

MODSIM World 2015

2015 Paper No. nnnn Page 1 of 10

Java Based Visualization and Animation for Teaching the Dijkstra Shortest

Path Algorithm in Transportation Networks

Ivan Makohon, Zhi Li Masha Sosonkina#, Yuzhong Shen^,

Old Dominion University (Graduate Students) Manwo Ng’, Duc T. Nguyen#

 Norfolk, Virginia Old Dominion University (’/^/#: Asst./Assoc./Full Prof)

 imako001@odu.edu, zxxli001@odu.edu Norfolk, Virginia

msosonki@odu.edu, yshen@odu.edu,

 mng@odu.edu, dnguyen@odu.edu

ABSTRACT

Shortest path (SP) algorithms, such as the popular Dijkstra algorithm has been considered as the “basic building

blocks” for many advanced transportation network models. Dijkstra algorithm will find the shortest time (ST) and

the corresponding SP to travel from a source node to a destination node. Applications of SP algorithms include real-

time GPS and the Frank-Wolfe network equilibrium.

For transportation engineering students, the Dijkstra algorithm is not easily understood. This paper discusses the

design and development of a software that will help the students to fully understand the key components involved in

the Dijkstra SP algorithm. The software presents an intuitive interface for generating transportation network

nodes/links, and how the SP can be updated in each iteration. The software provides multiple visual representations

of color mapping and tabular display. The software can be executed in each single step or in continuous run,

making it easy for students to understand the Dijkstra algorithm. Voice narratives in different languages (English,

Chinese and Spanish) are available.

ABOUT THE AUTHORS

Ivan Makohon is a current Old Dominion University graduate student pursuing his Masters in Modeling and

Simulations. He has received his Bachelors of Science in Computer Science from Christopher Newport University

(CNU). He has been working as a contractor (and now, a civil servant) as a Senior Software Engineer, and he is also

a Private Pilot.

Zhi Li is a graduate student pursuing his Master of Science in Modeling, Simulation and Visualization Engineering

Department at Old Dominion University. He has received his Bachelors of Science in Computer Science and

Technology from Shandong University in 2012. He is currently working on the development of transportation

education software.

Masha Sosonkina has received her B.S. and M.S. degrees in Applied Mathematics from Kiev National University

in Ukraine, and a Ph.D. degree in Computer Science and Applications from Virginia Tech. During 2003-2012, Dr.

Sosonkina was a scientist at the US Department of Energy Ames Laboratory and an adjunct faculty at Iowa State

University. She is currently a professor of Modeling, Simulation and Visualization Engineering at Old Dominion

University. She has also been a visiting research scientist at the Minnesota Supercomputing Institute, at CERFACS

and INRIA French research centers. Her research interests include high-performance computing, large-scale

simulations, parallel numerical algorithms, performance analysis, and adaptive algorithms.

Yuzhong Shen received his B.S. degree in Electrical Engineering from Fudan University, Shanghai, China, M.S.

degree in Computer Engineering from Mississippi State University, Starkville, Mississippi, and Ph.D. degree in

Electrical Engineering from the University of Delaware, Newark, Delaware. His research interests include computer

graphics, visualization, serious games, signal and image processing, and modeling and simulation. Dr. Shen is

currently an Associate Professor of the Department of Modeling, Simulation, and Visualization Engineering and the

MODSIM World 2015

2015 Paper No. nnnn Page 2 of 10

Department of Electrical and Computer Engineering of Old Dominion University. He is also affiliated with Virginia

Modeling, Analysis, and Simulation Center (VMASC). Dr. Shen is a Senior Member of IEEE.

Manwo Ng is currently an Assistant Professor of Maritime and Supply Chain Management at Old Dominion

University (ODU). He obtained his Ph.D. degree in Transportation from The University of Texas at Austin. His

research focuses on port operations, container shipping, and transportation network modeling.

