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Abstract

In this paper, we extend the study that was initiated by Hamel [7] on the relationship
among theorems of Ekeland, Caristi and Takahashi. We shall give a new proof of Taka-
hashi’s theorem and subsequently a new proof to show that the aforementioned theorems
are equivalent which was done in [7]. A series of fixed point theorems for multivalued maps

are presented that are equivalent to a well known theorem of Caristi.

Mathematics Subject Classification (1991): 4TH10

1 Introduction

We begin by listing theorems of Takahashi, Caristi and Ekeland. We give an alternative proof to
Takahashi’s theorem. The main theorem of [12] is the following (“proper” means not identically

equal to oo):

Theorem 1.1 (Takahashi [12]) Let (X, d) be a complete metric space and let ¢: X — (—00, 0]
be a proper lower semicontinuous function, bounded from below. Suppose that, for each u € X
with p(u) > infrex (x), there is a v € X such that v # u and ¢(v) + d(u,v) < p(u). Then
there exists an xo € X such that p(xg) = infzex o(x).



Proof: We let m = inf{p(v)|v € X}, and suppose that ¢(u) > m for every u € X. We define

inductively a sequence {u,} as follows; take uy € X with p(up) < oo and let
So = {v € Xld(v,u0) < p(uo) — p(v)}

Sy # 0 since ug € Sy, and Sy is closed since ¢ is lower semi-continuous. Also, by hypothesis, Sy
is not a singleton set, since ¢(ug) > m there is u; € Sp, u1 # ug. Clearly p(u1) < p(up) and we
are free to choose uy such that ¢(u1) = inf{p(v)|v € Sp}. This minimum is attained because Sy
is a bounded set and ¢ is lower semi-continuous, bounded from below.

If ug, ui, . .., u, have been chosen, choose u, 1 € S, = {v € X|d(un,v) < p(un)—p(v)} with
Upt1 # Un, @(Unt1) < @(upn) and @(upt+1) = inf{p(v)|v € S,}. We claim that {u,} is Cauchy.
To see this, note that d(up4x,un) < Zle d(Unpiy Unti-1) < Zle(go(unH_Q — @(Uupyi)) =
o(up) — p(uptr), and since p(uy,) is a decreasing sequence converging to ¢ for some ¢, for any
e > 0, we have d(u,yk,un) < € for all k if n is sufficiently large.

Let {u,} converge to u € X. We make a point here that u,, are all different. We claim that

u € Sy, for every n. We have

At tin) < SET Aty Uit
< S o (Un—k41) = P(Un—ktit1)]
= @(un—) — p(un),
which shows that u, € S,_g, for k=1,2,...,n, so that u, € ﬂ?;olSi. We thus have, for k > n,
up € NiyS;, and since NiL,S; is closed, u € NyS;. Thus, in particular, v € S, and since
U # Up, we get p(u) < ¢(uy). This contradicts the choice of u, in S,,. This completes the proof.
0.
We note that the formulation that Hamel uses to describe Takahashi’s condition is the
following:
Condition (T): There exists an o > 0 such that for each u € X such that p(u) >
inf,ecx p(z), there is a v € X such that v # v and p(v) + ad(u,v) < p(u).

Condition (T) is different from the condition that was originally given by Takahashi. The
condition used in Theorem 1.1 is the original definition of Takahashi’s condition. It should be
pointed out that condition (T) encompasses a wider class of lower semicontinuous functions
than the condition in Theorem 1.1. For example, consider f: R — R defined by f(x) = 1 for
x € (0,4) and f(z) = 0 elsewhere. The function f does not satisfy the condition in Theorem 1.1:
for x = 2, there is no y such that |y — 2| < 1 — f(y) holds. However, condition (T) is satisfied
by f by the metric ad(x,y) = %\x -yl



Takahashi [12] observed that Theorem 1.1 includes as corollaries three well known theorems.
They are the fixed point theorem of Caristi [2], the e-variational principle of Ekeland [6] and the

fixed point theorem of Nadler [9]. Caristi’s theorem is the following:

Theorem 1.2 (Caristi [2]) Let X be a complete metric space and let p: X — R be a lower

semicontinuous function bounded from below. Let T: X — X be a mapping satisfying
d(2, Tx) < p(z) - p(Tx) (1.2)
for every x € X. Then there exists an xg € X with Txg = xg.

