MATH 212 Quiz 5 NAME:

1. Determine the convergence or divergence of the following sequences. If it converges, find its limit.

(a)
$$\{\sqrt{n+5} - \sqrt{n}\}$$

•

$$\lim_{n \to \infty} \sqrt{n+5} - \sqrt{n} = \lim_{n \to \infty} \sqrt{n+5} - \sqrt{n} \left(\frac{\sqrt{n+5} + \sqrt{n}}{\sqrt{n+5} + \sqrt{n}} \right)$$

$$= \lim_{n \to \infty} \frac{5}{\sqrt{n+5} + \sqrt{n}}$$

$$= 0.$$

- (b) $\left\{ \frac{\sqrt{n+1}}{n+5} \right\}$
- $\lim_{n\to\infty} \frac{\sqrt{n}+1}{n+5} = 0$ by the L'Hôpital rule.
- 2. Test for convergence of the following series. You must provide a complete proof for each.
 - (a) $\sum_{n=1}^{\infty} 8^{-n} 5^{n+2}$
 - The series converges by the geometric series with $r = \frac{5}{8}$.
 - (b) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 8}$
 - ullet The series converges by the direct comparison test, compared with $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and

$$\frac{1}{n^2 + 4n + 8} < \frac{1}{n^2}$$

- (c) $\sum_{n=1}^{\infty} \frac{1+2^n}{5+2^n}$
- The series diverges by the test for divergence, since $\lim_{n\to\infty} \frac{1+2^n}{5+2^n} = 1 \neq 0$.
- (d) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(n+1)}$
- The series converges by the alternating series test.