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Abstract

In this paper, we extend the study that was initiated by Hamel [7] on the relationship

among theorems of Ekeland, Caristi and Takahashi. We shall give a new proof of Taka-

hashi’s theorem and subsequently a new proof to show that the aforementioned theorems

are equivalent which was done in [7]. A series of fixed point theorems for multivalued maps

are presented that are equivalent to a well known theorem of Caristi.

Mathematics Subject Classification (1991): 47H10

1 Introduction

We begin by listing theorems of Takahashi, Caristi and Ekeland. We give an alternative proof to

Takahashi’s theorem. The main theorem of [12] is the following (“proper” means not identically

equal to ∞):

Theorem 1.1 (Takahashi [12]) Let (X, d) be a complete metric space and let ϕ:X → (−∞,∞]

be a proper lower semicontinuous function, bounded from below. Suppose that, for each u ∈ X

with ϕ(u) > infx∈X ϕ(x), there is a v ∈ X such that v 6= u and ϕ(v) + d(u, v) ≤ ϕ(u). Then

there exists an x0 ∈ X such that ϕ(x0) = infx∈X ϕ(x).
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Proof: We let m = inf{ϕ(v)|v ∈ X}, and suppose that ϕ(u) > m for every u ∈ X. We define

inductively a sequence {un} as follows; take u0 ∈ X with ϕ(u0) <∞ and let

S0 = {v ∈ X|d(v, u0) ≤ ϕ(u0)− ϕ(v)}.

S0 6= ∅ since u0 ∈ S0, and S0 is closed since ϕ is lower semi-continuous. Also, by hypothesis, S0

is not a singleton set, since ϕ(u0) > m there is u1 ∈ S0, u1 6= u0. Clearly ϕ(u1) < ϕ(u0) and we

are free to choose u1 such that ϕ(u1) = inf{ϕ(v)|v ∈ S0}. This minimum is attained because S0

is a bounded set and ϕ is lower semi-continuous, bounded from below.

If u0, u1, . . . , un have been chosen, choose un+1 ∈ Sn = {v ∈ X|d(un, v) ≤ ϕ(un)−ϕ(v)} with

un+1 6= un, ϕ(un+1) < ϕ(un) and ϕ(un+1) = inf{ϕ(v)|v ∈ Sn}. We claim that {un} is Cauchy.

To see this, note that d(un+k, un) ≤
∑k

i=1 d(un+i, un+i−1) ≤
∑k

i=1(ϕ(un+i−1) − ϕ(un+i)) =

ϕ(un) − ϕ(un+k), and since ϕ(un) is a decreasing sequence converging to c for some c, for any

ε > 0, we have d(un+k, un) < ε for all k if n is sufficiently large.

Let {un} converge to u ∈ X. We make a point here that un are all different. We claim that

u ∈ Sn for every n. We have

d(un−k, un) ≤
∑k−1

i=0 d(un−k+i, un−k+i+1)

≤
∑k−1

i=0 [ϕ(un−k+1)− ϕ(un−k+i+1)]

= ϕ(un−k)− ϕ(un),

which shows that un ∈ Sn−k, for k = 1, 2, . . . , n, so that un ∈ ∩n−1
i=0 Si. We thus have, for k > n,

uk ∈ ∩n
i=0Si, and since ∩n

i=0Si is closed, u ∈ ∩n
i=0Si. Thus, in particular, u ∈ Sn, and since

u 6= un, we get ϕ(u) < ϕ(un). This contradicts the choice of un in Sn. This completes the proof.

2.

We note that the formulation that Hamel uses to describe Takahashi’s condition is the

following:

Condition (T): There exists an α > 0 such that for each u ∈ X such that ϕ(u) >

infx∈X ϕ(x), there is a v ∈ X such that v 6= u and ϕ(v) + αd(u, v) ≤ ϕ(u).

Condition (T) is different from the condition that was originally given by Takahashi. The

condition used in Theorem 1.1 is the original definition of Takahashi’s condition. It should be

pointed out that condition (T) encompasses a wider class of lower semicontinuous functions

than the condition in Theorem 1.1. For example, consider f :R → R defined by f(x) = 1 for

x ∈ (0, 4) and f(x) = 0 elsewhere. The function f does not satisfy the condition in Theorem 1.1:

for x = 2, there is no y such that |y − 2| ≤ 1 − f(y) holds. However, condition (T) is satisfied

by f by the metric αd(x, y) = 1
2 |x− y|.
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Takahashi [12] observed that Theorem 1.1 includes as corollaries three well known theorems.

