Problems 1-10 (multiple choice) worth 6 points each, problems 11-14 are 10pts each. For problems 1-10, circle the correct answers.

- 1. Express the statement "The quotient of p and q is at most 7".

 - $a \frac{p}{q} \ge 7$ $b \frac{p}{q} < 7$ $c \frac{p}{q} \le 7$
 - $d \frac{\bar{p}}{q} > 7$
- 2. Rewrite the expression, |2-x| if x < 2 without using the absolute value.
 - a x-2
 - b 2 x
 - c x 2
 - d none of the above
- 3. Rewrite $\sqrt{x^2 + y^2}$ using the rational exponent.
 - a x + y.
 - b $(x^2 + y^2)^{1/2}$
 - $\begin{array}{c} c \sqrt{x} + \sqrt{y} \\ d \frac{x^2 + y^2}{2} \end{array}$
- 4. Simplify $(-2xy^2)^5 \left(\frac{x^7}{8y^3}\right)$.
 - a $4x^{12}y^7$

 - b $-4x^{35}y^7$ c $\frac{-4x^{12}}{y^7}$ d $-4x^{12}y^7$
- 5. Simplify the expression and rationalize the denominator of $\sqrt[4]{\frac{5x^8y^3}{27x^2}}$.
 - a $\frac{5x}{3} \sqrt[4]{15x^2y^3}$
 - b $\frac{x}{3}\sqrt[4]{15x^2y^3}$
 - c $\frac{1}{3}\sqrt[4]{15x^6y^3}$
 - d $\frac{5}{3} \sqrt[4]{15x^6y^3}$
- 6. Express $(x^2 + 2y)(x^2 2y)$ as a polynomial.
 - a $x^4 4x^2y 4y^2$
 - b $x^4 4y^2$
 - $x^4 + 4y^2$
 - $d 2x^2 4y^2$

- 7. Factor $64x^3 + 27$.
 - a $(4x+3)(4x^2-12x+9)$
 - b $(4x-3)(16x^2-12x+9)$
 - c $(4x-3)(4x^2+12x+9)$
 - d $(4x+3)(16x^2-12x+9)$
- 8. Rationalize the numerator of $\frac{\sqrt{x+h}-\sqrt{x}}{h}$, $(h \neq 0)$.

 - a $\frac{h}{\sqrt{x+h}-\sqrt{x}}$ b $\frac{1}{\sqrt{x+h}+\sqrt{x}}$
- 9. Simplify the expression $\frac{x+2}{2x-3} \div \frac{x^2-4}{2x^2-3x}$.
- 10. Given the formula for the area of a trapezoid, $A = \frac{1}{2}(b_1 + b_2)h$, solve the equation for
 - a $b_1 = \frac{2A b_2 h}{h}$ b $b_1 = \frac{A b_2 h}{h}$ c $b_1 = \frac{2A b_2}{h}$ d $b_1 = \frac{2A b_2}{2h}$
- 11. With water from one hose, a swimming pool can be filled in 8 hours. A second, larger hose used alone can fill the pool in 5 hours. How long would it take to fill the pool if both hoses were used simultaneously.

Solution Let t be the number of hours for both hoses to fill the pool. Then

$$\frac{1}{t} = \frac{1}{8} + \frac{1}{5}.$$

Hence $\frac{1}{t} = 13/40$ and $t = 3\frac{1}{13}hrs$.

12. Solve the following equation for x, $\frac{2x}{x+3} + \frac{5}{x} - 4 = \frac{18}{x^2+3x}$

Solution

$$\frac{2x}{x+3} + \frac{5}{x} - 4 = \frac{18}{x^2 + 3x}$$
$$x(x+3)(\frac{2x}{x+3} + \frac{5}{x} - 4) = \frac{18}{x^2 + 3x}x(x+3)$$
$$2x^2 + 5(x+3) - 4x(x+3) = 18$$
$$2x^2 + 7x + 3 = 0$$
$$(2x+1)(x+3) = 0.$$

Now x=-3 does not satisfy the original equation, hence the solution is $x=-\frac{1}{2}$.

13. Simplify $\frac{\frac{5}{x+1} + \frac{2x}{x+3}}{\frac{x}{x+1} + \frac{7}{x+3}}$

Solution

$$\frac{\frac{5}{x+1} + \frac{2x}{x+3}}{\frac{x}{x+1} + \frac{7}{x+3}} = \frac{\left(\frac{5}{x+1} + \frac{2x}{x+3}\right)(x+1)(x+3)}{\left(\frac{x}{x+1} + \frac{7}{x+3}\right)(x+1)(x+3)}$$
$$= \frac{5(x+3) + 2x(x+1)}{x(x+3) + 7(x+1)}$$
$$= \frac{2x^2 + 7x + 15}{x^2 + 10x + 7}$$

14.

a. Find the solutions of $x^3 - 27 = 0$.

b. Write $\frac{2+9i}{1-i}$ in the form a+bi.

Solutions (a) $x^3 - 27 = (x - 3)(x^2 + 3x + 9)$, so x = 3 and using the quadratic formula, the solutions for $x^2 + 3x + 9 = 0$ are $\frac{-3 \pm 3\sqrt{3}i}{2}$.

$$(b)_{1-i}^{2+9i} = \frac{(2+9i)(1+i)}{1-i)(1+i)} = \frac{-7+11i}{2}.$$

Bonus A couple does not wish to spend more than \$70 for dinner at a restaurant. If a sales tax of 6% is added to the bill and they plan to tip 15% after the tax has been added, what is the most they can spend for the meal?

Solution Let \$x\$ be the price of the meal. Then meal + tax = x + 0.06x = 1.06x and the tip = 0.15(1.06x). In total

$$1.06x + 0.15(1.06x) = $70,$$

or 1.15(1.06)x = \$70, solving for $x, x \simeq 57.37$.