Much attention was drawn to Caristi’s theorem since its publication because it requires no
continuity on the mapping 7. It also contains as a special case the fixed point theorem for
multivalued contractions of Nadler [9] that is a generalization of the classical Banach fixed point
principle. Nadler proved that if T is a mapping of a complete metric space X to CB(X)(=the
family of all closed bounded subsets of X)) that satisfies

H(Tx,Ty) < kd(x,y) forallz,ye X, 0<k <1,

then T has a fixed point in X. Recently, some work has been made toward generalizing this
theorem by relaxing the condition on the contractive constant k. In [11] (p.40), Reich proved
that a mapping 7: X — K(X)(=the family of all compact subsets of X) has a fixed point in
X if it satisfies H(Tx,Ty) < k(d(z,y))d(x,y) for all z,y € X, where k: (0,00) — [0, 1) satisfies
limsup, _,,+ k(r) < 1 for every ¢t € (0,00). This result generalizes the fixed point theorem for
single-valued mappings that was proved by Boyd and Wong [1]. Some attempts [3, 5, 8] were
made to replace K (X) by CB(X) thereby generalizing Reich’s theorem. Theorem 1.3 of Caristi,
although it is of extremely general character, does not seem to have an immediate relationship
with these theorems.

Now we return to the main scope of this paper and state the variational principle of Ekeland.

Theorem 1.3 (Ekeland [6]) Let (X,d) be a complete metric space and ¢: X — (—00,00] a
proper lower semicontinuous function bounded from below. Let e > 0 be given and a point u € X
such that
< inf .
p(u) < inf p(z) +e

Then there exists some point v € X such that
e(v) <)
d(u,v) <1
p(w) > ) —ed(v,w) for all w # v.



A number of useful applications of Theorem 1.3 are described in [6]. It is well documented
that Theorems 1.2 and 1.3 are equivalent, e.g. see [12],[7]. In [7], Hamel observed that Theorem
1.1 can be derived from Theorem 1.2, making Theorems 1.1, 1.2 and 1.3 equivalent. The main
purpose of Section 2 is to provide the reader with additional equivalent formulations of these
theorems. This provides us with an alternative perspective to the approach of Hamel in [7].
In addition, a series of fixed point theorems are given for lower semicontinuous multifunctions.
In the final section, Section 3, the argument used to prove Theorem 1.1 is used to prove the
existence of the weak sharp minima for a class of lower semicontinuous functions. This confirms

and expands the result obtained in theorem 2 (ii) of [7].

2 Variational Principle and Fixed Point Theorems

First, in this section, we make an observation that the sequence {u,} generated in the proof
of theorem 1.1 [12] actually converges to a minimizer of ¢. Theorem 2.1 below is Theorem 1.1
slightly modified to reflect the observed point above. The proof is essentially the one given in

[12].

Theorem 2.1 Let (X,d) be a complete metric space and let o: X — (—o0,00] be a proper
lower semicontinuous function, bounded from below. Suppose that, for each v € X with p(u) >
infyex p(z), there is a v € X such that v # u and ¢(v) + d(u,v) < @(u). Then a sequence

{un} can be constructed that converges to a minimizer xo of p, i.e., xg € X is such that

p(wo) = infaex ().