They are the fixed point theorem of Caristi [2], the ε-variational principle of Ekeland [6] and the

fixed point theorem of Nadler [9]. Caristi’s theorem is the following:

Theorem 1.2 (Caristi [2]) Let X be a complete metric space and let ϕ:X → R be a lower

semicontinuous function bounded from below. Let T :X → X be a mapping satisfying

d(x, Tx) ≤ ϕ(x)− ϕ(Tx) (1.2)

for every x ∈ X. Then there exists an x0 ∈ X with Tx0 = x0.

Much attention was drawn to Caristi’s theorem since its publication because it requires no

continuity on the mapping T . It also contains as a special case the fixed point theorem for

multivalued contractions of Nadler [9] that is a generalization of the classical Banach fixed point

principle. Nadler proved that if T is a mapping of a complete metric space X to CB(X)(=the

family of all closed bounded subsets of X) that satisfies

H(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X, 0 ≤ k < 1,

then T has a fixed point in X. Recently, some work has been made toward generalizing this

theorem by relaxing the condition on the contractive constant k. In [11] (p.40), Reich proved

that a mapping T :X → K(X)(=the family of all compact subsets of X) has a fixed point in

X if it satisfies H(Tx, Ty) ≤ k(d(x, y))d(x, y) for all x, y ∈ X, where k: (0,∞) → [0, 1) satisfies

lim supr→t+ k(r) < 1 for every t ∈ (0,∞). This result generalizes the fixed point theorem for

single-valued mappings that was proved by Boyd and Wong [1]. Some attempts [3, 5, 8] were

made to replace K(X) by CB(X) thereby generalizing Reich’s theorem. Theorem 1.3 of Caristi,

although it is of extremely general character, does not seem to have an immediate relationship

with these theorems.

Now we return to the main scope of this paper and state the variational principle of Ekeland.

Theorem 1.3 (Ekeland [6]) Let (X, d) be a complete metric space and ϕ:X → (−∞,∞] a

proper lower semicontinuous function bounded from below. Let ε > 0 be given and a point u ∈ X

such that

ϕ(u) ≤ inf
x∈X

ϕ(x) + ε.

Then there exists some point v ∈ X such that

ϕ(v) ≤ ϕ(u)

d(u, v) ≤ 1

ϕ(w) > ϕ(v)− εd(v, w) for all w 6= v.
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A number of useful applications of Theorem 1.3 are described in [6]. It is well documented

that Theorems 1.2 and 1.3 are equivalent, e.g. see [12],[7]. In [7], Hamel observed that Theorem

1.1 can be derived from Theorem 1.2, making Theorems 1.1, 1.2 and 1.3 equivalent. The main

purpose of Section 2 is to provide the reader with additional equivalent formulations of these

theorems. This provides us with an alternative perspective to the approach of Hamel in [7].

In addition, a series of fixed point theorems are given for lower semicontinuous multifunctions.

In the final section, Section 3, the argument used to prove Theorem 1.1 is used to prove the

existence of the weak sharp minima for a class of lower semicontinuous functions. This confirms

and expands the result obtained in theorem 2 (ii) of [7].

2 Variational Principle and Fixed Point Theorems

First, in this section, we make an observation that the sequence {un} generated in the proof

of theorem 1.1 [12] actually converges to a minimizer of ϕ. Theorem 2.1 below is Theorem 1.1

slightly modified to reflect the observed point above. The proof is essentially the one given in

[12].

Theorem 2.1 Let (X, d) be a complete metric space and let ϕ:X → (−∞,∞] be a proper

lower semicontinuous function, bounded from below. Suppose that, for each u ∈ X with ϕ(u) >

infx∈X ϕ(x), there is a v ∈ X such that v 6= u and ϕ(v) + d(u, v) ≤ ϕ(u). Then a sequence

{un} can be constructed that converges to a minimizer x0 of ϕ, i.e., x0 ∈ X is such that

ϕ(x0) = infx∈X ϕ(x).

Proof: Let u0 ∈ X. If ϕ(u0) = infx∈X ϕ(x) ≡ c, then we are done. If ϕ(ui) > c for i =

0, 1, . . . , n− 1 (n ≥ 1), then find un ∈ Sn where

Sn = {w ∈ X:ϕ(w) + d(un−1, w) ≤ ϕ(un−1)}

such that

ϕ(un) ≤ inf
w∈Sn

ϕ(w) +
1
2
{ϕ(un−1)− inf

w∈Sn

ϕ(w)}.

