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Abstract

In a recent paper [3], Y. Cao and Y. Xu established the Galerkin method for weakly
singular Fredholm integral equations that preserves the singularity of the solution. Their
Galerkin method provides a numerical solution that is a linear combination of a certain
class of basis functions which includes elements that reflect the singularity of the solution.
The purpose of this paper is to extend the result of Cao and Xu and to establish singularity
preserving Galerkin method for Hammerstein equations with logarithmic kernel. The iterated

singularity preserving Galerkin method is also discussed.
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1 Introduction

In this paper, we are concerned with the problem of approximating the solutions of weakly sin-
gular Hammerstein equations with logarithmic kernel by the Galerkin method that preserves the
singularity of the exact solution. Namely we establish a method that generates an approximate
solution in terms of a collection of basis functions some of which are comprised of singular el-
ements that reflect the characteristics of the singularity of the exact solution. The idea of the
method originates in the recent paper by Cao and Xu [3]. Cao and Xu studied the special nature
of the singularities that are pertinent to the solutions of the weakly singular Fredholm equations
of the second kind. Let C[0, 1] denote the space of all continuous functions defined on [0, 1]. The

weakly singular Fredholm integral equations of the second kind can be described as

1
v(s) = [ galls = thm(s. (0t = f(s),  0<s<1 (1)
where f € C[0,1], m is sufficiently smooth and

|s — t|, —1<a<0,
ga(ls —t[) = (1.2)
log|s —t|, a=0,



where y is, of course, the function to be determined. It is well documented (see, e.g. [19],[16],[4],[23])
that the solutions of the equations described in (1.1) exhibit, in general, mild singularities even
in the case of a smooth forcing term f. Here by “mild” singularities, we mean singularities in
derivatives. The papers of Richter [16] and Graham [4] contain singularity expansions of the
solutions of equation (1.1) in the case of m(s,t) = 1. The results of Graham were recently
generalized by Cao and Xu for equation (1.1). Information concerning the type of singularities
that solutions have is useful when solving equation (1.1) numerically. In order to approximate
functions with mild singularities, many investigators utilized the important theorem of Rice [17]
that gives an optimal order of approximation to such functions. Rice’s theorem is that of non-
linear approximation by splines using variable knots. Based upon this idea of approximating
the solutions of equation (1.1) by splines defined on nonuniform knots, the collocation method,
the Galerkin method and the product-integration method were established for equation (1.1) by
Vainikko and Uba [24], by Graham [4] and by Schneider [20] respectively. A modified collocation
method was introduced in [13] which also uses the idea of Rice. Recently there has been some

considerable interest in the study of the following weakly singular Hammerstein equation:

1
y(s) - /0 Gal|s — tm(s, p(t, y®))dt = f(s), 0<s<1 (1.3)

where f, m and g, are defined as in (1.1) and (1.2) and % is a known function. It is well known
that an equation similar to (1.3) arises naturally as a reformulation to an integral equation
of a class of two dimensional Dirichlet problems with certain nonlinear boundary conditions,
-e.g., [2]. A study on the regularities of the solution y of equation (1.3) is reported in [10],
extending the results of [19]. Subsequently, Kaneko, Noren and Xu used the regularity results
to establish the collocation method for weakly singular Hammerstein equations in [11]. The
approximate solutions provided by these methods for equations (1.1) and (1.3) are in the form
of piecewise polynomials that are not always satisfactory as a tool for approximating functions
with singularities. This observation is quite evident in the areas of finite element analysis.
Hughes and Akin [7] list several problems (e.g. ‘upwind’ finite elements for treating convection
operators [6],[9],[8]; boundary-layer elements [1] etc.) in which the finite element shape functions
are constructed to include polynomials as well as singular functions. Singular shape functions
are introduced to the set of basis functions through asymptotic analysis on the solution of the
problem that is being considered. It should be pointed out that the analysis involved in the
aforementioned papers on the finite element method is centered around the collocation method.
The problems such as the choice for the extra collocation points for singular basis elements or

the rate of convergence are not addressed in these papers. It should be pointed out that the



location of additional collocation points for singular basis elements is critical in detemining the
rate of convergence of numerical solutions. A detailed discussion on this subject can be found
in [12]. A singularity preserving collocation method, because of the reasons mentioned above,
seems to be more difficult to establish.

