
MATH 316
Introductory Linear Algebra

Fall 2001

Sample Final Exam – Suggested Solutions

NOTE: These solutions are NOT complete, in most cases they only give
the final result. To receive full credit you MUST justify your answers and
show ALL your work!

1. We need to find all vectors ~x such that
1
2
−1
0

 · ~x = 0,


0
4
4
−1

 · ~x = 0 and


2
0
−6
1

 · ~x = 0.

This is the same as solving the linear system 1 2 −1 0
0 4 4 −1
2 0 −6 1

 ~x = ~0.

The rref of this matrix is 1 0 −3 1
2

0 1 1 −1
4

0 0 0 0

 ,

and so the solution (and thus all vectors orthogonal to the three vectors
in the problem) can be written as

span




3
−1
1
0

 ,


−1

2
1
4

0
1




2. (a) Homogeneous systems are always consistent since ~0 is always a
solution.



(b) If there are fewer equations that unknowns (i.e., m < n), then
rank(A) < n, and so the system is either inconsistent or has in-
finitely many solutions. Using part a) we conclude that the latter
must be true.

3. (a) det(A) = 1 + b2 6= 0, so A is always invertible.

(b) A−1 = 1/(1 + b2)

(
1 b
−b 1

)
.

(c) For b = 1 we have that

A =

(
1 −1
1 1

)
=
√

2

(
cos 45o − sin 45o

sin 45o cos 45o

)
,

and so T is a counterclockwise rotation by 45o, followed by a
dilation by

√
2.

4.

T

 2
0
1

 =

 2
0
1

 ·
 1
−1
1


 1
−1
1

 ·
 1
−1
1



 1
−1
1

 =

 1
−1
1



5. A simple Gauss-Jordan calculation yields that

A−1 =

 10 −6 1
−2 1 0
−7 5 −1


6. (a) i. ~0 ∈ W since 0 + 2 · 0 = 0 and 0 = 0.

ii. Let ~u ∈ W and ~v ∈ W . To see whether ~u + ~v ∈ W we check
u1 + v1 + 2(u2 + v2) = (u1 + 2u2) + (v1 + 2v2) = 0 + 0 = 0.
Also, u3 + v3 = 0 + 0 = 0, so we conclude that ~u + ~v ∈ W .

iii. Let ~u ∈ W and λ ∈ IR. Then, for λ~u we obtain λu1 + 2λu2 =
λ(u1 + 2u2) = 0, and λu3 = λ · 0 = 0, so λ~u ∈ W .

We conclude from these three properties that W is a subspace of
IR3.
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(b) W = ker

(
1 2 0
0 0 1

)
= span


 −2

1
0


. So B =


 −2

1
0


 is

a basis for W .

(c) Since the basis only has one vector we conclude that dim(W ) = 1.

7. We need to compute the rref of A:

rref(A) =

 1 0 2 1
0 1 0 1
0 0 0 0

 .

From this we see that Bker(A)
=



−2
0
1
0

 ,


−1
−1
0
1


 is a basis for

ker(A) and that Bim(A) =


 1

1
1

 ,

 1
2
3


 is a basis for im(A).

8. (a) The invertible 3 × 3 matrices do not form a subspace since the
zero matrix is not invertible.

(b) The upper triangular 3 × 3 matrices form a subspace since the
zero matrix is upper triangular, the sum of two upper triangular
matrices is upper triangular and the product of a scalar and an
upper triangular matrix is upper triangular.

(c) i. Let 0 ∈ IR3×3 be the zero matrix. Then 0

 2
1
2

 = ~0, so

 2
1
2

 ∈ ker(0).

ii. Let A and B be in the set. Then

(A + B)

 2
1
2

 = A

 2
1
2

+ B

 2
1
2

 = ~0,

and so

 2
1
2

 ∈ ker(A + B).
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iii. Let A be in the set and λ ∈ IR. Then

λA

 2
1
2

 = λ~0 = ~0,

and so λA is also in the set.

From these three properties we conclude that the set of matrices

with

 2
1
2

 in their kernel forms a subspace.

9. (a) det(BT ) = 15 6= 0, so BT is invertible and thus T is an isomor-
phism.

(b)

[1+2t+3t2]B =

 −1
2

3
2

3

 , and so [T (1+2t+3t2)]B =

 1 2 0
0 5 2
0 0 3


 −1

2
3
2

3

 =


5
2
27
2

9

 ,

which implies that T (1 + 2t + 3t2) = 5
2
(1− t) + 27

2
(1 + t) + 9t2 =

16 + 11t + 9t2.

10. Consider the matrix B =

 1 1 1
a b t
a2 b2 t2

.

(a) det(B) = (bt2− tb2)− (at2− ta2) + (ab2− ba2) = (b− a)t2− (b2−
a2)t+ ab(b− a) = (b− a)[t2− (b + a)t+ ab] = (b− a)(t− a)(t− b).

(b) B is invertible det(A) 6= 0, which happens if t 6= b, t 6= a and
a 6= b.

11. (a) fA(λ) = (1−λ)3 +1+1− (1−λ)− (1−λ)− (1−λ) = λ3− 3λ2 =
λ2(λ− 3).

(b) fA(λ) = 0 implies λ1 = 0 (alg. multiplicity 2) or λ = 3 (alg.
multiplicity 1).

(c) E0 = ker(A) = span


 1
−1
0

 ,

 1
0
−1


, so λ = 0 has geometric

multiplicity 2.
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E3 = ker(A − 3I3) = ker

 −2 1 1
1 −2 1
1 1 −2

 = span


 1

1
1


, so

λ = 3 has geometric multiplicity 1.

(d) Since the geometric multiplicities add up to 3, A is diagonalizable,
and

S =

 1 1 1
−1 1 0
0 1 −1


is an example for S (notice the order of the columns in S!).

12. det(A) = −5 det

 1 1 1
2 2 1
−1 3 0

 = −5

[
−1 det

(
1 1
2 1

)
− 3 det

(
1 1
2 1

)]
=

−5(1− 2)− 15(1− 2) = −20.
det(A−1) = 1/ det(A) = −1/20, det(2A) = 24 det(A) = −320, rank(A) =
4, nullity(A) = 0.

13. Here is a table with a summary of the results. This is not a full answer,
justifications are needed for each answer.
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set rref lin. ind.? spans IR3? basis?

S1

 1 0 0 1
0 1 0 1
0 0 1 0

 no yes no

S2

 1 0 1
0 1 1
0 0 0

 no no no

S3

 1 0 0
0 1 0
0 0 1

 yes yes yes

S4

 1 0
0 1
0 0

 yes no no

S5

 1 2
0 0
0 0

 no no no

S6

 0
0
0

 no no no

Each one of these sets spans a subspace of IR3.

14. (a) B~v = (A2−3A+2In)~v = A2~v−3A~v+2~v = 4~v−6~v+2~v = 0~v = ~0,
so ~v is an eigenvector of B with associated eigenvalue 0.

(b) Since B has a 0 eigenvalue it is not invertible. (Or, equivalently,
the kernel of B includes ~v 6= ~0, so B cannot be invertible.)

15. If α = 0, then A is already diagonal. So in parts (a) and (b), we
assume that α 6= 0.

fA(λ) = (1−λ)2−α2. fA(λ) = 0 =⇒ (1−λ)2 = α2 =⇒ λ = 1±α.

(a)(b) E1+α = ker

(
−α α
α −α

)
= span

{(
1
1

)}
.

E1−α = ker

(
α α
α α

)
= span

{(
−1
1

)}
.

(c) A is always diagonalizable since the geometric multiplicities of the
eigenvalues always add up to n (=2).
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