Proof: Let ug € X. If p(ug) = infyex ¢(x) = ¢, then we are done. If p(u;) > ¢ for i =
0,1,...,n—1 (n>1), then find u, € S, where

Sp ={w € X:p(w) + d(up—1,w) < p(up—1)}

such that
1
< i - — i .
o(un) < wlggncp(w) + 2{s0(un—1) U}ggnw(w)}

Arguing as in [12], we see that {u,} is a Cauchy sequence and that, with u,, — zo € X,

d(un, x0) < ¢(un) — ¢(xo)-



We claim that xg is a minimizer for . If not, by hypothesis, there exists z € X, z # xg such

that

¥
< ¢(z0) — d(o, 2) + ¢(un) — @(x0) — d(un, o)
P(un) — d(un, 2).

Hence z € S,,. The definition of S,, implies that

20(un) — @(un—1) < inf p(w) < @(z).

’LUESTL

Using the above inequalities, we obtain the following contradiction,

p(2) < p(z0) < 0(2).

Hence g is a minimizer of ¢. O

Takahashi demonstrated the generality of Theorem 1.1 by including as corollaries three well
known theorems. They are the fixed point theorem of Caristi [2], the e-variational principle of
Ekeland [6] and the fixed point theorem of Nadler [9]. Our next task is to show that Theorem
1.1 and Theorem 1.3 of Caristi are indeed equivalent, providing an alternative proof to Theorem

1 of [7].

Proposition 2.2 Theorem 1.1 of Takahashi and Theorem 1.2 of Caristi are equivalent. Hence
they are equivalent to Theorem 1.3 of Ekeland.

Proof: As was stated before this Proposition, Takahashi [12] showed that his Theorem 1.1
contains Theorem 1.2 as a corollary. For a converse, suppose that there is no x¢p € X such
that p(zg) = infrex ¢(z). Now define S: X — 2%\ ) by Sz = {y: ¢(y) + d(z,y) < o(z)} and
T:X — X by Tz € Sz \ {z}. This is possible by the hypothesis to Takahashi’s theorem. But
T is fixed point free, and this is impossible by Caristi’s theorem. Hence there is g € X with
p(z0) = infrex ().

It is well known that Theorems 1.2 and 1.3 are equivalent [12]. O

We conclude this section by describing four other formulations in terms of the fixed points
of lower semicontinuous multifunctions that can be shown to be equivalent to Theorem 1.1 of

Takahashi. A similar development was made by Park [10].

Theorem 2.3 Let X be a complete metric space and let p: X — (—o00,00] be a proper lower
semicontinuous function bounded from below. Let T:X — 2%\ {0}. Suppose that, for all
x & T(x), there exists y # x that satisfies

o(y) +d(y,z) < p(x).



Then T has a fixed point in X.

Theorem 2.4 Let X be a complete metric space and let p: X — (—00,00] be a proper lower
semicontinuous function bounded from below. Let T: X — 2%\ {}} be such that for all x € X
with T'(z) # 0 and for all y € T(z),

o(y) +d(y,z) < p(x).

Then there exists u € X such that T'(u) = {u}.

Theorem 2.5 Let X be a complete metric space and let p: X — (—00,00] be a proper lower
semicontinuous function bounded from below. Let T : X — 2% \ {0} be such that for all v € X,
there exists y € T'(z) such that

d(y, z) < ¢(x) = @(y)-

Then T has a fixed point in X.

Theorem 2.6 Let X be a complete metric space and let p: X — (—00,00] be a proper lower
semicontinuous function bounded from below. Let T: X — 2%\ {0} be closed. Suppose that
d(z,T(z)) < p(x) — sup ¢(y) forze X.
yeT ()

Then T has a fized point in X.
The main result of the section is the following;:
Proposition 2.7 Theorems 2.3, 2.4, 2.5 2.6 and 1.1 are equivalent.