In this paper, a singularity expansion for the solution of equation (1.3) with logarithmic kernel
is given. This extends the results in [10] and [3]. Only the logarithmic kernel is considered here.
It is a routine matter, however, to establish, following the argument of Section 2, a singularity
expansion for the solution of equation (1.3) with algebraic singularity. The details are left to the
reader. The paper is organized as follows: in Section 2, we study the regularity property of the
soultion of (1.3) and establish its singularity expansion. The results obtained there generalize
the results of [3] and [10]. The singularity expansion is then utilized in Section 3 to achieve
the singularity preserving Galerkin method for equation (1.3). Finally, in Section 4, the iterated
singularity preserving Galerkin method is discussed, extending some results from [15]. Examples

are given in Section 5.

2 Singularity Expansion for Weakly Singular Hammerstein Equa-

tions

In this section, we consider the following Hammerstein equation with logarithmic singularity,
o)~ [ logls — thn(s, 0wt (0t = £(5), 05 <1 (2.1)
(see (1.3) also). We let
KWy(s) = /0 Nog |5 — tlm(s, )b (t, y(t))dt. (2.2)
Then equation (2.1) can be written in operator form as
y— KUy = f. (2.3)

Let H™ denote the Sobolev space, H"[0,1] = {w : w™ € L,[0, 1]}, equipped with the norm
LoN1/2 .

|w||gn = ( A Hw(Z)H%) / where w®) describes the ith generalized derivative of w. We also

let W = W, be the linear space spanned by the functions s'log’s, (1 — s)%log?(1 — s);i,j =

1,2,...,n — 1. Throughout this paper, we assume the following conditions:

m € C?"([0,1] x [0,1]),n > 1, m € C*([0,1] x [0,1]),n = 0. (2.4)

Y e C*" (R x R) (2.5)



feweH" (2.6)

We define
1
Ky(s) = / log | — t|m(s, £)y(t)dt. 2.7)
0

First we quote the following result (lemma 4.4(2)) from [3].

Lemma 2.1 Let ui(s) = sPlog?s, and us(s) = (1 — s)Plog?(1 — s), for some integers p,q > 1
and let f € H" 1. Assume that m € C"*1([0,1] x [0,1]). Then,

n—1
= Z {cjsj log s + d;(1 — s)7 log(1 — s)} + v (s),
j=1

n—1 g+1
(Kuq)( Z ZCW (log s)’ + Z d;(1 — s)7log(1 — 8) + vn(s),
Jj=p+1li=1 Jj=q+1
and
n—1 q+1 . n—1 ‘
(Kusg)( Z ch log(l—s + Z d;s’ log s + vp(s).
Jj=p+1i=1 Jj=q+1

Lemma 2.2 If ui(s) = sPlog? s, us(s) = (1 — s)"log!(1 — s), for some integers p,q,r,1 > 1 are
integers, then ujus € W @ H™.

Proof: Expand u; in series about s = 1 and us about s =0 :

ui(s) =X bi(l—s)'+ fils),  us(s) = Xi5g ais’ + fals),
= Pi(s) + f1(s) = Py(s) + fa(s)

where fl(k)(s) = O((1—8)""%) near s = 1, f; is analytic at s = 1, and fl(k) ~ ugk)(s) — Pl(k)(O) as
s — 0+; fék)(s) = O(s" %) near s = 0, f» is analytic at s = 0, and fék)(s) ~ ugk)(s) P(k)(l) as
s— 1.
Now ujug = PPy + Py fo + Pofi + fi1fs. Clearly Pi P, is in H™. For fi fs, we have

dr (n) L n—i

(A fa() = (Z.)ff ()15 (s).

i=0

Each term fll)( ) fo (n— Z)(s),i =0,1,...,n satisfies
()£ (s) = 0(f(9)t)) = O([u” (s) — PP (0)]s) — 0

as s — 0+.

Similarly



fl(i)(s)fQ("_i)(s) — 0as s — 17. Thus fifa € C™ C H". For fi P we have fi(s)P(s) =
(ui(s) — Pi(s))Pa(s) = ui(s)Pa(s) — Pi(s)P(s). Since P is a polynomial, u; € W, it is easy to
see that u; Py € W& H™ (see [[3],(4.7)]). So fiP, € H". Similarly foP, € W& H™, and Lemma

2 has been verified. O
Lemma 2.3 A product of an H™ function with a function in W is in H" @ W.

