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Abstract

In a recent paper [3], Y. Cao and Y. Xu established the Galerkin method for weakly

singular Fredholm integral equations that preserves the singularity of the solution. Their

Galerkin method provides a numerical solution that is a linear combination of a certain

class of basis functions which includes elements that reflect the singularity of the solution.

The purpose of this paper is to extend the result of Cao and Xu and to establish singularity

preserving Galerkin method for Hammerstein equations with logarithmic kernel. The iterated

singularity preserving Galerkin method is also discussed.
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1 Introduction

In this paper, we are concerned with the problem of approximating the solutions of weakly sin-

gular Hammerstein equations with logarithmic kernel by the Galerkin method that preserves the

singularity of the exact solution. Namely we establish a method that generates an approximate

solution in terms of a collection of basis functions some of which are comprised of singular el-

ements that reflect the characteristics of the singularity of the exact solution. The idea of the

method originates in the recent paper by Cao and Xu [3]. Cao and Xu studied the special nature

of the singularities that are pertinent to the solutions of the weakly singular Fredholm equations

of the second kind. Let C[0, 1] denote the space of all continuous functions defined on [0, 1]. The

weakly singular Fredholm integral equations of the second kind can be described as

y(s)−
∫ 1

0
gα(|s− t|)m(s, t)y(t)dt = f(s), 0 ≤ s ≤ 1 (1.1)

where f ∈ C[0, 1], m is sufficiently smooth and

gα(|s− t|) =

 |s− t|α, −1 < α < 0,

log |s− t|, α = 0,
(1.2)
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where y is, of course, the function to be determined. It is well documented (see, e.g. [19],[16],[4],[23])

that the solutions of the equations described in (1.1) exhibit, in general, mild singularities even

in the case of a smooth forcing term f . Here by “mild” singularities, we mean singularities in

derivatives. The papers of Richter [16] and Graham [4] contain singularity expansions of the

solutions of equation (1.1) in the case of m(s, t) ≡ 1. The results of Graham were recently

generalized by Cao and Xu for equation (1.1). Information concerning the type of singularities

that solutions have is useful when solving equation (1.1) numerically. In order to approximate

functions with mild singularities, many investigators utilized the important theorem of Rice [17]

that gives an optimal order of approximation to such functions. Rice’s theorem is that of non-

linear approximation by splines using variable knots. Based upon this idea of approximating

the solutions of equation (1.1) by splines defined on nonuniform knots, the collocation method,

the Galerkin method and the product-integration method were established for equation (1.1) by

Vainikko and Uba [24], by Graham [4] and by Schneider [20] respectively. A modified collocation

method was introduced in [13] which also uses the idea of Rice. Recently there has been some

considerable interest in the study of the following weakly singular Hammerstein equation:

y(s)−
∫ 1

0
gα(|s− t|)m(s, t)ψ(t, y(t))dt = f(s), 0 ≤ s ≤ 1 (1.3)

where f , m and gα are defined as in (1.1) and (1.2) and ψ is a known function. It is well known

that an equation similar to (1.3) arises naturally as a reformulation to an integral equation

of a class of two dimensional Dirichlet problems with certain nonlinear boundary conditions,

-e.g., [2]. A study on the regularities of the solution y of equation (1.3) is reported in [10],

extending the results of [19]. Subsequently, Kaneko, Noren and Xu used the regularity results

to establish the collocation method for weakly singular Hammerstein equations in [11]. The

approximate solutions provided by these methods for equations (1.1) and (1.3) are in the form

of piecewise polynomials that are not always satisfactory as a tool for approximating functions

with singularities. This observation is quite evident in the areas of finite element analysis.

Hughes and Akin [7] list several problems (e.g. ‘upwind’ finite elements for treating convection

operators [6],[9],[8]; boundary-layer elements [1] etc.) in which the finite element shape functions

are constructed to include polynomials as well as singular functions. Singular shape functions

are introduced to the set of basis functions through asymptotic analysis on the solution of the

problem that is being considered. It should be pointed out that the analysis involved in the

aforementioned papers on the finite element method is centered around the collocation method.

The problems such as the choice for the extra collocation points for singular basis elements or

the rate of convergence are not addressed in these papers. It should be pointed out that the
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location of additional collocation points for singular basis elements is critical in detemining the

rate of convergence of numerical solutions. A detailed discussion on this subject can be found

in [12]. A singularity preserving collocation method, because of the reasons mentioned above,

seems to be more difficult to establish.

