
Makohon, Nguyen, Cetin, and Ng

1

JAVA COMPUTER ANIMATION FOR EFFECTIVE TEACHING

OF CHOLESKY FACTORIZATION ALGORITHM

Ivan Makohon (corresponding author)

Graduate Student*

Modeling, Simulation & Visualization Engineering (MSVE) Department

Phone: 757-481-0832

imako001@odu.edu

Duc T. Nguyen

Professor*

CEE and MSVE Departments

Phone: 757-683-3761

dnguyen@odu.edu

Mecit Cetin

Associate Professor*

Civil & Environmental Engineering (CEE) Department

Phone: 757-683-6700

mcetin@odu.edu

Manwo Ng

Assistant Professor*

Department of Information Technology and Decision Sciences

Phone: 757-683-6665

mng@odu.edu

*Old Dominion University

Norfolk, Virginia 23529

Submitted for Presentation at the 27th International Conference (March 21-25,2016; Savannah, GA) of

the Society for Information Technology and Teacher Education (SITE) 2016

Submitted: October 21, 2015

Total words = 2,539

mailto:imako001@odu.edu
mailto:dnguyen@odu.edu
mailto:mcetin@odu.edu
mailto:mng@odu.edu

Makohon, Nguyen, Cetin, and Ng

2

ABSTRACT

In this paper, the well-known Cholesky Factorization Algorithm is re-visited, with the ultimate goal of

developing a simple, user-friendly, attractive, and useful Java Visualization and Animation Graphical

User Interface (GUI) software as an additional teaching tool for students to learn the Cholesky

factorization in a step-by-step fashion with computer voice and animation. A demo video of the

Cholesky Decomposition (or factorization) animation and result can be viewed online from any web

browser using the website provided in reference [1].

The software tool developed from this work can be used for both students and their instructors not only to

master this technical subject, but also to provide a dynamic/valuable tool for obtaining the solutions for

homework assignments, class examinations, self-assessment studies, and other coursework related

activities. Engineering educators who have adopted “flipped class-room instruction” can also utilize this

Java Visualization and Animation software for students to “self-learning” these algorithms at their own

time (and at their preferable locations), and use valuable class-meeting time for more challenging (real-

life) problems’ discussions. Statistical data for comparisons of students’ performance with and

without using the developed Java computer animation is also included.

Keywords: Cholesky Algorithm, Decomposition/Factorization, Java Visualization/Animation, Statistical

Data

1. INTRODUCTION
The Cholesky Decomposition (Factorization) Algorithm was presented by Andre Louis Cholesky in an

unknown and unpublished 8-page manuscript on December 2, 1910 entitled: On the numerical solutions

of systems of linear equations. The method was unknown outside the French circle of topographers until

another French officer published a paper explaining the method in 1924. It wasn’t until 1950 when the

Cholesky Decomposition Method was widely known after John Todd’s lectures, several colleagues and

students of him undertook the study of the Cholesky method [2]. Today, the Cholesky Decomposition

Method is widely known and is used to solve systems of Symmetric Positive Definite (SPD) simultaneous

linear equations (SLEs).

The best way to understand the Cholesky method is to see it working in practice by performing and

solving small examples by hand and working through the algebra [3]. Various teaching philosophies

have been proposed, tested and documented by the educational research communities, such as video

lectures (YouTube), “flipped” class lectures (where students are encouraged to read the lecture materials

at their own time at homes, and problem solving and/or questions/answers sessions are conducted in the

usual classroom environments), US Science Technology Engineering Mathematics (STEM) summer

camps, game-based--learning (GBL) [4-6], virtual laboratories [7] and concept inventory [8].

With the steady decline in US STEM interests and enrollments, the National Science Foundation (NSF)

and the White House have developed national strategies and provided the significant budget to STEM

education research [9-10] in the past years, with the ultimate goals to improve both the quality and

number of highly trained US educators, student workforce in STEM topics, in today highly competitive

global markets. With the explosions of internet’s capability and availability, it is even more critical to

effectively train this future USA-STEM work-force and/or to develop effective STEM related teaching

tools to reach a maximum possible number of “distance learners/audiences”.

The final product from this work provides experimental results that shows that this developed

software/tool helps both the students and their instructor to not only master this technical subject, but also

provide a valuable tool for obtaining the solutions for homework assignments, class examinations, self-

Makohon, Nguyen, Cetin, and Ng

3

assessment tools, etc. The developed “educational version” of a Java Visualization and Animation

software tool provides several desirable features, such as:

 A detailed, precise and clear step-by-step algorithm will be displayed in text and human voice

during the animation of the algorithm.

 Options to hear animated voice in 2 major languages (English and Spanish).

 Options to input/output terminal container yard layouts (CVS file), or manually edit the layouts

using an editor, or “randomly generating” layouts.