Arguing as in [12], we see that {un} is a Cauchy sequence and that, with un → x0 ∈ X,

d(un, x0) ≤ ϕ(un)− ϕ(x0).
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We claim that x0 is a minimizer for ϕ. If not, by hypothesis, there exists z ∈ X, z 6= x0 such

that
ϕ(z) ≤ ϕ(x0)− d(x0, z)

≤ ϕ(x0)− d(x0, z) + ϕ(un)− ϕ(x0)− d(un, x0)

≤ ϕ(un)− d(un, z).

Hence z ∈ Sn. The definition of Sn implies that

2ϕ(un)− ϕ(un−1) ≤ inf
w∈Sn

ϕ(w) ≤ ϕ(z).

Using the above inequalities, we obtain the following contradiction,

ϕ(z) < ϕ(x0) ≤ ϕ(z).

Hence x0 is a minimizer of ϕ. 2

Takahashi demonstrated the generality of Theorem 1.1 by including as corollaries three well

known theorems. They are the fixed point theorem of Caristi [2], the ε-variational principle of

Ekeland [6] and the fixed point theorem of Nadler [9]. Our next task is to show that Theorem

1.1 and Theorem 1.3 of Caristi are indeed equivalent, providing an alternative proof to Theorem

1 of [7].

Proposition 2.2 Theorem 1.1 of Takahashi and Theorem 1.2 of Caristi are equivalent. Hence

they are equivalent to Theorem 1.3 of Ekeland.

Proof: As was stated before this Proposition, Takahashi [12] showed that his Theorem 1.1

contains Theorem 1.2 as a corollary. For a converse, suppose that there is no x0 ∈ X such

that ϕ(x0) = infx∈X ϕ(x). Now define S:X → 2X \ ∅ by Sx = {y:ϕ(y) + d(x, y) ≤ ϕ(x)} and

T :X → X by Tx ∈ Sx \ {x}. This is possible by the hypothesis to Takahashi’s theorem. But

T is fixed point free, and this is impossible by Caristi’s theorem. Hence there is x0 ∈ X with

ϕ(x0) = infx∈X ϕ(x).

It is well known that Theorems 1.2 and 1.3 are equivalent [12]. 2

We conclude this section by describing four other formulations in terms of the fixed points

of lower semicontinuous multifunctions that can be shown to be equivalent to Theorem 1.1 of

Takahashi. A similar development was made by Park [10].

Theorem 2.3 Let X be a complete metric space and let ϕ:X → (−∞,∞] be a proper lower

semicontinuous function bounded from below. Let T :X → 2X \ {∅}. Suppose that, for all

x /∈ T (x), there exists y 6= x that satisfies

ϕ(y) + d(y, x) ≤ ϕ(x).
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Then T has a fixed point in X.

Theorem 2.4 Let X be a complete metric space and let ϕ:X → (−∞,∞] be a proper lower

semicontinuous function bounded from below. Let T :X → 2X \ {∅} be such that for all x ∈ X

with T (x) 6= ∅ and for all y ∈ T (x),

ϕ(y) + d(y, x) ≤ ϕ(x).

Then there exists u ∈ X such that T (u) = {u}.

Theorem 2.5 Let X be a complete metric space and let ϕ:X → (−∞,∞] be a proper lower

semicontinuous function bounded from below. Let T : X → 2X \ {∅} be such that for all x ∈ X,

there exists y ∈ T (x) such that

d(y, x) ≤ ϕ(x)− ϕ(y).

Then T has a fixed point in X.

Theorem 2.6 Let X be a complete metric space and let ϕ:X → (−∞,∞] be a proper lower

semicontinuous function bounded from below. Let T :X → 2X \ {∅} be closed. Suppose that

d(x, T (x)) ≤ ϕ(x)− sup
y∈T (x)

ϕ(y) for x ∈ X.

Then T has a fixed point in X.

The main result of the section is the following:

Proposition 2.7 Theorems 2.3, 2.4, 2.5 2.6 and 1.1 are equivalent.

Proof: Theorem 1.1 ⇒ Theorem 2.3

Suppose that T has no fixed point. Then for all x ∈ X, x /∈ T (x) so that by assumption there

exists y 6= x such that ϕ(y) + d(y, x) ≤ ϕ(x). Then by Theorem 1.1, there exists x0 ∈ X such

that ϕ(x0) = infx∈X ϕ(x). Let y0 ∈ T (x0) be such that y0 6= x0 and ϕ(y0) + d(y0, x0) ≤ ϕ(x0).