In this paper, a singularity expansion for the solution of equation (1.3) with logarithmic kernel

is given. This extends the results in [10] and [3]. Only the logarithmic kernel is considered here.

It is a routine matter, however, to establish, following the argument of Section 2, a singularity

expansion for the solution of equation (1.3) with algebraic singularity. The details are left to the

reader. The paper is organized as follows: in Section 2, we study the regularity property of the

soultion of (1.3) and establish its singularity expansion. The results obtained there generalize

the results of [3] and [10]. The singularity expansion is then utilized in Section 3 to achieve

the singularity preserving Galerkin method for equation (1.3). Finally, in Section 4, the iterated

singularity preserving Galerkin method is discussed, extending some results from [15]. Examples

are given in Section 5.

2 Singularity Expansion for Weakly Singular Hammerstein Equa-

tions

In this section, we consider the following Hammerstein equation with logarithmic singularity,

y(s)−
∫ 1

0
log |s− t|m(s, t)ψ(t, y(t))dt = f(s), 0 ≤ s ≤ 1 (2.1)

(see (1.3) also). We let

KΨy(s) ≡
∫ 1

0
log |s− t|m(s, t)ψ(t, y(t))dt. (2.2)

Then equation (2.1) can be written in operator form as

y −KΨy = f. (2.3)

Let Hn denote the Sobolev space, Hn[0, 1] = {w : w(n) ∈ L2[0, 1]}, equipped with the norm

‖w‖Hn =
(∑n

i=0 ‖w(i)‖2
2

)1/2
where w(i) describes the ith generalized derivative of w. We also

let W = Wn be the linear space spanned by the functions si logj s, (1 − s)i logj(1 − s); i, j =

1, 2, ..., n− 1. Throughout this paper, we assume the following conditions:

m ∈ C2n([0, 1]× [0, 1]), n ≥ 1, m ∈ C1([0, 1]× [0, 1]), n = 0. (2.4)

ψ ∈ C2n+1(R×R) (2.5)
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f ∈W ⊕Hn. (2.6)

We define

Ky(s) ≡
∫ 1

0
log |s− t|m(s, t)y(t)dt. (2.7)

First we quote the following result (lemma 4.4(2)) from [3].

Lemma 2.1 Let u1(s) = sp logq s, and u2(s) = (1 − s)p logq(1 − s), for some integers p, q ≥ 1

and let f ∈ Hn−1. Assume that m ∈ Cn+1([0, 1]× [0, 1]). Then,

(Kf)(s) =
n−1∑
j=1

[
cjs

j log s+ dj(1− s)j log(1− s)
]
+ vn(s),

(Ku1)(s) =
n−1∑

j=p+1

q+1∑
i=1

cijs
j(log s)i +

n−1∑
j=q+1

dj(1− s)j log(1− s) + vn(s),

and

(Ku2)(s) =
n−1∑

j=p+1

q+1∑
i=1

cij(1− s)j(log(1− s))i +
n−1∑

j=q+1

djs
j log s+ vn(s).

Lemma 2.2 If u1(s) = sp logq s, u2(s) = (1 − s)r logl(1 − s), for some integers p, q, r, l ≥ 1 are

integers, then u1u2 ∈W ⊕Hn.

Proof: Expand u1 in series about s = 1 and u2 about s = 0 :

u1(s) =
∑n−1

i=0 bi(1− s)i + f1(s), u2(s) =
∑n−1

i=0 ais
i + f2(s),

≡ P1(s) + f1(s) ≡ P2(s) + f2(s)

where f (k)
1 (s) = O((1− s)n−k) near s = 1, f1 is analytic at s = 1, and f (k)

1 ∼ u
(k)
1 (s)−P (k)

1 (0) as

s→ 0+; f (k)
2 (s) = O(sn−k) near s = 0, f2 is analytic at s = 0, and f (k)

2 (s) ∼ u
(k)
2 (s)− P (k)

2 (1) as

s→ 1−.

Now u1u2 = P1P2 + P1f2 + P2f1 + f1f2. Clearly P1P2 is in Hn. For f1f2, we have

dn

dsn
(f1(s)f2(s)) =

n∑
i=0

(
n

i

)
f

(i)
1 (s)f (n−i)

2 (s).