Proof: Theorem 1.1 = Theorem 2.3
Suppose that 7" has no fixed point. Then for all x € X, z ¢ T'(z) so that by assumption there
exists y # x such that ¢(y) + d(y,z) < ¢(z). Then by Theorem 1.1, there exists g € X such
that ¢(x0) = infzex p(z). Let yo € T'(zo) be such that yo # zo and ¢(yo) + d(yo, o) < ¢(z0).
Then
0 < d(wo,0) < @(z0) — ¥(y0) < ¢(yo) — ¢(yo) = 0.

This contradiction proves the implication.

Theorem 2.3 = Theorem 2.4

Suppose that there is no element u € X for which T'(u) = {u}. For each z € X, define f by
f(z) € T(x)\ {x} so that f is fixed point free. Then ¢(f(z)) + d(f(z),z) < p(z). By Theorem



3.3, T must have a fixed point and it must be a fixed point of f also by Theorem 1.3 of Caristi.
This contradiction proves the impication.

Theorem 2.4 = Theorem 1.1

Define T: X — 2% by T'(z) = {y: o(y) + d(x,y) < o(x)}. Suppose that there is no zg € X
such that ¢(x¢) = inficx p(z). By the assumption in Theorem 1.1, T'(z) # (). Then for each
x € X and y € T'(z), ¢(y) + d(y,z) < ¢(z). Hence by Theorem 3.4, there exists u € X such
that T'(u) = {u}. This shows that there is no v # u for which p(v) + d(u,v) < p(u).

Theorem 2.4 = Theorem 2.5

This is obvious, since the condition in Theorem 2.4 implies the condition in Theorem 2.5.

Theorem 2.5 = Theorem 2.6

Let 1(z) = 2o(z). Let z € X. If d(z,T(x)) = 0, then z € T(z) since T'(z) is closed in X.
Thus if 7" has no fixed point, then d(z,T(z)) > 0 for any z € X. Let y € T(x) be such that
d(z,y) < 3d(z,T(z)). Then

i) < 5o (@) < 560~ wp. ply) < V() V(o)

Since 1) is a proper lower semicontinuous function bounded from below, by Theorem 2.5, T" has
a fixed point.

Theorem 2.6 = Theorem 2.4

Note that T'(xz) = {y} is closed. Hence Theorem 2.4 is a special case of Theorem 2.6.

This completes the proof of Proposition 2.7.

O

3 Application to Weak Sharp Minima

In this section, we make use of the argument employed to demonstrate Theorem 1.1 to prove
the existence of weak sharp minima for a class of lower semicontinuous functions. This expands
theorem 2 (ii) of Hamel by giving an alternative approach. As before, let X be a complete

metric space and ¢: X — (—o00, 00] be lower semicontinuous. We define
m = inf{p(u)ju € X}

and

M ={v e X|p(v) =m}. (3.1)
Then we say that ¢ has weak sharp minima if, for any u € X, we have

d(u, M) < o(u) —m.



Hamel begins section 2 of his paper [7] by stating that “we want to characterize functions which

satisfy the condition of Takahashi” and that

Theorem 3.1 (Theorem 2 [7]) Let X be a complete metric space and p: X — (—o00,00] be a
lower semicontinuous function that is bounded from below.

(i) If there exists an a > 0 and a minimizer u € X of the function ¢ such that
o) — @(u) > ad(v,u), forallve X, (1)

then f satisfies the condition of Takahashi (as in condition (T) defined earlier) with same o > 0.
(ii) Suppose that ¢ satisfies condition (T) with o > 0. Then

o(u) — p(v) > adist(x, M), forallue X andv e M. (2)

We note that condition (T) does indeed imply (2) above, but (2) does not in turn imply (1).
The fact that (2) can hold without (1) holding may be seen by letting f: R — R be defined by
f(z) =0 for all z € R. Hence theorem 2 of [7] does not provide a complete characterization of
functions which satisfy condition (T). Our final goal of this paper is to provide a new proof of
the existence of weak sharp minima for lower semicontinuous functions that satisfy the condition

of Takahashi (the condition described in Theorem 1.1).