Then

0 < d(x0, y0) ≤ ϕ(x0)− ϕ(y0) ≤ ϕ(y0)− ϕ(y0) = 0.

This contradiction proves the implication.

Theorem 2.3 ⇒ Theorem 2.4

Suppose that there is no element u ∈ X for which T (u) = {u}. For each x ∈ X, define f by

f(x) ∈ T (x) \ {x} so that f is fixed point free. Then ϕ(f(x)) + d(f(x), x) ≤ ϕ(x). By Theorem
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3.3, T must have a fixed point and it must be a fixed point of f also by Theorem 1.3 of Caristi.

This contradiction proves the impication.

Theorem 2.4 ⇒ Theorem 1.1

Define T :X → 2X by T (x) = {y:ϕ(y) + d(x, y) ≤ ϕ(x)}. Suppose that there is no x0 ∈ X

such that ϕ(x0) = infx∈X ϕ(x). By the assumption in Theorem 1.1, T (x) 6= ∅. Then for each

x ∈ X and y ∈ T (x), ϕ(y) + d(y, x) ≤ ϕ(x). Hence by Theorem 3.4, there exists u ∈ X such

that T (u) = {u}. This shows that there is no v 6= u for which ϕ(v) + d(u, v) ≤ ϕ(u).

Theorem 2.4 ⇒ Theorem 2.5

This is obvious, since the condition in Theorem 2.4 implies the condition in Theorem 2.5.

Theorem 2.5 ⇒ Theorem 2.6

Let ψ(x) ≡ 1
2ϕ(x). Let x ∈ X. If d(x, T (x)) = 0, then x ∈ T (x) since T (x) is closed in X.

Thus if T has no fixed point, then d(x, T (x)) > 0 for any x ∈ X. Let y ∈ T (x) be such that

d(x, y) < 1
2d(x, T (x)). Then

d(x, y) ≤ 1
2
d(x, T (x)) ≤ 1

2
(ϕ(x)− sup

y∈T (x)
ϕ(y)) ≤ ψ(x)− ψ(y).

Since ψ is a proper lower semicontinuous function bounded from below, by Theorem 2.5, T has

a fixed point.

Theorem 2.6 ⇒ Theorem 2.4

Note that T (x) ≡ {y} is closed. Hence Theorem 2.4 is a special case of Theorem 2.6.

This completes the proof of Proposition 2.7.

2

3 Application to Weak Sharp Minima

In this section, we make use of the argument employed to demonstrate Theorem 1.1 to prove

the existence of weak sharp minima for a class of lower semicontinuous functions. This expands

theorem 2 (ii) of Hamel by giving an alternative approach. As before, let X be a complete

metric space and ϕ:X → (−∞,∞] be lower semicontinuous. We define

m ≡ inf{ϕ(u)|u ∈ X}

and

M ≡ {v ∈ X|ϕ(v) = m}. (3.1)

Then we say that ϕ has weak sharp minima if, for any u ∈ X, we have

d(u,M) ≤ ϕ(u)−m.
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Hamel begins section 2 of his paper [7] by stating that “we want to characterize functions which

satisfy the condition of Takahashi” and that

Theorem 3.1 (Theorem 2 [7]) Let X be a complete metric space and ϕ:X → (−∞,∞] be a

lower semicontinuous function that is bounded from below.

(i) If there exists an α > 0 and a minimizer u ∈ X of the function ϕ such that

ϕ(v)− ϕ(u) ≥ αd(v, u), for all v ∈ X, (1)

then f satisfies the condition of Takahashi (as in condition (T) defined earlier) with same α > 0.

(ii) Suppose that ϕ satisfies condition (T) with α > 0. Then

ϕ(u)− ϕ(v) ≥ αdist(x,M), for all u ∈ X and v ∈M . (2)

We note that condition (T) does indeed imply (2) above, but (2) does not in turn imply (1).

The fact that (2) can hold without (1) holding may be seen by letting f :R → R be defined by

f(x) = 0 for all x ∈ R. Hence theorem 2 of [7] does not provide a complete characterization of

functions which satisfy condition (T). Our final goal of this paper is to provide a new proof of

the existence of weak sharp minima for lower semicontinuous functions that satisfy the condition

of Takahashi (the condition described in Theorem 1.1).

Theorem 3.2 (compare to Theorem 3.1 (ii)) Let X be a complete metric space and ϕ:X →

(∞,∞] be a lower semicontinuous function that is bounded from below. Suppose that, for any

u ∈ X with infx∈x ϕ(x) < ϕ(u), there exists v ∈ X such that v 6= u and

d(u, v) ≤ ϕ(u)− ϕ(v).