Proof: Let g € H" and let u; and us be defined as before prior to Lemma 1. For gu; we write

n— () 5 sPlog?s s (n n—
wi(s)g(s) = S L0  logt s 1 IO 5 ) (o) (5 — o)
ETl—I—TQ.

Since T1 € W & H", we turn to T and write

e = o 1), Sheo (1)L ls? log? )L [ [ 9 (0) (s — o) o]
= ki S (1) i [s710g? s][(n — 1)--.K] fy ¢ (0)(s — o) do
+5Plog? sg(™ (s).
But sPlog?s € L™, g™ € Ly[0,1] so (sPlog? s)g™(s) € L.
For the terms

bn(s) = splogs/g )(s — o) tdo

we have, for some constant M and nonegative integer «

[bu(s) | < MEREDE 5| g(0) | s~ 1do
= Ms(—logs a%fo \g")(a) | do.

But g™ € L,[0,1], so by Hardy’s inequality [18] (p. 72) L [ | ¢/ (o) | do € Lo[0,1]. Since
s(—logs)® € L™ it follows that b, € L[0,1]. Hence L2 € L,[0,1], or T € H™, This proves
gup € W e H™

The case for guo € W & H" is similar. O

Finally we need the following:
Lemma 2.4 The operator KU maps W @& H™ into W @ H" 1.

Proof: Let y=w+h, we W, he H". We use Taylor’s theorem in the form

Yt ) = %Wﬂ (t,a)(x —a)* + % / “(@ = o) O (¢, 0)do (2.8)

k=0



Letting = y(s) and a = h(s) allows us to write

(KU) () () = heom Jo log |t — s | m(t,s)v 0P (s, h(s))w(s)*ds
+d o log | £ = s [ m(t,5) i) ¢ (s,0)(y(s) — 0)"dods (2.9)
=10 HAK) + LB(®).

By (3), ¥O%)(s,h(s)) € H",k = 0,1,...,n, and by expanding w(s)* with the multinomial
expansion, it is clear that w(s)¥ is a sum of terms in W as well as terms of the form as? log? s(1 —

s)"log"(1 — s), p,q,m,u > 1 are integers. The constant, a, depends on p,q,r and u. Since

PO (h(s)) € H™ and w(s)* € W @ H", k = 0,1, ..., n, it follows from Lemma 3 that
Y OR) (s, h(s))w(s)* € W & H. (2.10)

By Lemma 1 and (2.10), we have
A, e W H™ !, (2.11)

For B(t), if we prove that
¥ ot
F(s) = / DO (6 5Y(y(s) — o)*do € W & H”, (2.12)
h(s)
then, also by Lemma 1, B(t) = K[F](t) will be in W @& H™"1. This will complete the proof of

this lemma. First of all, suppose n > 1. We write
F'(s) = =@ (s, h(s))w(s)" W' (s).

Since h € H",¢p € C?+1 p(0n+ (5 h(s)) € H™. By Lemmas 2 and 3, —(0" D (s, h(s))w(s)" €
H" @ W. Since K € H" ', it follows that —(O"+1) (s, h(s))w(s) k' (s) € H* ' @W (Lemma
2). Since F' € H" ' @ W it is clear that F € H® ® W. Second, let n = 0. Then F(s) =
S/ (s,0)do = (s,y(s)) — (s, h(s)) € La[0,1] C W & HP.

Thus
FeWoH" (2.14)

By (2.9), (2.11) and (2.12), it follows that KW maps W @& H™ into W @& H"*!. O

Using the lemmas which we proved above, we obtain the following main result of this section.

Theorem 2.5 Suppose the conditions (2.4)-(2.6) hold and y is an isolated solution of (2.1).
Then there are constants a;; and bi;, for i,j = 1,2,...,n — 1, and there is a function v, in H"

such that

n—1ln—1

y(t) = Z Z[aijti log? t + bij (1 — t)* logj(l —t)] 4+ vn(t). (2.13)
i=1 j=1



Proof: For n = 0, this follows from Lemma 4 with n = 0. Assume that the result holds
for n = k, that is, if f € H* @ Wy, then (2.13) holds with n = k. Say y = wy + vi, where
v € HF wy = Y0} Z?;ll [a;jt log? t + bi;(1 — t) log? (1 — t)].

