and m(Ii) = m(I∗j ) = 2−p where m denotes the Lebesque measure.

We have S1(p) = (2p−1)(2p−2)kk′ for p = 0, 1, . . .. We further define S2(p, q) to be the number

of pairs (i, j) such that Ii×I∗j is separated from the diagonal and m(Ii) = 2−p and m(I∗j ) = 2−q.

As in [1], S2(p, q) = S1(min{p, q})2|p−q| for p, q = 0, 1, 2, . . .. Then

S(n) =
∑m−1

p=0 (S1(p) +
∑m′−1

q=p+1(S2(p, q) + S2(q, p))

=
∑m−1

p=0 S1(p)[1 + 2
∑m′−1

q=p+1 2q−p]

=
∑m−1

p=0 (2p − 1)(2p − 2)kk′[1 + 4(2m′−1−p − 1)]

≥ [2 · 2m′+m − 2 · 2m′ − 6m2m′ − 2m′−m+3 + 8 · 2m′

−2m′+m − 8 + 9 · 2m − 6m]kk′

= n2 − 6mkn+ (6− 23−m)kn+ 9k′n− (8 + 6m)kk′.

This proves N(n) = ©(n log n). 2

Now define

fj(a1, a2, . . . , an) ≡
∑n

i=1 ai
∫ 1
0 bi(t)b

∗
j (t)dt

−
∫ 1
0 ψ(t,

∑n
i=1 ai

∫ 1
0 k(t, s)bi(s)ds+ f(t))b∗j (t)dt, j = 1, . . . n,

(4.1)

so that

∂fj

∂al
=

∫ 1

0
bl(t)b∗j (t)dt−

∫ 1

0
ψ(0,1)(t,

n∑
i=1

ai

∫ 1

0
k(t, s)bi(s)ds+f(t))

∫ 1

0
k(t, s)bl(s)b∗j (t)dtds, (4.2)

for 1 ≤ j, l ≤ n.

Let ā ≡ (a1, a2, . . . an)T and F (ā) ≡ (f1(ā), f2(ā), . . . , fn(ā))T . Denote the Jacobian matrix

for F at ā by J(ā), J(ā) = ( ∂fj

∂ak
)n
j,k=1. Using the Newton method, with ā0 ∈ Rn given,

āα+1 = āα − J(āα)−1F (āα), for each α = 0, 1, . . . (4.3)
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Let us examine the terms in (4.2). If Il × I∗j is separated from the diagonal, m(Il ∩ I∗j ) = 0 and∫ 1

0
bl(t)b∗j (t)dt =

∫
Il

⋂
I∗j

bl(t)b∗j (t)dt = 0.

Lemma 4.1 shows thus that only ©(n log n) of such integrals need computation. Now, consider

the second term on the right side of (4.2). If we put Ψ(t) ≡ ψ(0,1)(t,
∑n

i=1 ai
∫ 1
0 k(t, s)bi(s)ds +

f(t)), then by assumption 6, there is a constant M > 0 such that supt∈[0,1] |Ψ(t)| ≤M , and

|
∫ 1
0 ψ

(0,1)(t,
∑n

i=1 ai
∫ 1
0 k(t, s)bi(s)ds +f(t))

∫ 1
0 k(t, s)bl(s)b

∗
j (t)dtds|

= |
∫ 1
0

∫ 1
0 Ψ(t)k(t, s)bl(s)b∗j (t)dsdt|

≤M |
∫ 1
0

∫ 1
0 k(t, s)bl(s)b

∗
j (t)dsdt|.

Even though bl and b∗j are elements of wavelet bases of different orders, a result similar to

Lemma 3.2 can be obtained in the present setting. For k(t, s) = log |t − s| and K∗
l,j =∫ 1

0

∫ 1
0 k(t, s)bl(s)b

∗
j (t)dsdt, the following theorem describes the size of K∗

l,j . Despite the dif-

ferences in the orders of wavelets, an argument can be made so that an upper bound for K∗
l,j

contains only the parameter k of higher order wavelet. This is because the vanishing moment

property of the wavelet basis element is utilized only relative to bl whose order is k. The wavelet

basis element b∗j contributes in controlling the size of K∗
l,j by virtue of the size of its support.

The proof is given here for completeness.

Lemma 4.2 Let Bk and B∗
k′ be the multiwavelet bases of orders k and k′ respectively, where

2mk = 2m′
k′ and k

k′ = 2q for some nonnegative integer q. Denote the supports Il of bl ∈ Bk and

I∗j of b∗j ∈ B∗
k′ by [x0, x0 +a] and [y0, y0 + b] respectively and assume that they are separated from

the diagonal. Then

|K∗
l,j | ≤

√
ab

2k · 3k−1
.

Proof:
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|K∗
l,j | = |

∫ y0+b
y0

∫ x0+a
x0

k(t, s)bl(s)b∗j (t)dsdt|

≤
∫ y0+b
y0

|
∫ x0+a
x0

[log(x0 + a
2 − t)

−
∑∞

m=1
1
m(x0+a/2−x

x0+a/2−t )
m]bl(s)ds||b∗j (t)|dt

≤
∫ y0+b
y0

|
∫ x0+a
x0

∑∞
m=k

1
m(x0+a/2−x

x0+a/2−t )
m]bl(s)ds||b∗j (t)|dt

≤
∫ y0+b
y0

|
∫ x0+a
x0

1
k

∑∞
m=k(

1
3)m|bl(s)|ds|b∗j (t)dt

≤
∫ y0+b
y0

∫ x0+a
x0

1
2k·3k−1 |bl(s)|ds|b∗j (t)|dt

≤ 1
2k·3k−1

∫ y0+b
y0

√∫ x0+a
x0

bl(s)2ds
∫ x0+a
x0

1ds |b∗j (t)|dt

≤
√

ab
2k·3k−1 .

2

Let D be the closed disk of radius 3
2 centered at z = 1

2 and L is analytic in a domain

containing D×D ⊂ C2. Suppose that K is the restriction of L to [0, 1]× [0, 1]. With this kernel

K, the following is possible,

Lemma 4.3 Let Bk and B∗
k′ be the multiwavelet bases of orders k and k′ respectively, where

2mk = 2m′
k′ and k

k′ = 2q for some nonnegative integer q. Denote the supports Il of bl ∈ Bk and

I∗j of b∗j ∈ B∗
k′ by [x0, x0 +a] and [y0, y0 + b] respectively and assume that they are separated from

the diagonal. Then, for K∗
l,j ≡

∫ y0+b
y0

∫ x0+a
x0

K(t, s)bl(s)b∗j (t)dsdt, where K is defined above,

|K∗
l,j | ≤

√
ab

7 · 8k−1
sup

s,t∈∂D
|K(s, t)|.
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