
A Note on the Use of Residual as an Error Estimator

for Hammerstein Equations

Hideaki Kaneko Richard D. Noren

Department of Mathematics and Statistics

Old Dominion University

Norfolk, Virginia 23529-0077, USA

0



A NOTE ON THE USE OF RESIDUAL AS AN ERROR ESTIMATOR

FOR HAMMERSTEIN EQUATIONS

H. Kaneko and R. D. Noren

Abstract

In this paper, we show that the residual can be used to estimate the error of a numerical

solution for a class of nonlinear Hammerstein equations. It is also shown that the supercon-

vergence of the iterated numerical solution provides a sufficient condition for the residual to

be used as an error estimator. Hammerstein equations with smooth as well as wekly singular

kernels will be treated.

1 Introduction

One of the most difficult problems that we face when numerically solving a certain operator

equation is to discern how close the numerical solution is to the actual solution as the actual

solution is not known. In the recent paper [1], Geng, Oden and Demkowicz show that, when the

Galerkin method is applied to the Fredholm equations of the second kind, it produces a numerical

solution whose residual is asymptotically equivalent to the actual error of the numerical solution.

This implies that for sufficiently fine discretizations, the residual can be used as an excellent

estimator of the actual error. Golberg and Bowman [2] noticed that the asymptotical equivalence

of the residual and the error can be derived by considering the superconvegence of Sloan’s iterates.

The observation, of course, broadens the scope in which the asymptotical equivalence of the

residual and the actual error can be used, since the study of the superconvergence of Sloan’s

iterates is now well documented [7] and occurs in the classical numerical schemes such as the

Galerkin or the collocation schemes when applied to many different equations [2]. In recent papers

[4], [5], many results on the superconvergence of Sloan’s iterates for the linear Fredholm integral

equations were generalized to hold for the nonlinear Hammerstein equations. In addition, the

superconvergence of the iterates of the Galerkin as well as the collocation method for the weakly

singular Hammerstein equations is discussed in [4] and [5]. We note that the superconvergence

results concerning the iterates for the weakly singular Hammerstein equations are new even in

the Fredholm equations case. The purpose of this paper is twofold. First, we provide a direct

proof that, when the Galerkin method is applied to Hammerstein equations, the corresponding

residual and the actual error are asymptotically equivalent, extending the result of [1] to nonlinear

equations. Secondly, we utilize the results from [4] and [5] to show that the superconvergence of
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the iterates for nonlinear equations provides, as in the linear equation case, a sufficient condition

for the asymptotical equivalence of the actual error and the residual.

2 Hammerstein Equations

Consider the following Hammerstein equations,

x(t)−
∫ 1

0
k(t, s)ψ(s, x(s))ds = f(t), 0 ≤ t ≤ 1, (1.1)

where k, f and ψ are known functions and x is the function to be determined. It is well known

that the equation of this type arises in the integral reformulation of nonlinear two-point boundary

value problems. Define kt(s) ≡ k(t, s) for t, s ∈ [0, 1] to be the t section of k. Throughout this

paper, we assume the following:

1. limt→τ ‖kt − kτ‖∞ = 0, τ ∈ [0, 1];

2. f ∈ C[0, 1];

3. ψ(s, x) is continuous in s ∈ [0, 1] and Lipschitz continuous in x ∈ (−∞,∞), i.e., there exists

a constant C1 > 0 for which

|ψ(s, x1)− ψ(s, x2)| ≤ C1|x1 − x2|, for all x1, x2 ∈ (−∞,∞);

4. the partial derivative ψ(0,1) of ψ with respect to the second variable exists and is Lipschitz

continuous, i.e., there exists a constant C2 > 0 such that

|ψ(0,1)(t, x1)− ψ(0,1)(t, x2)| ≤ C2|x1 − x2|, for all x1, x2 ∈ (−∞,∞); (1.2)

5. for x ∈ C[0, 1], ψ(., x(.)), ψ(0,1)(., x(.)) ∈ C[0, 1].

Now we review the Galerkin method for Hammerstein equations. A more detailed account of the

method and its superconvergence of the corresponding iterates can be found in [4]. Let n be a

positive integer and {Xn} be a sequence of finite dimensional subspaces of C[0, 1] such that for

any x ∈ C[0, 1] there exists a sequence {xn}, xn ∈ Xn, for which

‖xn − x‖∞ → 0 as n→∞. (1.3)

Let Pn:L2[0, 1] → Xn be an orthogonal projection for each n. We assume that the projection Pn

when restricted to C[0, 1] is uniformly bounded, i.e.

