MATH 212 Test 3 Spring 2001

You must show your work to get credit.

1.(15pts) Determine whether the sequence is convergent or divergent. If it converges, find its limit.

a.
$$a_n = \frac{n}{\ln n}$$

• $\lim_{n \to \infty} \frac{n}{\ln n} = \infty$
b. $a_n = \frac{4^{n+10}}{5^n}$
• $\lim_{n \to \infty} \frac{4^{n+10}}{5^n} = 0$
c. $a_n = \sqrt{x+3} - \sqrt{x}$
• $\lim_{n \to \infty} \frac{(\sqrt{x+3} - \sqrt{x})(\sqrt{x+3} + \sqrt{x})}{\sqrt{x+3} + \sqrt{x}} = \lim_{n \to \infty} \frac{3}{\sqrt{x+3} + \sqrt{x}} = 0$.

2.(40pts) Determine whether series is convergent or divergent.

a.
$$\sum_{n=1}^{\infty} \frac{1}{2^n + n}$$

• The series converges by Direct Comparison Test, compared with the convergent series $\sum_{n=1}^{\infty} \frac{1}{2^n}$, as $\frac{1}{2^n+n} < \frac{1}{2^n}$. b. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+1}}$ • The series converges by Alternating series Test.

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+1}}$$

c.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

• The series converges by the integral test, as

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{3}} dx = \lim_{b \to \infty} \int_{\ln 2}^{b} \frac{1}{u^{3}} du, \ u = \ln x$$
$$= \lim_{b \to \infty} -\frac{1}{2u^{2}}$$
$$= \frac{1}{2\ln^{2} 2}$$

d.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{5^n n!}$$

d. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{5^n n!}$ • The series converges by Ratio Test, as $\lim_{n \to \infty} |\frac{1 \cdot 3 \cdot 5 \cdots (2(n+1)-1)}{5^{n+1}(n+1)!} \frac{5^n n!}{1 \cdot 3 \cdot 5 \cdots (2n-1)}| = \lim_{n \to \infty} \frac{2n+1}{5(n+1)} = \frac{2}{5} < 1.$ e. $\sum_{n=1}^{\infty} \frac{n^2+1}{5n^2+n}$ • As $\lim_{n \to \infty} \frac{n^2+1}{5n^2+n} = \frac{1}{5} \neq o$, the series diverges by Test for Divergence.

e.
$$\sum_{n=1}^{\infty} \frac{n^2+1}{5n^2+n}$$

3.(10pts) Find the sum of the following series.

a.
$$\sum_{n=1}^{\infty} \frac{3^{n+2}}{5^n}$$

• $\sum_{n=1}^{\infty} \frac{3^{n+2}}{5^n} = \sum_{n=1}^{\infty} \frac{27 \cdot 3^{n-1}}{5 \cdot 5^{n-1}} = \frac{27/5}{1-3/5} = \frac{27}{2}$.
b. $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \sum_{n=1}^{\infty} \frac{1}{2} \left\{ \frac{1}{n} - \frac{1}{n+2} \right\}$$

$$= \frac{1}{2} \left\{ (1 - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + \cdots \right\}$$

$$= 1 + \frac{1}{2} = \frac{3}{2}.$$

- 4.(15pts) Determine whether the series is absolutely convergent, conditionally convergent or

 - a. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$ The series converges conditionally, as $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$ converges by Alt. Series Test, whereas, $\sum_{n=1}^{\infty} |\frac{(-1)^n}{\ln n}| = \sum_{n=1}^{\infty} \frac{1}{\ln n}$ diverges by Direct Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n}$. b. $\sum_{n=1}^{\infty} \frac{(-1)^n}{4^n}$

 - The series converges absolutely. c. $\sum_{n=1}^{\infty} \frac{(-1)^n}{e^{-n}n!}$
 - The series converges by Ratio Test as

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{e^{-(n+1)}(n+1)!} \frac{e^{-n}n!}{(-1)^n} \right| = \lim_{n \to \infty} \frac{e}{n+1} = 0$$

5.(10pts) Find the radius of convergence and interval of convergence of $\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n2^n}$.

$$\lim_{n \to \infty} \left| \frac{(x+2)^{n+1}}{(n+1)2^{n+1}} \cdot \frac{n2^n}{(x+2)^n} \right| = \frac{|x+2|}{2}.$$

By Ratio Test, the power series converges for those x for which $\frac{|x+2|}{2} < 1$, or -4 < x < 0. Now we check the end points for convergence. For x = -4,

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n2^n} = \sum_{n=1}^{\infty} (-1)^n \frac{(-2)^n}{n2^n} = \sum_{n=1}^{\infty} \frac{1}{n}$$

which is the divergent Harmonic series. For x = 0,

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n2^n} = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

which is convergent by the Alt. series Test. Hence R = 2 and Interval-(-4, 0].

6.(10pts) Express $\frac{1}{1+x^2}$ as a power series and find the interval of convergence. Use the result obtained, find the Maclaurin series for $\tan^{-1} x$.

• $\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ where the convergence takes place for $|-x^2| < 1$ or -1 < x < 1. Within this interval of convergence,

$$\tan^{-1} x = \int_0^x \frac{1}{1+t^2} = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=1}^\infty (-1)^{n+1} \frac{t^{2n-1}}{(2n-1)!}.$$

- 7. Find the Talyor series for $f(x) = \cos x$ centered at $\pi/4$.
- As $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f'''(x) = \sin x$, $f^{(4)}(x) = \cos x$, etc. $f(\pi/4) = \frac{\sqrt{2}}{2}$, $f'(\pi/4) = -\frac{\sqrt{2}}{2}$, $f''(\pi/4) = -\frac{\sqrt{2}}{2}$, $f'''(\pi/4) = \frac{\sqrt{2}}{2}$ and $f^{(4)}(\pi/4) = \frac{\sqrt{2}}{2}$. Hence

$$\cos x = \sum_{n=0}^{\infty} (-1)^{\frac{n(n+1)}{2}} \frac{\sqrt{2}}{2} \frac{1}{n!} (x - \frac{\pi}{4})^n.$$