## MATH 212 Quiz 7 NAME:

1. Given  $\vec{A}=<2,3,0>$  and  $\vec{B}=<-2,7,1>$ , find the cross product  $\vec{A}\times\vec{B}$ .

$$\bullet \ \vec{A} \times \vec{B} = \begin{vmatrix} i & j & k \\ 2 & 3 & 0 \\ -2 & 7 & 1 \end{vmatrix} = <3, -2, 20 > .$$

- 2. Find an equation of the plane through the point (9,3,-1) and parallel to the plane x-y+3z=9.
- A normal vector to this plane is < 1, -1, 3 >. Hence equation of the plane is given by (x-9) (y-3) + 3(z+1) = 0.
  - 3. Find the distance from the point P = (2, 8, 5) to the plane x y z = 1.
- We find a point  $P_0$  on the plane, e.g. let y=z=0 in x-y-z=1 to get x=1 so that  $P_0=(1,0,0)$ . Hence  $\vec{P_0}P=<1,8,5>$ . A normal vector  $\vec{n}$  to the plane is  $\vec{n}=<1,-1,-1>$ , so that the distance from P to the plane can be computed from  $\frac{|\vec{P_0}P\cdot\vec{n}|}{|\vec{n}|}=4\sqrt{3}$ .
  - 4. Given  $f(x, y, z) = xy^2z^3 + 3xz + yz$ , find all the first partial derivatives of f.
    - $\frac{\partial f}{\partial x}(x,y,z) = y^2 z^3 + 3z$
    - $\frac{\partial f}{\partial y}(x, y, z) = 2xyz^3 + z$
    - $\frac{\partial f}{\partial z}(x, y, z) = 3xy^2z^2 + 3x + y$