Theorem 3.2 (compare to Theorem 3.1 (ii)) Let X be a complete metric space and ¢: X —
(00, 00] be a lower semicontinuous function that is bounded from below. Suppose that, for any

u e X with infye, o(x) < @(u), there exists v € X such that v # u and

d(u,v) < o(u) = @(v).

Then M defined in (3.1) is nonempty and ¢ has weak sharp minima.
Proof: For u € X, define

A(u) = {v € Xld(u,v) < p(u) = ¢(v)}.

Since ¢ is lower semicontinuous, A(u) is a closed set. By Theorem 1.1, M # (), where M is
defined in (3.1). Note that p(v) < ¢(u) for every v € A(u). Now, by way of contradiction, let

us assume that there is ug € X with

o(ug) —m < d(ug, M). (3.2)



Clearly, up ¢ M and this is true for every v € A(ug). For if there were v € A(ug) with
©(v) = m, then we get d(ug, M) < d(up,v) < ¢(ug) —m, which contradicts (3.2). We also note
that (3.2) holds for every v € A(up). To see this, take v € A(ugp), w € M, so that d(ugp,w) <
d(up,v)+d(v,w) < p(up) —¢(v)+d(v, w) and this yields d(ug, M) < o(ug) —(v)+d(v, M). But
d(ug, M) > p(ug) —m, from (3.2), and together this gives p(ug) —m < ¢(ug) — @(v) + d(v, M),
which is ¢(v) —m < d(v, M), giving (3.2) with v in place of ug.

Since ¢(ug) > m, by hypothesis there is u; € A(up) with w3 # ug. Since @(u;) —m <
d(ui, M), again it is clear that u; ¢ M, that p(u1) < ¢(up) and that we can again show as
above that ¢(v) —m < d(v,M) for every v € A(u;) and A(u;) " M = (. In addition, we
select uy such that p(u1) = inf{e(v)|v € A(ui)}. This is possible since X is complete, ¢ is
lower semicontinuous, and A(u;) is closed and nonempty. Continuing in this way, we generate
a sequence {u,} with the above properties. Namely, if ug, u1,...,u, have been chosen so that
at u; € A(ui—1), p(ui) < e(ui—1), p(u;) = inf{p(v)|v € A(w;)}, A(ui—1)) "M =0,i=1,2,...,n
and p(v) —m < d(v,M) for every v € U A(ui—1), then, since u, ¢ M, we can choose
Unt1 € A(up), Unt1 F Upn, With @(upt1) = inf{p(v)|lv € A(uy)}, and as above we will have
O(Unt1) > m, ©(unt1) < @(uy) and @(v) —m < d(v, M) for each v € A(uny1). To see the
latter, we write again, just as above, p(un) — m < d(upn, M) < p(un) — @(unt1) + d(uns+1, M),
giving p(up4+1) —m < d(up+1, M). Hence, A(up11) N M = ().

We now have our sequence {u,} consisting of all different elements and ¢(un4+1) < @(uy).
Since d(tn sk tn) < S dttn iy t51) < S (@(tnsi 1) — @(tins1)) = Pltm) — @t 1), and
noting that ¢(u,) monotonically decreases to some ¢, {u,} must be Cauchy. Let w, converge
to u € X. We now show that u € N A(u;). We first show that, for every n, u, € N2y A(u;).

This follows from the following;

A(un g, tn) < Y520 d(Un ks Un—krji1)
< Ml tys) = @(tn—ryj11)]
= p(tn—k) — ¢(un),
which shows (recall that all the u; are outside M) that u, € A(u,—), & = 1,---,n, hence
un, € NIy A(u;). Tt follows immediately from this that w, € NP2 A(u;) for all k > n. Since
N2 A(u;) s a closed set, u € N2 A(u;). Thus u € A(uy), and u # u,; hence p(u) < p(uy),

and this is a contradiction, since ¢(v) > ¢(u,) for every v € A(uy,). O.
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