Each term f
(i)
1 (s)f (n−i)

2 (s), i = 0, 1, ..., n satisfies

f
(i)
1 (s)f (n−i)

2 (s) = O(f (i)
1 (s)ti) = O([u(i)

1 (s)− P
(i)
1 (0)]si) → 0

as s→ 0+.

Similarly
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f
(i)
1 (s)f (n−i)

2 (s) → 0 as s → 1−. Thus f1f2 ∈ Cn ⊆ Hn. For f1P2 we have f1(s)P2(s) =

(u1(s)− P1(s))P2(s) = u1(s)P2(s)− P1(s)P2(s). Since P2 is a polynomial, u1 ∈ W , it is easy to

see that u1P2 ∈W ⊕Hn (see [[3], (4.7)]). So f1P2 ∈ Hn. Similarly f2P1 ∈W ⊕Hn, and Lemma

2 has been verified. 2

Lemma 2.3 A product of an Hn function with a function in W is in Hn ⊕W .

Proof: Let g ∈ Hn and let u1 and u2 be defined as before prior to Lemma 1. For gu1 we write

u1(s)g(s) =
∑n−1

i=0
g(i)(0)

i! si+p logq s+ sp logq s
(n−1)!

∫ s
0 g

(n)(σ)(s− σ)n−1dσ

≡ T1 + T2.

Since T1 ∈W ⊕Hn, we turn to T2 and write

dnT2
dsn = 1

(n−1)!

∑n
k=0

(n
k

)
dk

dsk [sp logq s] dn−k

dsn−k [
∫ s
0 g

(n)(σ)(s− σ)n−1dσ]

= 1
(n−1)!

∑n
k=1

(n
k

)
dk

dsk [sp logq s][(n− 1)...k]
∫ s
0 g

(n)(σ)(s− σ)k−1dσ

+sp logq sg(n)(s).

But sp logq s ∈ L∞, g(n) ∈ L2[0, 1] so (sp logq s)g(n)(s) ∈ L2.

For the terms

bn(s) ≡ dk

dsk
[sp logq s]

∫ s

0
g(n)(σ)(s− σ)k−1dσ

we have, for some constant M and nonegative integer α

| bn(s) | ≤M (− log s)α

sk−1

∫ s
0 | g(n)(σ) | sk−1dσ

= Ms(− log s)α 1
s

∫ s
0 | g(n)(σ) | dσ.

But g(n) ∈ L2[0, 1], so by Hardy’s inequality [18] (p. 72) 1
s

∫ s
0 | g(n)(σ) | dσ ∈ L2[0, 1]. Since

s(− log s)α ∈ L∞ it follows that bn ∈ L2[0, 1]. Hence dnT2
dsn ∈ L2[0, 1], or T2 ∈ Hn, This proves

gu1 ∈W ⊕Hn.

The case for gu2 ∈W ⊕Hn is similar. 2

Finally we need the following:

Lemma 2.4 The operator KΨ maps W ⊕Hn into W ⊕Hn+1.

Proof: Let y = w + h, w ∈W, h ∈ Hn. We use Taylor’s theorem in the form

ψ(t, x) =
n∑

k=0

1
k!
ψ(0,k)(t, a)(x− a)k +

1
n!

∫ x

a
(x− σ)nψ(0,n+1)(t, σ)dσ. (2.8)
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Letting x = y(s) and a = h(s) allows us to write

(KΨ)(y)(t) =
∑n

k=0
1
k!

∫ 1
0 log | t− s | m(t, s)ψ(0,k)(s, h(s))w(s)kds

+ 1
n!

∫ 1
0 log | t− s | m(t, s)

∫ y(s)
h(s) ψ

(0,n+1)(s, σ)(y(s)− σ)ndσds

≡
∑n

k=0
1
k!Ak(t) + 1

n!B(t).

