MATH 316 Test 3- Fall, 2001

Show your work to receive credit.

1.(15pts) Let $T: U^{2\times 2} \to U^{2\times 2}$, where $U^{2\times 2}$ is the space of all 2×2 upper triangular matrices, be defined by

$$T(M) = M \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} M.$$

- (i) Show that T is a linear transformation.
- (ii) Is it an isomorphism?
- (iii) Find the matrix of T with respect to the basis $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$.
- 2.(10pts) Show that $f_1(x) = 1 + 2x + 3x^2$, $f_2(x) = 4 + 5x + 6x^2$, $f_3(x) = 7 + 8x + 10x^2$ are linearly independent in P_2 , the linear space of all polynomials of degree ≤ 2 .
- 3.(10pts) Find the determinant of the following matrix. Explain the method which you used in detail.

$$\begin{bmatrix} 1 & 0 & 0 & 9 & 8 \\ 1 & 1 & 0 & 5 & 4 \\ 1 & 1 & 1 & 4 & 2 \\ 0 & 0 & 0 & 7 & 9 \\ 0 & 0 & 0 & 3 & 1 \end{bmatrix}.$$

4.(10 pts) Find the eigenvalue(s) and the corresponding eigenvector(s) for the following matrix A. Specify their algebraic and geometric multiplicities.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

- 5.(10pts) True or False?
 - (a) The equation det(-A) = det(A) holds for all 10×10 matrices.

(b)
$$det \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = 1.$$

- (c) There is a 3×3 matrix A such that $A^2 = -I_3$.
- (d) The eigenvalues of a 2×2 matrix A are the solutions of the equation $\lambda^2 (tr A)\lambda + (det A) = 0$.
- (e) If 0 is an eigenvalue of a matrix A, then det(A) = 0.
- Bonus:(5pts) Prove or disprove the statements in Exercise # 5.