 Output of the “final” results can be exported to text, so that the users/learners can check/verify

their “hand-calculated” results, which is an important part of the learning process.

In this paper, a simple Cholesky decomposition example is thoroughly explained along with the derived

formulas. The focuses are then shifted toward a Java Visualization and Animation software tool that

provides step-by-step instructions for learning/teaching the Cholesky decomposition method. This Java

Visualization and Animation software tool was used in an Old Dominion University (ODU) 300-Level

Civil and Environmental Engineering (CEE) Computation course (CEE 305) in the Fall’2014 semester.

Lecture materials on how to solve system of SPD SLEs along with the Java-based software was handed

out, and briefly discussed to the students as a self-study take-home assignment. Students were given an

in-class exam on the Cholesky method. The goal was to determine if the Java-based (self-learning)

software would improve or worsen the student’s exam performance compared to the traditional face-to-

face instructor’s classroom lecture. The experiment results from this case-study are captured and

explained in details in Section 4.

2. SUMMARY OF CHOLESKY’S DECOMPOSITION METHOD
Solving large (and sparse) system of simultaneous linear equations (SLE) has been (and continue to be) a

major challenging problem for many real-world engineering/science applications [11-12]. In matrix

notation, the SLE can be represented as:

}{}{][bxA  (1)

where

[A] = known coefficient matrix, with dimension NxN

{b} = known right-hand-side (RHS) Nx1 vector

{x} = unknown Nx1 vector.

Symmetrical Positive Definite (SPD) SLE

For many practical SLE, the coefficient matrix [A] (see Eq.1) is SPD. In this case, efficient 3-step Cholesky

algorithms [1-2] can be used.

Step 1: Matrix Factorization Phase

In this step, the coefficient matrix [A] can be decomposed into

][][][UUA T (2)

where [U] is a NxN upper triangular matrix.

The following simple example will illustrate how to find the matrix [U].

Various terms of the factorized matrix [U] can be computed/derived as following (see Eq. 2):



















































33

2322

131211

332313

2212

11

333231

232221

131211

00

00

00

u

uu

uuu

uuu

uu

u

AAA

AAA

AAA
 (3)

Multiplying 2 matrices on the right-hand-side (RHS) of Eq. (3), then equating each upper-triangular RHS

terms to the corresponding ones on the upper-triangular left-hand-side (LHS), one gets the following 6

equations for the 6 unknowns in the factorized matrix][U .

Makohon, Nguyen, Cetin, and Ng

4

1111 Au  ;
11

12
12

u

A
u  ;

11

13

13
u

A
u  (4)

 2

1
2

122222 uAu  ;
22

131223

23
u

uuA
u


 ;  2

1
2

23

2

133333 uuAu  (5)

In general, for a NxN matrix, the diagonal and off-diagonal terms of the factorized matrix][U can be

computed from the following formulas:

 
2

1
1

1

2








 





i

k

kiiiii uAu (6)

ii

i

k

kjkiij

ij
u

uuA

u









1

1
 (7)

As a quick example, one computes:

55

474537352725171557
57

u

uuuuuuuuA
u


 (8)

Thus, for computing)7,5( jiu , one only needs to use the (already factorized) data in columns # i(=5),

and # j(=7) of [U], respectively.

Step 2: Forward Solution phase

Substituting Eq. (2) into Eq. (1), one gets:

}{}]{[][bxUU T  (9)

Let’s define:

}{}{][yxU  (10)

Then, Eq. (9) becomes:

}{}{][byU T  (11)

Since
TU][is a lower triangular matrix, Eq. (11) can be efficiently solved for the intermediate unknown

vector }{y , according to the order





























Ny

y

y

.

.

2

1

, hence the name “forward solution”.

As a quick example, one has:


















































3

2

1

3

2

1

332313

2212

11

0

00

b

b

b

y

y

y

uuu

uu

u

 (12)

11

1
11111

u

b
ybyu  (13)

22112222222112 / uyubybyuyu  (14)

Similarly

Makohon, Nguyen, Cetin, and Ng

5

33

2231133
3

u

yuyub
y


 (15)

In general, one has

jj

j

i

iijj

j
u

yub

y









1

1 (16)

Step 3: Backward Solution phase

Since][U is an upper triangular matrix, Eq. (10) can be efficiently solved for the original unknown vector

}{x , according to the order

































1

2

1

.

x

x

x

x

N

N

N

, hence the name “backward solution”.

As a quick example, one has:





































































4

3

2

1

4

3

2

1

44

3433

242322

14131211

000

00

0

y

y

y

y

x

x

x

x

u

uu

uuu

uuuu

 (17)

4444 yxu  , hence

44

4
4

u

y
x  (18)

3434333 yxuxu  , hence

33

4343
3

u

xuy
x


 (19)

Similarly:

22

4243232
2

u

xuxuy
x


 (20)

11

4143132121
1

u

xuxuxuy
x


 (21)

In general, one has:

jj

N

ji

ijij

j
u

xuy

x







1

 (22)

Note: Amongst the above 3-step Cholesky algorithms, factorization phase in step 1 consumes about 95%

of the total SLE solution time.

