MATH 212 Test 3 Spring 2001

You must show your work to get credit.

1.(15pts) Determine whether the sequence is convergent or divergent. If it converges, find its

limit.
a. an = 5

o lim,, o 5 = 00
by = Lo
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2.(40pts) Determine whether series is convergent or divergent.
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e The series converges by Direct Comparison Test, compared with the convergent
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e The series converges by Alternating series Test.
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e The series converges by the integral test, as

b
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e The series converges by Ratio Test, as lim,_. o ]1'3'5"'(2(n+1)_1) 5t
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lim,, o0 52(211) = % < 1.
e. fo:l 5222—:-2
e As lim,, o 5’;;1171 = % # 0, the series diverges by Test for Divergence.
3.(10pts) Find the sum of the following series.
a. 220:1 35_:2
i Zqozozl 3;2 = Z;’il 257-53;:1:11 = 12773/?5 = 277
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4.(15pts) Determine whether the series is absolutely convergent, conditionally convergent or
divergent.
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e The series converges condltlonally, as > o, % converges by Alt. Series Test,
whereas, Y > ]( L | =307, = diverges by Direct Comp. Test with > -
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e The series converges absolutely.
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e The series converges by Ratio Test as
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5.(10pts) Find the radius of convergence and interval of convergence of Zzozl(—l)”%
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By Ratio Test, the power series converges for those x for which # <l,or -4 <z <0.
Now we check the end points for convergence. For x = —4,

z:: 2:: n2" n

which is the divergent Harmonic series. For z = 0,

I

n=1 n=1

which is convergent by the Alt. series Test. Hence R = 2 and Interval-(—4,0].

6.(10pts) Express ﬁ as a power series and find the interval of convergence. Use the result
obtained, find the Maclaurin series for tan™! z.



= 1_(1_962) = > (=2 = 37 (—1)"z?" where the convergence takes
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place for | — 22| < 1 or —1 < z < 1. Within this interval of convergence,

1 ‘ 1 ' o ny2n = n—+1 tznil
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7. Find the Talyor series for f(x) = cosz centered at 7 /4.
o As f'(z) = —sinz, f’(z) = —cosz, f"(z) =sinz, f4(x) = cosz, etc. f(n/4) =
L fin/a) = —2, P(n)4) = —L2, 7(n/4) = L and fO(x/d) = L. Hence
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cosx = Z(—l)% gﬁ@ - z)”.
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