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Abstract

In this paper, we show that the residual can be used to estimate the error of a numerical
solution for a class of nonlinear Hammerstein equations. It is also shown that the supercon-
vergence of the iterated numerical solution provides a sufficient condition for the residual to
be used as an error estimator. Hammerstein equations with smooth as well as wekly singular

kernels will be treated.

1 Introduction

One of the most difficult problems that we face when numerically solving a certain operator
equation is to discern how close the numerical solution is to the actual solution as the actual
solution is not known. In the recent paper [1], Geng, Oden and Demkowicz show that, when the
Galerkin method is applied to the Fredholm equations of the second kind, it produces a numerical
solution whose residual is asymptotically equivalent to the actual error of the numerical solution.
This implies that for sufficiently fine discretizations, the residual can be used as an excellent
estimator of the actual error. Golberg and Bowman [2] noticed that the asymptotical equivalence
of the residual and the error can be derived by considering the superconvegence of Sloan’s iterates.
The observation, of course, broadens the scope in which the asymptotical equivalence of the
residual and the actual error can be used, since the study of the superconvergence of Sloan’s
iterates is now well documented [7] and occurs in the classical numerical schemes such as the
Galerkin or the collocation schemes when applied to many different equations [2]. In recent papers
[4], [5], many results on the superconvergence of Sloan’s iterates for the linear Fredholm integral
equations were generalized to hold for the nonlinear Hammerstein equations. In addition, the
superconvergence of the iterates of the Galerkin as well as the collocation method for the weakly
singular Hammerstein equations is discussed in [4] and [5]. We note that the superconvergence
results concerning the iterates for the weakly singular Hammerstein equations are new even in
the Fredholm equations case. The purpose of this paper is twofold. First, we provide a direct
proof that, when the Galerkin method is applied to Hammerstein equations, the corresponding
residual and the actual error are asymptotically equivalent, extending the result of [1] to nonlinear

equations. Secondly, we utilize the results from [4] and [5] to show that the superconvergence of



the iterates for nonlinear equations provides, as in the linear equation case, a sufficient condition

for the asymptotical equivalence of the actual error and the residual.

2 Hammerstein Equations

Consider the following Hammerstein equations,

(t) — /01 k(t, ) (s, 2(s))ds = f(t), 0<t<1, (1.1)

where k, f and v are known functions and x is the function to be determined. It is well known
that the equation of this type arises in the integral reformulation of nonlinear two-point boundary
value problems. Define k;(s) = k(¢,s) for ¢,s € [0,1] to be the ¢ section of k. Throughout this

paper, we assume the following;:

—_

. limt_>—r ||kt — kTHOO = 07 T € [0, 1],
2. feCo,1];

3. (s, x) is continuous in s € [0, 1] and Lipschitz continuous in z € (—o0, 00), i.e., there exists

a constant C7 > 0 for which

[P (s, 1) — (s, x2)| < Cilxy — 2|, for all z1,x9 € (—o00, 00);

4. the partial derivative w(o’l) of ¢ with respect to the second variable exists and is Lipschitz

continuous, i.e., there exists a constant Co > 0 such that

1OV (¢, 21) — POV (E, 39)| < Colay — a2, for all z1, x5 € (—o0, 0); (1.2)

5. for z € C[0,1], ¥(.,z(.)), pOV (., z(.)) € C[0,1].

Now we review the Galerkin method for Hammerstein equations. A more detailed account of the
method and its superconvergence of the corresponding iterates can be found in [4]. Let n be a
positive integer and {X,} be a sequence of finite dimensional subspaces of C[0, 1] such that for

any x € C[0,1] there exists a sequence {z,}, z, € Xy, for which
|zn, — z]|oc — 0 as n — oo. (1.3)

Let P,: L2[0,1] — X,, be an orthogonal projection for each n. We assume that the projection P,

when restricted to C]0, 1] is uniformly bounded, i.e.

P = sgp HPn‘C’[O,l]HOO < 00. (1.4)



Then from (1.3) and (1.4), it follows that for each x € C[0, 1],
| Pz — x| — 0, as n — oo. (1.5)
Now let ,
(KW)(x)(t) = /0 K(t, $)p(s, 2(s))ds.
With this notation, equation (1.1) takes the following operator form
r— KUz = f. (1.6)
Similarly the equation that describes the Galerkin method can be given by
Ty — P, KVz, = P,f. (1.7)
To describe the error of the Galerkin approximation, we introduce operators T and T}, by letting
Te=f+KUz (1.8)
and
Twxn, =P, f + P,KVz, (1.9)
so that equations (1.6) and (1.7) can be written respectively as 2 = Tz and z,, = Tp,. A proof

of the following theorem can be made by directly applying Theorem 2 of Vainikko (1967) [9].

Theorem 2.1 Let xy € C|0,1] be an isolated solution of equation (1.6). Assume that 1 is not an
eigenvalue of the linear operator (KWV)'(xg), where (KWV)'(xg) denotes the Fréchet derivative of
KVY at xzg. Then the Galerkin approzimation equation (1.7) has a unique solution x,, € B(xg, )
for some 6 > 0 and for sufficiently large n. Moreover, there exists a constant 0 < q < 1,

independent of n, such that

(70 Qg
< n - [e’e] S ) 11
where oy, = ||(I =T/ (20)) (T (o) — T'(0))||oo. Finally,
En(xO) < Hl'n - xOHoo < CEn($0), (111)

where C' is a constant independent of n and E,(xo) = infyex, |20 — ullco-

We are now ready to describe the asymptotic equivalence of the residual and the error of the
Galerkin solution. Following Golberg and Bowman [2], we denote the error of the Galerkin
approximation by
€n = To — T (1.12)
and the residual by
o =f— (zp— KUx,). (1.13)