3. JAVA COMPUTER ANIMATED SOFTWARE TOOL FOR

TEACHING THE CHOLESKY ALGORITHM

Makohon, Nguyen, Cetin, and Ng

6

The developed software is written in Java [13-15] and is meant to create 2D animations and provide voice

step-by-step explanations for the Cholesky Algorithm. The software is developed from scratch using

several open-source software. The software uses various third-party libraries, such as Java Swing library

for the animations, the

text-to-speech library

(Google API Translate)

for voice, and the matrix

library (Efficient Java

Matrix) for data storage.

Applying open-source

libraries to this software

allowed lots of Graphical

User Interface (GUI)

functionality and features

to be developed. The

software GUI is

developed with

JFC/Swing which is

included within the

Java Development Kit

(JDK). The Main GUI consists of seven main components as shown in Figure 1.

1. Menu Buttons (Preferences and Help): Provides basic options, such as an option to open/save

Container Layouts, an option to provide terse, verbose, or no voice step-by-step instructions, an

option to change the voice language to English, Spanish, and Chinese, and an option to display a

user manual.

2. Matrix Input Control Buttons: Input control buttons are provided from the main window to

open, save or edit the left-hand-side (LHS) Matrix [A] and right-hand-side (RHS) Vector {b}

data.

3. Tutorial Lesson Control Buttons: Lesson control buttons are provided from the main window

to play, pause, or stop a lesson (an algorithm). The buttons are enabled when the LHS Matrix [A]

and RHS Vector {b} is given. Additional buttons (the step-by-step and information button) are

provided. The step-by-step button launches a GUI that provides step-by-step instructions taking

place during the play session. These step-by-step instructions can be save to an output text file.

The information buttons provide a user guide for the Main GUI.

4. Algorithm Step: Textbox view of the current algorithm step during play session.

5. Tutorial Information: Textbox view of instructions, equations, or steps (scrollable) being done

within the algorithm. The equations are dynamically provided based on the input data given.

6. Animation View: Animation view of the matrices and vectors being updated during the play

session.

7. Status View: Provides a status view which displays meaningful status: ready, play, or paused.

4. EXPIRMENTAL RESULTS
Civil and Environmental Engineering (CEE) Computation course (CEE 305) has been offered in every

Fall semester. In the Fall-2013 semester, the Cholesky method was explained in the traditional (face-to-

face) class-room instruction format. However, in the Fall-2014 semester, lecture materials on how to

solve system of SPD SLEs along with the Java-based software was handed out to the students (with

minimum instructor’s lecture time) as a “self-study” take-home assignment. In both semesters

(Fall’2013, and Fall’2014) students were given an in-class exams on the Cholesky method.

FIGURE 1 CHOLESKY DECOMPOSITION EDUCATIONAL APPLICATION

Makohon, Nguyen, Cetin, and Ng

7

The goal was to determine if the Java-based software would improve or worsen the students’ exam

performance as compared to the traditional (face-to-face) instructor’s classroom lecture. The resulting

data was collected by the same professor that taught the same course using the normal (face-to-face)

class-room instruction and using this new Java software tool. The results are explained below. Figure 2

shows the Student Percentage (Exam) Scores for the Fall 2013 semester using the conventional (face-to-

face) class-room lectures. Figure 3 shows the Student Percentage (Exam) Scores for the Fall 2014

semester using the Java Visualization and Animation software tool for teaching the Cholesky Algorithm.

Figure 3 clearly shows that a majority of students scored within the 76.67% or above; whereas, in Figure

2, student scores were scattered with more students on/below the 53.33% mark than in Fall 2014.

Using the Java Visualization and Animation software tool for instructions and animation in learning the

Cholesky Method for solving SLE, and with the user’s input problems’ data capability for practicing

exercises, the student’s average performance/exam scores have improved from 70.58% to 81.53% (as

shown in Figures 2 and 3, respectively).

5. CONCLUSIONS
In this paper, the Cholesky Method is once again revisited to show a new and different approach for

teaching/learning the Cholesky Decomposition Algorithm. The developed Java computer animated

software has shown that it can be used as an additional/effective tool for teaching and learning the

Cholesky method. The students’ average scores from in-class exams in the Fall’2013 (traditional face-to-

face class lecture instruction mode, without using the developed JAVA animated teaching tool), and in

the Fall’2014 (students’ self-learning mode [with minimum instructor’s lecture time], using the developed

JAVA animated teaching tool) were 70.58 % and 81.53 %, respectively. Thus, an improvement of more

than 10% has been observed! The software tool is developed in Java language and integrated with open-

source libraries. It provides a means to be platform independent and can be run on several operation

systems. It provides desirable teaching/learning features for the Cholesky algorithm, such as:

 Software tool with a user friendly GUI.