(2.9)

By (3), ψ(0,k)(s, h(s)) ∈ Hn, k = 0, 1, ..., n, and by expanding w(s)k with the multinomial

expansion, it is clear that w(s)k is a sum of terms in W as well as terms of the form asp logq s(1−

s)r logu(1 − s), p, q, r, u ≥ 1 are integers. The constant, a, depends on p, q, r and u. Since

ψ(0,k)(h(s)) ∈ Hn and w(s)k ∈W ⊕Hn, k = 0, 1, ..., n, it follows from Lemma 3 that

ψ(0,k)(s, h(s))w(s)k ∈W ⊕Hn. (2.10)

By Lemma 1 and (2.10), we have

Ak ∈W ⊕Hn+1. (2.11)

For B(t), if we prove that

F (s) ≡
∫ y(s)

h(s)
ψ(0,n+1)(s, σ)(y(s)− σ)ndσ ∈W ⊕Hn, (2.12)

then, also by Lemma 1, B(t) = K[F ](t) will be in W ⊕Hn+1. This will complete the proof of

this lemma. First of all, suppose n ≥ 1. We write

F ′(s) = −ψ(0,n+1)(s, h(s))w(s)nh′(s).

Since h ∈ Hn, ψ ∈ C2n+1, ψ(0,n+1)(s, h(s)) ∈ Hn. By Lemmas 2 and 3, −ψ(0,n+1)(s, h(s))w(s)n ∈

Hn ⊕W . Since h′ ∈ Hn−1, it follows that −ψ(0,n+1)(s, h(s))w(s)nh′(s) ∈ Hn−1 ⊕W (Lemma

2). Since F ′ ∈ Hn−1 ⊕ W it is clear that F ∈ Hn ⊕ W . Second, let n = 0. Then F (s) =∫ y(s)
h(s) ψ

′(s, σ)dσ = ψ(s, y(s))− ψ(s, h(s)) ∈ L2[0, 1] ⊆W ⊕H0.

Thus

F ∈W ⊕Hn. (2.14)

By (2.9), (2.11) and (2.12), it follows that KΨ maps W ⊕Hn into W ⊕Hn+1. 2

Using the lemmas which we proved above, we obtain the following main result of this section.

Theorem 2.5 Suppose the conditions (2.4)-(2.6) hold and y is an isolated solution of (2.1).

Then there are constants aij and bij, for i, j = 1, 2, ..., n − 1, and there is a function vn in Hn

such that

y(t) =
n−1∑
i=1

n−1∑
j=1

[aijt
i logj t+ bij(1− t)i logj(1− t)] + vn(t). (2.13)
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Proof: For n = 0, this follows from Lemma 4 with n = 0. Assume that the result holds

for n = k, that is, if f ∈ Hk ⊕Wk, then (2.13) holds with n = k. Say y = wk + vk, where

vk ∈ Hk, wk =
∑k−1

i=1

∑k−1
j=1 [aijt

i logj t+ bij(1− t)i logj(1− t)].

Now consider the case n = k + 1 and suppose f ∈ Hk+1 ⊕Wk+1.

Since y = wk +vk we write y = KΨy+f = KΨ(wk +vk)+f . From Lemma 1, KΨ(wk +vk) ∈

Wk+1 ⊕Hk+1. The proof is complete. 2

3 Singularity Preserving Galerkin Method

In this section, we establish the singularity preserving Galerkin method for equation (2.1). First

we recall the definition of the space of spline functions of order n. Define the partition of [0, 1] as

∆ : 0 = t0 < t1 < ... < tk < tk+1 = 1.

Let

h = max
1≤i≤k+1

(ti − ti−1),

and assume h → 0 as k → ∞. Denote by Πn the set of polynomials of degree n − 1. Then the

space of splines of order n with knots ti’s of multiplicity n− 1− ν is defined as

Sn
h = Sn,ν

h (∆) = {s ∈ Cν [0, 1] : s|Ii ∈ Πn, },

where 0 ≤ ν ≤ n− 1 and Ii = (ti−1, ti) for i = 1, 2, ..., k+ 1. It is well known that the dimension

of Sn
h is d = n(k+1)−k(1+ν). Sn

h is spanned by a basis consisting of B-splines {Bi}d
i=1. We let

V n
h ≡W ⊕ Sn

h (3.1)

and denote the orthogonal projection of L2[0, 1] onto V n
h by PG

h . The singularity preserving

Galerkin method for approximating the solution of equation (2.3) requires the solution yh ∈ V n
h

to satisfy the following equation:

yh − PG
h KΨyh = PG

h f. (3.2)

More specifically, we need to find yh in the form

yh(s) =
n−1∑
i,j=1

αijs
i logj s+

n−1∑
i,j=1

βij(1− s)i logj(1− s) +
d∑

i=1

γiBi(s) (3.3)
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where {αij , βij}n−1
i,j=1 and {γi}d

i=1 are found by solving the following system of nonlinear equations:

∑n−1
i,j=1 αij(si logj s, sp logq s) +

∑n−1
i,j=1 βij((1− s)i logj(1− s), sp logq s) +

∑d
i=1 γi(Bi, s

p logq s)

−(KΨ(
∑n−1

i,j=1 αijs
i logj s+

∑n−1
i,j=1 βij(1− s)i logj(1− s) +

∑d
i=1 γiBi), sp logq s)

= (f, sp logq s) p, q = 1, 2, . . . , n− 1∑n−1
i,j=1 αij(si logj s, (1− s)p logq(1− s)) +

∑n−1
i,j=1 βij((1− s)i logj(1− s), (1− s)p logq(1− s))

+
∑d

i=1 γi(Bi, (1− s)p logq(1− s))

−(KΨ(
∑n−1

i,j=1 αijs
i logj s+

∑n−1
i,j=1 βij(1− s)i logj(1− s) +

∑d
i=1 γiBi),

(1− s)p logq(1− s)) = (f, (1− s)p logq(1− s)) p, q = 1, 2, . . . , n− 1∑n−1
i,j=1 αij(si logj s,Bp) +

∑n−1
i,j=1 βij((1− s)i logj(1− s), Bp) +

∑d
i=1 γi(Bi, Bp)

−(KΨ(
∑n−1

i,j=1 αijs
i logj s+

∑n−1
i,j=1 bi,j(1− s)i logj(1− s) +

∑d
i=1 γiBi), Bp)

= (f,Bp) p = 1, 2, . . . , d

where (·, ·) denotes the usual inner product defined on L2[0, 1]. Now let Ph be the orthogonal

projection of L2[0, 1] onto Sn
h . Then we have

Phv → v as h→ 0 for all v ∈ L2[0, 1]. (3.4)

It is well known (e.g. [21]) that if g ∈ Hn, n ≥ 0, then for each h > 0, there exists φh ∈ Sn
h such

that

‖g − φh‖2 ≤ Chn‖g‖Hn , (3.5)

where C > 0 is a constant independent of h. By virtue of the fact that Phu is the best L2

approximation of u from Sn
h , we see immediately that

‖Phu− u‖2 ≤ ‖u− φh‖2 ≤ Chn‖u‖Hn , for all u ∈ Hn. (3.6)

The following lemma from [3] is useful in the sequel.

Lemma 3.1 Let X be a Banach space. Suppose that U1 and U2 are two subspaces of X with

U1 ⊆ U2. Assume that P1 : X → U1 and P2 : X → U2 are linear operators. If P2 is a projection,

then

‖x− P2x‖X ≤ (1 + ‖P2‖X)‖x− P1x‖X for all x ∈ X.

For convenience, we introduce operators T̂ and Th by letting

T̂ y ≡ f +KΨy (3.7)

and

Thyh ≡ PG
h f + PG

h KΨyh (3.8)
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so that equations (2.1) and (3.2) can be written respectively as y = T̂ y and yh = Thyh. The

following theorem guarantees the existence of a solution of the singularity preserving Galerkin

method (3.2) and describes the accuracy of its approximation.

Theorem 3.2 Let y ∈ L2[0, 1] be an isolated solution of equation (2.1). Assume that 1 is not

an eigenvalue of the linear operator (KΨ)′(y), where (KΨ)′(y) denotes the Fréchet derivative of

KΨ at y. Then the singularity preserving Galerkin approximation equation (3.2) has a unique

solution yh such that ‖y − yh‖2 < δ for some δ > 0 and for all 0 < h < h0 for some h0 > 0.

Moreover, there exists a constant 0 < q < 1, independent of h, such that

αh

1 + q
≤ ‖y − yh‖2 ≤

αh

1− q
, (3.9)

where αh ≡ ‖(I − T ′h(y))−1(Th(y)− T̂ (y))‖2. Finally, if y = w+ v with w ∈W and v ∈ Hn, then

‖y − yh‖2 ≤ Chn‖v‖Hn , whenever 0 < h < h0, (3.10)

where C > 0 is a constant independent of h.