Lemma 2.2 Denote by xog and x,, the solutions of equations (1.6) and (1.7) respectively. Assume
that 1 is not an eigenvalue of (KWV)'(xo). Then there exist a sequence iy, such that p, — 0 as

n — oo and an element n, between xy and x, for which

I(E®) (nn)enll2 < pallenll2: (1.14)
Proof: By the mean value theorem, there exists 7, between x¢ and x, such that
(KW) (nn)(en) = KW(20) — KW (zn).
Using this, we have

(I = (K) (1) Po)(K®) (n)en = (I — (K0) () P) (KW (20) — KU(zn))
= (K¥(xo) — K¥(x n)) (K9) (1) (P K (20) — Py KW ()
(KV) K9) () Pren
(KV)

Now since 1 is not an eigenvalue of (KW)'(z0), (I —(KW¥)'(x()) ! exists. Also from (1.2), we have
that (%1 (¢,7) is continuous in y uniformly in ¢. This implies that (K¥)’(y) is continuous as a
function of y in the space of all bounded linear operators B(C|0, 1], C[0, 1]). Since 7, lies between
Zn and xg, 9, — xo as n — oo. It follows that (I — (K¥) (n,))P, converges to (I —(K¥) (xg)) in
B(C10,1],C[0,1]). Therefore, the existence of the inverse operator (I — (KW¥)’(x))~! guarantees
that ((I — (KW¥)'(n,))P,)~! exists and is uniformly bounded for all sufficiently large n [6]. An
€/3 argument also shows that limy_o |[(K¥) (n,)(I — P,)||2 = 0. Hence

(K0) (na)en = (I — (K0)' (02) Pa) ™ (K0 (1) (I = Po)en,

and
I(KW) (n)enll2 < pnllenll2
where 1, = ||(I — (KUY (9,)Pn) L2l (KY) (9,)(I — Py)|l2 — 0 as n — co. Hence Lemma is

proved. O

Before we present our main theorem, the following characterization of the residual is useful.

o =f—(zy,— K¥x,)
= (zg — K¥x0) — (2, — KVxy,)
= (x0 — xn) — (KW)'(1)(x0 — Tn)
= (I = (K%) (nn))en,

Using (1.14) and (1.15), we immediately obtain the following.

(1.15)



Theorem 2.3 Assume that the conditions in Lemma 2.2 are satisfied. Then the residual 0,
and the error e, defined respectively in (1.12) and (1.13) are asymptotically equivalent. More

specifically, we obtain

18nll2 = llen — (K@) (mn)enll2 < (14 pn)llenll2, (1.16)

where p, — 0 as n — oo.

We are now in a position to describe Sloan’s iterates for the Galerkin approximate solution

Zp. For more details, see [4] [7] [8]. Sloan’s iterates is defined by
En =+ K¥(z,). (1.17)

In the case of linear Fredholm equations, it was proved in [8] that the iterated Galerkin solution
Iy converges to xg faster than the original Galerkin solution x, to xg. The rate of convergence
of the iterates can be doubled under certain smoothness conditions imposed upon the kernel and
the forcing term. Sloan and Thomee’s results were generalized to the nonlinear Hammerstein
equations in [4]. The superconvergence of the iterated collocation method for the Fredholm
equations is also known [3] and their results were extended to nonlinear equations in [5]. In
the papers [4] and [5], in addition to the aforementioned generalizations of superconvergence
results to the nonlinear equations, the superconvergence of the iterated Galerkin method and
collocation method for weakly singular Hammerstein equations are also discussed. The case for

weakly singular equations arises when the kernel k(¢, s) in equation (1.1) takes the following form,

ls—t* "l 0<a<,
k(. 5) = gal]s — t]) = { (1.18)

log|s —t|, a=1.

It is well documented [4] that when the Galerkin or collocation methods are used to approximate
the solutions of weakly singular integral equations (linear or nonlinear), the optimal rate of
convergence can be achieved if these methods are applied with a class of splines defined over a
certain type of nonuniform knots. (See [4] for more details.) The corresponding iterated solutions
with kernel described by (1.18) subsequently converges at the rate that is increased by the factor

of a. Thus if the splines of order r are used, then we expect that
&5 — 2ollos = O(R™T), (1.19)

where h = max{t;11 — t;} with {¢;} denoting the nonuniform knots.
Golberg and Bowman [2] proved that the superconvergence of the iterated solution of the

Fredholm equation provides a sufficient condition for the conclusion of Theorem 2.3 to hold. The



observation subsequently guarantees the asymptotic equivalence of the residual and the error
of the collocation solution in light of the paper [3]. A straightforward analysis shows that the

results in [2] can be extended to Hammerstein equations. To this end, we let

én :l‘o—.fn.

Then
on =[f—(zn— K¥x,)
=Tn —Tn
= €n — én
From this, we obtain
AT 120
lenll T [lenll lenl]
Therefore, the superconvergence of Soaln’s iterates,-i.e.,
tim 16l (1.21)
=0 len|
gives a sufficient condition for the inequality (1.16) to occur. A plain norm || - || above indicates
|| - ll2 and || - ||oc for the Galerkin method and for the collocation method respectively. The

following theorem summerizes what we have just discussed.

Theorem 2.4 Let zg be an isolated solution of (1.1) and let x,, be its Galerkin (or collocation)

approximation to xg. Then the actual error e, and the residual 6, are asymptotically equivalent,

We have noted that in the case of a smooth kernel k and a forcing term f, if the spline of order

r is used in the Galerkin (or collocation) method, then

léall _
feal

O(hr)7

whereas in the case of weakly singular Hammerstein (or Fredholm) equations,

el _
]

O(h%).

This, in turn, provides an order of accuracy of the residual as an error estimator.
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