 2D Graphical visualization and animation for displaying data update.

 2D Graphical visualization to edit input data.

 Ability to allow the user/learner to open/save the data for later use.

 Ability to allow the user/learner to output/save the step-by-step results.

 Provide a clearly and attractive computer animated voice that provides step-by-step instructions

of the algorithms.

 Animated voice can be configurable to translate text-to-speech into another language, such as

English, Spanish and Chinese.

FIGURE 3 STUDENT PERCENTAGE SCORES (FALL 2014) FIGURE 2 STUDENT PERCENTAGE SCORES (FALL 2013)

Student Percentage Scores (Fall

2014: using the developed JAVA

teaching tool; students' exam

average score = 81.53%)

53.33%

76.67%

100.00%

Student Percentage Scores (Fall

2013: without using the developed

JAVA teaching tool; students' exam

average score = 70.58%)

53.33%

76.67%

100.00%

Makohon, Nguyen, Cetin, and Ng

8

 Provides the final and intermediate results of the Cholesky solution process.

A demo video of the Cholesky Decomposition Method’s animation and result can be viewed online

from any web browser using the website provided in reference [1].

6. ACKNOWLEDGMENT
Portions of this work has been supported by the NSF award (Proposal # 0836916; DUE-CCLI Phase 1:

Exploratory).

7. REFERENCES
[1] Cluster (Parallel) Computing for Large-Scale Engineering & Science Applications,

http://www.lions.odu.edu/~skadi002/001-075.pdf. Demo: http://www.lions.odu.edu/~imako001/

[2] Brezinski, C. The life and work of Andre Cholesky.

[3] Claxton, Karl and Briggs, Andrew “Decision Modelling for Health Economic Evaluation"

(2006).

[4] Nguyen, D.T., A.A. Mohammed, S. Kadiam, and Y. Shen “Internet Chess-Like Game and

Simultaneous Linear Equations”, Global Conference on Learning and Technology Penang (Island),

Malaysia; http://www.aace.org/conf/cities/penang; (May 17-20’2010).

[5] Nguyen, D.T., Y. Shen, A.A. Mohammed, and S. Kadiam, “Tossing Coin Game and Linear

Programming Big M Simplex Algorithms”, Global Conference on Learning and Technology, Penang

(Island), Malaysia; http://www.aace.org/conf/cities/penang; (May 17-20’2010).

[6] Nguyen, D.T. (PI), Autar K. Kaw (Co-PI), Ram Pendyala (Co-PI), and Gwen Lee-Thomas

(Co-PI), “Collaborative Research: Development of New Prototype Tools, and Adaptation and

Implementation of Current Resources for a Course in Numerical Methods”. NSF funded educational

grant (Proposal # 0836916; DUE-CCLI Phase 1: Exploratory); (funding period: January 1’2009 –

July 30’2011).

[7] Nguyen, D.T. (P.I. = Prof. S. Chaturvedi), “Implementation Grant: Simulation and

Visualization Enhanced Engineering Education,” National Science Foundation (NSF), funding

period: September 2005 – September 2009.

[8] Autar Kaw (P.I.) et al., “Improving and Assessing Student Learning in an Inverted STEM

Classroom Setting”, NSF (Division of Undergraduate Education) awarded grant # 1322586

(September 2013-September 2016).

[9] National Science Foundation (NSF), National Science Board (NSB), “A National Action

Plan for Addressing the Critical Needs of the U.S. Science, Technology, Engineering, and

Mathematics (STEM) Education System” (October 30, 2007).
[10] Executive Office of the President of the United States, “Federal Science, Technology,

Engineering, and Mathematics (STEM) Education 5-Year Strategic Plan”, a Report from the Committee

on STEM Education, National Science and Technology Council (May 2013).

[11] Nguyen, D.T. (2006). Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions,

Springer Publishers.

[12] Nguyen, D.T. (2002). Parallel-vector Equation Solvers for Finite Element Engineering

Applications, Kluwer Academic/Plenum Publishers

[13] Efficient Java Matrix Library http://code.google.com/p/efficient-java-matrix-

library/wiki/EjmlManual

[14] Google Translate Java. http://code.google.com/p/google-api-translate-java/

[15] Java Standard Edition.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.lions.odu.edu/~skadi002/001-075.pdf
http://www.lions.odu.edu/~imako001/
http://code.google.com/p/efficient-java-matrix-library/wiki/EjmlManual
http://code.google.com/p/efficient-java-matrix-library/wiki/EjmlManual
http://code.google.com/p/google-api-translate-java/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