Then M defined in (3.1) is nonempty and ϕ has weak sharp minima.

Proof: For u ∈ X, define

A(u) ≡ {v ∈ X|d(u, v) ≤ ϕ(u)− ϕ(v)}.

Since ϕ is lower semicontinuous, A(u) is a closed set. By Theorem 1.1, M 6= ∅, where M is

defined in (3.1). Note that ϕ(v) ≤ ϕ(u) for every v ∈ A(u). Now, by way of contradiction, let

us assume that there is u0 ∈ X with

ϕ(u0)−m < d(u0,M). (3.2)
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Clearly, u0 /∈ M and this is true for every v ∈ A(u0). For if there were v ∈ A(u0) with

ϕ(v) = m, then we get d(u0,M) ≤ d(u0, v) ≤ ϕ(u0)−m, which contradicts (3.2). We also note

that (3.2) holds for every v ∈ A(u0). To see this, take v ∈ A(u0), w ∈ M , so that d(u0, w) ≤

d(u0, v)+d(v, w) ≤ ϕ(u0)−ϕ(v)+d(v, w) and this yields d(u0,M) ≤ ϕ(u0)−ϕ(v)+d(v,M). But

d(u0,M) > ϕ(u0)−m, from (3.2), and together this gives ϕ(u0)−m < ϕ(u0)−ϕ(v) + d(v,M),

which is ϕ(v)−m < d(v,M), giving (3.2) with v in place of u0.

Since ϕ(u0) > m, by hypothesis there is u1 ∈ A(u0) with u1 6= u0. Since ϕ(u1) − m <

d(u1,M), again it is clear that u1 /∈ M , that ϕ(u1) < ϕ(u0) and that we can again show as

above that ϕ(v) − m < d(v,M) for every v ∈ A(u1) and A(u1) ∩ M = ∅. In addition, we

select u1 such that ϕ(u1) = inf{ϕ(v)|v ∈ A(u1)}. This is possible since X is complete, ϕ is

lower semicontinuous, and A(u1) is closed and nonempty. Continuing in this way, we generate

a sequence {un} with the above properties. Namely, if u0, u1, . . . , un have been chosen so that

at ui ∈ A(ui−1), ϕ(ui) < ϕ(ui−1), ϕ(ui) = inf{ϕ(v)|v ∈ A(ui)}, A(ui−1)∩M = ∅, i = 1, 2, . . . , n

and ϕ(v) − m < d(v,M) for every v ∈ ∪n
i=1A(ui−1), then, since un /∈ M , we can choose

un+1 ∈ A(un), un+1 6= un, with ϕ(un+1) = inf{ϕ(v)|v ∈ A(un)}, and as above we will have

ϕ(un+1) > m, ϕ(un+1) < ϕ(un) and ϕ(v) − m < d(v,M) for each v ∈ A(un+1). To see the

latter, we write again, just as above, ϕ(un) −m < d(un,M) ≤ ϕ(un) − ϕ(un+1) + d(un+1,M),

giving ϕ(un+1)−m < d(un+1,M). Hence, A(un+1) ∩M = ∅.

We now have our sequence {un} consisting of all different elements and ϕ(un+1) < ϕ(un).

Since d(un+k, un) ≤
∑k

i=1 d(un+i, un+i−1) ≤
∑k

i=1(ϕ(un+i−1)−ϕ(un+i)) = ϕ(un)−ϕ(un+k), and

noting that ϕ(un) monotonically decreases to some c, {un} must be Cauchy. Let un converge

to u ∈ X. We now show that u ∈ ∩∞i=0A(ui). We first show that, for every n, un ∈ ∩n−1
i=0 A(ui).

This follows from the following;

d(un−k, un) ≤
∑k−1

j=0 d(un−k+j , un−k+j+1)

≤
∑k−1

j=0 [ϕ(un−k+j)− ϕ(un−k+j+1)]

= ϕ(un−k)− ϕ(un),

which shows (recall that all the ui are outside M) that un ∈ A(un−k), k = 1, · · · , n, hence

un ∈ ∩n−1
i=0 A(ui). It follows immediately from this that uk ∈ ∩n−1

i=0 A(ui) for all k ≥ n. Since

∩n−1
i=0 A(ui) is a closed set, u ∈ ∩∞i=0A(ui). Thus u ∈ A(un), and u 6= un; hence ϕ(u) < ϕ(un),

and this is a contradiction, since ϕ(v) ≥ ϕ(un) for every v ∈ A(un). 2.
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