Proof: The existence of a unique solution yh of equation (3.2) in the disk of radius δ about

y and the inequalities in (3.7) can be proved using Theorem 2 of Vainikko [22]. A detailed

discussion on this application can be found in [11]. To get (3.10), first we note from Lemma 3.1,

for v ∈ L2[0, 1],

‖PG
h v − v‖2 ≤ (1 + ‖PG

h ‖2)‖Phv − v‖2. (3.11)

By assumption, (I − (KΨ)′(y))−1 exists. By (3.4), Lemma 3.1 and since (KΨ)′(y) is a compact

linear operator, ‖PG
n (KΨ)′(y) − (KΨ)′(y)‖2 → 0 as n → ∞. Hence (I − PG

n (KΨ)′(y))−1 =

(I − T ′h(y))−1 exists and uniformly bounded in ‖ · ‖2 norm. Now, from (3.9),

‖y − yh‖2 ≤ αh
1−q

= 1
1−q‖(I − T ′h(y))−1(Th(y)− T̂ (y))‖2

≤ C‖PG
h KΨy −KΨy + PG

h f − f‖2

= C‖PG
h y − y‖2.

(3.12)

where C is independent of h. Using the uniform boundedness of {PG
h }, (3.6), (3.11) and (3.12),

we obtain

‖y − yh‖2 ≤ Chn‖v‖Hn .

2

9



4 The Iterated Singularity Preserving Galerkin Method

In this section, the superconvergence of the iterated singularity preserving Galerkin method is

discussed. We remind the reader that the conditions (2.4), (2.5) and (2.6) are still in effect. The

discussion of this section depends heavily upon the recent paper by Kaneko and Xu [15] so that

only the points of distinct differences are explained.

Let y0 be an isolated solution of (2.1). Assume that yh is the unique solution of (3.2) in the

sphere ‖y0 − y‖2 ≤ δ, for some δ > 0. Define

yI
n = f +KΨyh. (4.1)

Applying PG
h to both sides of (4.1), we obtain

PG
h y

I
h = PG

h f + PG
h KΨyh. (4.2)

Comparing (4.2) with (3.2),

PG
h y

I
h = yh. (4.3)

Substitution of (4.3) into (4.1) yields that yI
h satisfies the following Hammerstein equation,

yI
h = f +KΨPG

h y
I
h. (4.4)

In order to analyse the order of convergence of the iterated singularity preserving Galerkin

method for Hammerstein equations with logarithmic singular kernel, we need the following. For

any ε ∈ R, let [0, 1]ε = {t ∈ [0, 1] : t+ ε ∈ [0, 1]}. Let ∆h denote the forward difference operator

with step size h. For α > 0 and 1 ≤ p ≤ ∞, we define the Nikol’skii space Nα
p [0, 1] by

Nα
p [0, 1] = {x ∈ Lp[0, 1] : |x|α,p := sup

h 6=0

1
|h|α0

‖∆2
hx

[α]‖Lp[0,1]2h
<∞}, (4.5)

where [α] is an integer and 0 < α0 ≤ 1 are chosen so that α = [α] + α0. Nα
p [0, 1] is a Banach

space with the norm ‖x‖α,p = ‖x‖p + |x|α,p. We remark that the function tα−1 is in Nα
1 [0, 1] but

is not in Nβ
1 [0, 1], for any β > α, and log t ∈ N1

1 [0, 1], hence it is in Nα
1 for all 0 < α < 1.

The theorem of Kaneko and Xu [14, Theorem 3.3], with only very minor modification can be

written in the following form.

Theorem 4.1 Let y0 ∈ C[0, 1] be an isolated solution of equation (2.1) and yh be the unique

solution of (2.5) in the sphere B(y0, δ). Let yI
h be defined by the iterated scheme (4.1). Assume

that 1 is not an eigenvalue of (KΨ)′(y0). Then, for all 1 ≤ p ≤ ∞,

‖y0 − yI
h‖∞ ≤ C

{
‖y0 − PG

h y0‖2
∞ + sup

0≤t≤1
inf

u∈V n
h

‖k(t, .)ψ(0,1)(., y0(.))− u‖q‖y0 − PG
h y0‖p

}
,

where 1/p+ 1/q = 1 and C is a constant independent of n.

10



As a corollary, we obtain the main result of the section. First, we introduce some notations.