P := sup
n
‖Pn|C[0,1]‖∞ <∞. (1.4)
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Then from (1.3) and (1.4), it follows that for each x ∈ C[0, 1],

‖Pnx− x‖∞ → 0, as n→∞. (1.5)

Now let

(KΨ)(x)(t) ≡
∫ 1

0
k(t, s)ψ(s, x(s))ds.

With this notation, equation (1.1) takes the following operator form

x−KΨx = f. (1.6)

Similarly the equation that describes the Galerkin method can be given by

xn − PnKΨxn = Pnf. (1.7)

To describe the error of the Galerkin approximation, we introduce operators T̂ and Tn by letting

T̂ x ≡ f +KΨx (1.8)

and

Tnxn ≡ Pnf + PnKΨxn (1.9)

so that equations (1.6) and (1.7) can be written respectively as x = T̂ x and xn = Tnxn. A proof

of the following theorem can be made by directly applying Theorem 2 of Vainikko (1967) [9].

Theorem 2.1 Let x0 ∈ C[0, 1] be an isolated solution of equation (1.6). Assume that 1 is not an

eigenvalue of the linear operator (KΨ)′(x0), where (KΨ)′(x0) denotes the Fréchet derivative of

KΨ at x0. Then the Galerkin approximation equation (1.7) has a unique solution xn ∈ B(x0, δ)

for some δ > 0 and for sufficiently large n. Moreover, there exists a constant 0 < q < 1,

independent of n, such that
αn

1 + q
≤ ‖xn − x0‖∞ ≤ αn

1− q
, (1.10)

where αn ≡ ‖(I − T ′n(x0))−1(Tn(x0)− T̂ (x0))‖∞. Finally,

En(x0) ≤ ‖xn − x0‖∞ ≤ CEn(x0), (1.11)

where C is a constant independent of n and En(x0) = infu∈Xn ‖x0 − u‖∞.

We are now ready to describe the asymptotic equivalence of the residual and the error of the

Galerkin solution. Following Golberg and Bowman [2], we denote the error of the Galerkin

approximation by

en ≡ x0 − xn (1.12)

and the residual by

δn ≡ f − (xn −KΨxn). (1.13)
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Lemma 2.2 Denote by x0 and xn the solutions of equations (1.6) and (1.7) respectively. Assume

that 1 is not an eigenvalue of (KΨ)′(x0). Then there exist a sequence µn such that µn → 0 as

n→∞ and an element ηn between x0 and xn for which

‖(KΨ)′(ηn)en‖2 ≤ µn‖en‖2. (1.14)

Proof: By the mean value theorem, there exists ηn between x0 and xn such that

(KΨ)′(ηn)(en) = KΨ(x0)−KΨ(xn).

Using this, we have

(I − (KΨ)′(ηn)Pn)(KΨ)′(ηn)en = (I − (KΨ)′(ηn)Pn)(KΨ(x0)−KΨ(xn))

= (KΨ(x0)−KΨ(xn))− (KΨ)′(ηn)(PnKΨ(x0)− PnKΨ(xn))

= (KΨ)′(ηn)en − (KΨ)′(ηn)Pnen

= (KΨ)′(ηn)(I − Pn)en.

Now since 1 is not an eigenvalue of (KΨ)′(x0), (I−(KΨ)′(x0))−1 exists. Also from (1.2), we have

that ψ(0,1)(t, y) is continuous in y uniformly in t. This implies that (KΨ)′(y) is continuous as a

function of y in the space of all bounded linear operators B(C[0, 1], C[0, 1]). Since ηn lies between

xn and x0, ηn → x0 as n→∞. It follows that (I− (KΨ)′(ηn))Pn converges to (I− (KΨ)′(x0)) in

B(C[0, 1], C[0, 1]). Therefore, the existence of the inverse operator (I− (KΨ)′(x0))−1 guarantees

that ((I − (KΨ)′(ηn))Pn)−1 exists and is uniformly bounded for all sufficiently large n [6]. An

ε/3 argument also shows that limh→0 ‖(KΨ)′(ηn)(I − Pn)‖2 = 0. Hence

(KΨ)′(ηn)en = (I − (KΨ)′(ηn)Pn)−1(KΨ)′(ηn)(I − Pn)en,

and

‖(KΨ)′(ηn)en‖2 ≤ µn‖en‖2

where µn ≡ ‖(I − (KΨ)′(ηn)Pn)−1‖2‖(KΨ)′(ηn)(I − Pn)‖2 → 0 as n → ∞. Hence Lemma is

proved. 2

Before we present our main theorem, the following characterization of the residual is useful.

