1. (10pts) Find all solutions x_1, x_2, x_3 and x_4 of the linear system

\[
\begin{align*}
 x_1 + 4x_2 + x_3 &= 0 \\
 -3x_2 + 6x_4 &= 0 \\
 x_1 + 4x_3 &= 0
\end{align*}
\]

2. (10pts) Find the reduced row echelon form for the following matrix A and specify its rank.

\[
A = \begin{bmatrix}
 0 & 0 & 1 & 2 & -1 \\
 1 & 2 & 0 & 1 & -1 \\
 1 & 2 & 0 & 1 & 1
\end{bmatrix}
\]

3. (10pts) Find all vectors in \mathbb{R}^3 that are perpendicular to

\[
\begin{bmatrix}
 1 \\
 1 \\
 1
\end{bmatrix},
\begin{bmatrix}
 2 \\
 3 \\
 4
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
 0 \\
 -1 \\
 2
\end{bmatrix}.
\]

4. (10pts) Is it possible to write

\[
\begin{bmatrix}
 1 \\
 3
\end{bmatrix}
\]

as a linear combination of

\[
\begin{bmatrix}
 -1 \\
 0 \\
 2
\end{bmatrix},
\begin{bmatrix}
 0 \\
 3 \\
 0
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
 2 \\
 -4 \\
 0
\end{bmatrix}.
\]

Show your work.

5. (10pts) Let L be a line in \mathbb{R}^3 that consists of all scalar multiples of

\[
\begin{bmatrix}
 2 \\
 1 \\
 1
\end{bmatrix}.
\]

a. Find the orthogonal projection of

\[
\begin{bmatrix}
 2 \\
 2 \\
 2
\end{bmatrix}
\]

onto L.

b. Find the reflection of

\[
\begin{bmatrix}
 2 \\
 2 \\
 2
\end{bmatrix}
\]

about L.

c. Find the matrix of the reflection onto L.

5. (10pts) Given $T(\vec{v}) = A(\vec{v})$, give a geometric interpretation of this linear transformation for each of the following A below. Also find A^{-1} if it exists.

a. $A = \begin{bmatrix}
 1 & 0 \\
 0 & 3
\end{bmatrix}$

b. $A = \begin{bmatrix}
 2 & -1 \\
 1 & 2
\end{bmatrix}$

Bonus (5pts) True or False?

a. A system of three linear equations in two unknowns is always inconsistent.
b. There is a system of three linear equations in three unknowns that has exactly three solutions.

c. Let A be a 5×4 matrix. Then the rank of A is always less than or equal to 4.

d. The function $T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 \\ 3x_1 + x_2 \end{bmatrix}$ is a linear transformation of \mathbb{R}^2 into \mathbb{R}^2.

e. Matrix $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ has its inverse.