Now consider the case n = k + 1 and suppose f € H¥ ' @ Wi, 1.

Since y = wy +vx, we write y = KWy+ f = KU (wg+vg)+ f. From Lemma 1, KU (wy+vi) €
W1 @ H¥H1. The proof is complete. O

3 Singularity Preserving Galerkin Method

In this section, we establish the singularity preserving Galerkin method for equation (2.1). First

we recall the definition of the space of spline functions of order n. Define the partition of [0, 1] as
A:0=ty<th <...<tk<tk+1=1.
Let

h = t; —ti_
1§I?§ai§(+1( i~ ti-1),

and assume h — 0 as k — oo. Denote by II,, the set of polynomials of degree n — 1. Then the

space of splines of order n with knots t;’s of multiplicity n — 1 — v is defined as
Sp = S;LL’V(A) ={s € C”[0,1]: 5|I¢ €ll,, },

where 0 <v <n-—1and I; = (t;_1,t;) fori =1,2,....k+ 1. It is well known that the dimension
of SPisd =n(k+1)—k(1+v). S? is spanned by a basis consisting of B-splines {B;}¢,. We let

Vi=W oS (3.1)

and denote the orthogonal projection of L»[0,1] onto V;* by PhG . The singularity preserving
Galerkin method for approximating the solution of equation (2.3) requires the solution y; € V}"

to satisfy the following equation:
yn — Py KWy, = P f. (3.2)

More specifically, we need to find yp in the form

n—1 n—1 d
yn(s) = Z a;;s"log? s + Z Bij(1 —s)"log? (1 —s) + Z%Bi(s) (3.3)
ij=1 ij=1 i=1



where {;, ﬂm}fj_zll and {7;}%_; are found by solving the following system of nonlinear equations:

f]_:ll ij (st log’ 5, sP log? s) +Zu 1ﬁ”((l — 5)'log? (1 — s), s log? 5) +ZZ 17 (B, sPlog? s)
(K'I’(ZU | ijstlogl s + 307 ij= L Bij(1 = s)'log? (1 — ) + 30, 7iB;), 57 log? s)
= (f,sPlog?s) p,g=1,2,....n—1
Pt aij(s'log s, (1—s)Plog?(1 — s)) + Z” 1 ﬁm((l —5)'log’ (1 — 5), (1 — 5)Plog?(1 — 5))
+ 301 vi(Bi, (1 - 5)P log"(1 - 5))
—(KU (X} aujstlog? s+ 3052 Bij(1 — s) log! (1 — 5) + S0, viBy),
(1 —3s)Plog?(1—s)) = (f, (1 —s)Plog?(1l —s)) p,g=1,2,...,n—1
Pt aug(s'logl s, By) + S5 By (1= s)'log? (1= s), By) + iy % (Bi. By)
(K‘I’(Z” 1 Q5 S “log? s + Z?] 11 bi (1 — )" log’ (1—5)+ Z?:l iBi), Bp)
= (f,Bp) p=12...,d
where (-,) denotes the usual inner product defined on Ls[0,1]. Now let P, be the orthogonal

projection of L[0,1] onto S}'. Then we have
Py —wv ash — 0 for all v € Ls]0, 1]. (3.4)

It is well known (e.g. [21]) that if g € H", n > 0, then for each h > 0, there exists ¢}, € S}’ such
that
lg = énll2 < CR(|gllan, (3.5)

where C' > 0 is a constant independent of h. By virtue of the fact that Ppu is the best Lo

approximation of u from S}, we see immediately that
| Prou— ull2 < ||lu— ¢plle < Ch™||ul|gn, for all w e H™. (3.6)
The following lemma from [3] is useful in the sequel.

Lemma 3.1 Let X be a Banach space. Suppose that Uy and Us are two subspaces of X with
Uy CUy. Assume that Py : X — Uy and Py : X — Us are linear operators. If Py is a projection,
then

|z — Przl|x < (14 || P x)||lz — Piz||x for allxz € X.