δn = f − (xn −KΨxn)

= (x0 −KΨx0)− (xn −KΨxn)

= (x0 − xn)− (KΨ)′(ηn)(x0 − xn)

= (I − (KΨ)′(ηn))en,

(1.15)

Using (1.14) and (1.15), we immediately obtain the following.

4



Theorem 2.3 Assume that the conditions in Lemma 2.2 are satisfied. Then the residual δn

and the error en defined respectively in (1.12) and (1.13) are asymptotically equivalent. More

specifically, we obtain

‖δn‖2 = ‖en − (KΨ)′(ηn)en‖2 ≤ (1 + µn)‖en‖2, (1.16)

where µn → 0 as n→∞.

We are now in a position to describe Sloan’s iterates for the Galerkin approximate solution

xn. For more details, see [4] [7] [8]. Sloan’s iterates is defined by

x̂n = f +KΨ(xn). (1.17)

In the case of linear Fredholm equations, it was proved in [8] that the iterated Galerkin solution

x̂n converges to x0 faster than the original Galerkin solution xn to x0. The rate of convergence

of the iterates can be doubled under certain smoothness conditions imposed upon the kernel and

the forcing term. Sloan and Thomee’s results were generalized to the nonlinear Hammerstein

equations in [4]. The superconvergence of the iterated collocation method for the Fredholm

equations is also known [3] and their results were extended to nonlinear equations in [5]. In

the papers [4] and [5], in addition to the aforementioned generalizations of superconvergence

results to the nonlinear equations, the superconvergence of the iterated Galerkin method and

collocation method for weakly singular Hammerstein equations are also discussed. The case for

weakly singular equations arises when the kernel k(t, s) in equation (1.1) takes the following form,

k(t, s) ≡ gα(|s− t|) =

 |s− t|α−1, 0 < α < 1,

log |s− t|, α = 1.
(1.18)

It is well documented [4] that when the Galerkin or collocation methods are used to approximate

the solutions of weakly singular integral equations (linear or nonlinear), the optimal rate of

convergence can be achieved if these methods are applied with a class of splines defined over a

certain type of nonuniform knots. (See [4] for more details.) The corresponding iterated solutions

with kernel described by (1.18) subsequently converges at the rate that is increased by the factor

of α. Thus if the splines of order r are used, then we expect that

‖x̂n − x0‖∞ = 0(hr+α), (1.19)

where h = max{ti+1 − ti} with {ti} denoting the nonuniform knots.

Golberg and Bowman [2] proved that the superconvergence of the iterated solution of the

Fredholm equation provides a sufficient condition for the conclusion of Theorem 2.3 to hold. The
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observation subsequently guarantees the asymptotic equivalence of the residual and the error

of the collocation solution in light of the paper [3]. A straightforward analysis shows that the

results in [2] can be extended to Hammerstein equations. To this end, we let

ên = x0 − x̂n.

Then
δn = f − (xn −KΨxn)

= x̂n − xn

= en − ên.

From this, we obtain ∣∣∣∣1− ‖ên‖
‖en‖

∣∣∣∣ ≤ ‖δn‖
‖en‖

≤ 1 +
‖ên‖
‖en‖

. (1.20)

Therefore, the superconvergence of Soaln’s iterates,-i.e.,

lim
n→∞

‖ên‖
‖en‖

= 0 (1.21)

gives a sufficient condition for the inequality (1.16) to occur. A plain norm ‖ · ‖ above indicates

‖ · ‖2 and ‖ · ‖∞ for the Galerkin method and for the collocation method respectively. The

following theorem summerizes what we have just discussed.

Theorem 2.4 Let x0 be an isolated solution of (1.1) and let xn be its Galerkin (or collocation)

approximation to x0. Then the actual error en and the residual δn are asymptotically equivalent,

-i.e., limn→∞
‖δn‖
‖en‖ = 1.

We have noted that in the case of a smooth kernel k and a forcing term f , if the spline of order

r is used in the Galerkin (or collocation) method, then

‖ên‖
‖en‖

= O(hr),

whereas in the case of weakly singular Hammerstein (or Fredholm) equations,

‖ên‖
‖en‖

= O(hα).

This, in turn, provides an order of accuracy of the residual as an error estimator.
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