Applying the mean-value theorem to ψ(s, y) to get

ψ(s, y) = ψ(s, y0) + ψ(0,1)(s, y0 + θ(y − y0))

where θ ≡ θ(s, y0, y) with 0 < θ < 1 and ψ(0,1) denotes the partial derivative of ψ with respect

to the second variable. Also

k(s, t) ≡ log(|s− t|)m(s, t)

and

g(s, t, y0, y, θ) ≡ k(s, t)ψ(0,1)(s, y0 + θ(y − y0)).

Theorem 4.2 Assume the hypotheses of the previous theorem. Assume also that (2.4)-(2.6)

hold. Then

‖y0 − yI
n‖∞ = O(h2n) +O(hn+1) = O(hn+1).

Proof: First of all, for each u ∈ V n
h ,

‖y0 − PG
h y0‖∞ ≤ ‖y0 − u‖∞ + ‖PG

h u− PG
h y0‖∞ ≤ (1 + P )‖y0 − u‖∞, (4.6)

where P ≡ sup
h>0

PG
h < ∞. Since y0 = w + v for some w ∈ W and v ∈ Hn, we let u = w + u∗,

where u∗ ∈ Sn
h . We obtain ‖y0 − u‖∞ = ‖v − u∗‖∞. With (4.6) this yields

‖y0 − PG
h y0‖∞ ≤ (1 + P ) inf

u∗∈Sn
h

‖v − u∗‖∞ ≤ Chn. (4.7)

The last inequality follows from (3.5). Secondly, by [5], [Theorem 4 (i)], there exists vt ∈ Sn
h such

that ‖kt − vt‖1 = O(h). Since ν ≥ 1, Sn
h = Sn,ν

h ⊆ H1, so vt ∈ H1.

Since y0 ∈W ⊕Hn it follows that ψ(0,1)(·, y0(·)) ∈W ⊕Hn−1, by expanding ψ(0,1)(·, y0(·)) in

Taylor series centered at v (recall y0 = w+v, v ∈ Hn) and using (2.10) and (2.12). Consequently,

vt(·)ψ(0,1)(·, y0(·)) ∈ W ⊕Hn−1. Say vt(·)ψ(0,1)(·, y0(·)) = at + bt, where at ∈ W and bt ∈ Hn−1.

Now there exists ut ∈ Sn
h such that ‖ut − bt‖1 = O(hn−1)

and

‖gt − ut − at‖1 ≤ ‖kt − vt‖1‖ψ(0,1)(·, y0(·))‖∞ + ‖vt(·)ψ(0,1)(·, y0(·))− ut − at‖.

= O(h) +O(hn−1) = O(h),

provided n ≥ 2. Now we apply Theorem 4.1 to get

‖y0 − yI
h‖∞ = O(h2n) +O(hn+1) = O(hn+1).
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5 Numerical Example

Let m(s, t) = 1, g(|s− t|) = log(|s− t|) and ψ(s, t) = cos(s+ t) in equation (1.3). We assume f

in such a way that x(t) = sin t+ t log t is the solution. Using splines of order 2 we approximate

the solution of the Hammerstein equation with

y0(t) =
d∑

i=1

γiBi

and

y1(t) =
d∑

i=1

γiBi + αt log t+ β(1− t) log(1− t) (5.1)

y0 represents the numerical solution that uses only the slpine basis elements whereas y1 represents

the current scheme. y0 is computed for comparison. Notice that the convergence rate for y0 is

lower due to the logarithmic singularity in the kernel and due to the use of the uniform partition

of [0, 1]. The use of nonuniform partition to obtain the optimal rate of convergence of numerical

solution was recently established in [15] for the Galerkin method. It should be pointed out that,

as the number of partition points increases, the distribution of these nonuniform points become

extremely skewed toward the end points of the interval. This will cause a sensitivity in numerical

computations, frequently requiring computations in double precision. An introduction of the

singular elements in the basis and working with the uniform partition points will eliminate this

problem. The coefficients in (4.18) were obtained by solving thew set of nonlinear equations of

Section 3 (immediately following (3.3)) using the Newton-Raphson algorithm. Also, the Gauss-

type quadrature algorithm described in [14] is used to calculate all integrals. The computed errors

for the spline-only solution and the singularity preserving solution are shown in the following

table.

Errors

n y0 y1

2 .032756 .004002

3 .018526 .001945

4 .012246 .001147

convergence rate ≈ 1.4 1.8
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