For convenience, we introduce operators 1" and T, by letting
Ty=f+ KUy (3.7)

and

Thyn = PC f + PE KUy, (3.8)



so that equations (2.1) and (3.2) can be written respectively as y = Ty and y, = Thy,. The
following theorem guarantees the existence of a solution of the singularity preserving Galerkin

method (3.2) and describes the accuracy of its approximation.

Theorem 3.2 Let y € L3]0,1] be an isolated solution of equation (2.1). Assume that 1 is not
an eigenvalue of the linear operator (KW) (y), where (KW) (y) denotes the Fréchet derivative of
K3 aty. Then the singularity preserving Galerkin approzimation equation (3.2) has a unique
solution yp, such that ||y — yplle < § for some § > 0 and for all 0 < h < hg for some hy > 0.
Moreover, there exists a constant 0 < q < 1, independent of h, such that

ap,
1+¢q

Qp,
S Y—Yn 2§ ) 3.9
o=l < 22 (59)

where ap, = ||(I =T} (y) " (Th(y) —T(y))|l2. Finally, if y = w+v withw € W and v € H", then
ly — ynll2 < Ch"™||v| gn, whenever 0 < h < hy, (3.10)

where C' > 0 is a constant independent of h.

Proof: The existence of a unique solution y;, of equation (3.2) in the disk of radius § about
y and the inequalities in (3.7) can be proved using Theorem 2 of Vainikko [22]. A detailed
discussion on this application can be found in [11]. To get (3.10), first we note from Lemma 3.1,
for v € L9[0, 1],

1P v = wll2 < (1+ | B [12)]| Pov — v (3.11)

By assumption, (I — (KW)(y))~! exists. By (3.4), Lemma 3.1 and since (KW¥)'(y) is a compact
linear operator, |[PS(KW) (y) — (K¥) (y)|l2 — 0 as n — oo. Hence (I — PY(K¥) (y))~! =

(I — T} (y))~! exists and uniformly bounded in | - |2 norm. Now, from (3.9),

a

ly —wnl2 <1
= I = T4 () " (Tu(y) — T(y))ll2
< CO||PFKVy — KUy + PFf — fla
= C|IPfy =yl

(3.12)

where C is independent of h. Using the uniform boundedness of { P}, (3.6), (3.11) and (3.12),
we obtain

ly = ynll2 < Ch[|[o] .



4 The Iterated Singularity Preserving Galerkin Method

In this section, the superconvergence of the iterated singularity preserving Galerkin method is
discussed. We remind the reader that the conditions (2.4), (2.5) and (2.6) are still in effect. The
discussion of this section depends heavily upon the recent paper by Kaneko and Xu [15] so that
only the points of distinct differences are explained.

Let yo be an isolated solution of (2.1). Assume that yy, is the unique solution of (3.2) in the
sphere ||yo — yl|2 < 6, for some > 0. Define

yh = f + KWy, (4.1)
Applying P,? to both sides of (4.1), we obtain
Piy, = Py f + P K Yy, (4.2)

Comparing (4.2) with (3.2),
Pyyh = yn- (4.3)

Substitution of (4.3) into (4.1) yields that y} satisfies the following Hammerstein equation,
yp = f+KUPZyl. (4.4)

In order to analyse the order of convergence of the iterated singularity preserving Galerkin
method for Hammerstein equations with logarithmic singular kernel, we need the following. For
any € € R, let [0,1]c = {t € [0,1] : t + € € [0,1]}. Let A}, denote the forward difference operator
with step size h. For a > 0 and 1 < p < oo, we define the Nikol’skii space Ng*[0,1] by

1
N0,1] ={x € L,]0,1] : |z =sup ——
S10.1) = € 1,001 felag o= sup

1872 1, 0,17, < o0}, (4.5)
where [a] is an integer and 0 < ap < 1 are chosen so that a = [a] + ag. N'[0,1] is a Banach
space with the norm ||z|a,, = ||z, + |2]ap. We remark that the function 2! is in N{[0,1] but
is not in Nig[O, 1], for any 8 > «, and logt € N{[0, 1], hence it is in N{* for all 0 < o < 1.

The theorem of Kaneko and Xu [14, Theorem 3.3], with only very minor modification can be

written in the following form.

Theorem 4.1 Let yo € C[0,1] be an isolated solution of equation (2.1) and yp be the unique
solution of (2.5) in the sphere B(yo,d). Let yl be defined by the iterated scheme (4.1). Assume
that 1 is not an eigenvalue of (KW) (yo). Then, for all 1 < p < oo,

ly0 = yhlloo < C{IIyo — Piwoll% + sup inf [kt )0 OV g0(.) = ullgllyo — P;?yollp} :
0<t<1u€Vy

where 1/p+1/q =1 and C is a constant independent of n.

10



As a corollary, we obtain the main result of the section. First, we introduce some notations.

Applying the mean-value theorem to v (s,y) to get

¥(s,y) = (s, 90) + ¥ OV (5,90 + 0(y — o))

where 6 = (s, yo,y) with 0 < 6 < 1 and ¥ denotes the partial derivative of ¢ with respect
to the second variable. Also

k(s,t) = log(|s — t|)m(s,t)

and

9(s,t,90,y,0) = k(s, )V (5,90 + 0(y — y0)).

Theorem 4.2 Assume the hypotheses of the previous theorem. Assume also that (2.4)-(2.6)
hold. Then
lyo = Unlloo = O(h*™") + O(R™H1) = O(A" ).

Proof: First of all, for each u € V",

llyo = Piyollse < llyo — ulloe + I1P5"u = Piyolloo < (1+ P)llyo — ulloc, (4.6)

where P = supP}? < 00. Since yg = w + v for some w € W and v € H", we let u = w + u*,
h>0
where u* € S}'. We obtain [|yo — u/|s = || — ©*||oc. With (4.6) this yields

lso = PEyolloe < (1+P) inf [lv— "]l < CA" (47)
h

The last inequality follows from (3.5). Secondly, by [5], [Theorem 4 (i)], there exists v, € S}’ such
that ||ky — v¢|l1 = O(h). Since v > 1, S} = SZ’V C H', so v, € H".

Since yo € W @ H™ it follows that (%1 (-, y0(-)) € W @ H* !, by expanding 1O (-, yo(-)) in
Taylor series centered at v (recall yo = w+v,v € H™) and using (2.10) and (2.12). Consequently,
w(OD(,yo()) € W & H'L. Say ()6 (-,yo()) = ay + by, where ay € W and by € ",
Now there exists us € SP such that |lus — by = O(h"™1)
and

llge — ue — arlly < ke — vell [0V G o (D) lloo + [0 OD (L y0() — ur — ag]|.
= O(h) +O(h" 1) = O(h),

provided n > 2. Now we apply Theorem 4.1 to get

%0 — Yl = O(R*™) + O(R™F1) = O(h™ ).

11



5 Numerical Example

Let m(s,t) =1, g(|s — t|) = log(|s — t|) and ¥ (s,t) = cos(s +t) in equation (1.3). We assume f
in such a way that x(t) = sint 4 tlogt is the solution. Using splines of order 2 we approximate

the solution of the Hammerstein equation with

d
yo(t) = viBi
i=1

and
d

yi1(t) =Y 7B + atlogt + B(1 — t)log(1 — t) (5.1)
=1

Yo represents the numerical solution that uses only the slpine basis elements whereas y; represents
the current scheme. yg is computed for comparison. Notice that the convergence rate for yq is
lower due to the logarithmic singularity in the kernel and due to the use of the uniform partition
of [0,1]. The use of nonuniform partition to obtain the optimal rate of convergence of numerical
solution was recently established in [15] for the Galerkin method. It should be pointed out that,
as the number of partition points increases, the distribution of these nonuniform points become
extremely skewed toward the end points of the interval. This will cause a sensitivity in numerical
computations, frequently requiring computations in double precision. An introduction of the
singular elements in the basis and working with the uniform partition points will eliminate this
problem. The coefficients in (4.18) were obtained by solving thew set of nonlinear equations of
Section 3 (immediately following (3.3)) using the Newton-Raphson algorithm. Also, the Gauss-
type quadrature algorithm described in [14] is used to calculate all integrals. The computed errors

for the spline-only solution and the singularity preserving solution are shown in the following

table.
Errors
n Yo Y1
2 .032756 | .004002
3 018526 | .001945
4 .012246 | .001147
convergence rate ~ 1.4 1.8
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