Duc T. Nguyen has received his B.S., M.S. and Ph.D (Civil/Structural engineering) degrees from Northeastern

University (Boston), University of California (Berkeley), and the University of Iowa (Iowa City), respectively. He

has been a Civil Engineering faculty at Old Dominion University since 1985. He has published 4

undergraduate/graduate textbooks. Over 160 research articles and nearly $ 4 million funded projects have been

generated by him. He has received Cray Research, NASA, ODU shining star, and Rufus Tonelson Distinguished

Faculty Awards. His name has been included in the ISIHighly Cited.com list of most highly cited researchers in

Engineering.

MODSIM World 2015

2015 Paper No. nnnn Page 3 of 10

Java Based Visualization and Animation for Teaching the Dijkstra Shortest

Path Algorithm in Transportation Networks

Ivan Makohon, Zhi Li Masha Sosonkina#, Yuzhong Shen^,

Old Dominion University (Graduate Students) Manwo Ng’, Duc T. Nguyen#

 Norfolk, Virginia Old Dominion University (‘/^/#: Asst./Assoc./Full Prof)

 imako001@odu.edu, zxxli001@odu.edu Norfolk, Virginia

msosonki@odu.edu, yshen@odu.edu,

 mng@odu.edu, dnguyen@odu.edu

I. INRODUCTION

Finding the shortest time (ST), or the shortest distance (SD) and its corresponding shortest path (SP) to travel from

any i-th “source” node to any j-th “destination (or target)” node of a given transportation network is an important,

fundamental problem in transportation modelling. Efficient SP algorithms, such as the Label Correction Algorithm

(LCA) and its improved version of Polynomial (or partitioned) LCA, forward Dijkstra, backward Dijkstra, Bi-

directional Dijkstra, A* algorithms have been developed, tested and well documented in the literatures [1-3].

Teaching the SP algorithms (such as the Dijkstra algorithm), however, can be a difficult/challenging task!

While some teaching information/lecture/tool/animation for Dijkstra algorithms have existed/appeared in the

literatures [4-6], none seems to be suitable/appropriate for our students’ learning environments, due to the lack of

one (or more) of the following desirable features/capabilities:

1. The developed software tool should be user friendly (easy to use).

2. Graphical/colorful animation should be extensively used to display equations, and/or intermediate/final

output results.

3. Clear/attractive computer animated instructor’s voice should be incorporated in the software tool.

4. The instructor’s voice for teaching materials can be in different/major languages (English, Chinese, and

Spanish).

5. User’s input data can be provided in either interactive mode, or in edited input data file mode, or by

graphical mode.

6. Options for partial (or intermediate) results and/or complete (final results) are available for the user to

select.

7. Options for displaying all detailed intermediate results in the first 1-2 iterations, and/or directly show the

final answers are available for users.

8. Users/learners can provide his/her own data, and compare his/her hand-calculated results with the computer

software’s generated results (in each step of the algorithm) for enhancing/improving his/her learning

abilities.

The remaining sections of this article is organized as follow. In section II, the basic forward Dijkstra algorithm is

summarized (for the readers’ convenience). Java language is adopted in this work due to its powerful graphical and

animated features. Special and useful features of the developed Java software for teaching Dijkstra algorithm are

high-lighted and demonstrated in (including some computer screen captures) Section III. Conclusions are

summarized/suggested in Section IV.

II. SUMMARY OF THE BASIC FORWARD DIJKSTRA SHORTEST PATH ALGORITHM

The basic forward Dijkstra algorithm is a graph search

algorithm that solves for the shortest path, time, or distance

from any given source node to a destination node. The graph is

represented/stored within a 2-Dimentional N x N matrix where

MODSIM World 2015

2015 Paper No. nnnn Page 4 of 10

the rows and columns of the matrix headers are represented as the nodes and the values within the matrix at a

location (Aij) are the link’s value (path, distance, or time value), refer to Figure 1. Figure 1 shows a simple 3 x 3

matrix where Node 1  Node 2 has a link value of 6, Node 1  Node 3 have a link value of 4, and Node 2  Node

3 has a link value of 2.

With any given N x N size matrix, the shortest path, time, or distance can be solved using the basic forward Dijkstra

shortest path algorithm. For example, we demonstrate and solve for a sample 6 x 6 matrix (Figure 2) and graph

(Figure 3) to find the shortest path, time, or distance from Node 1 (source node) to Node 6 (destination node).

We demonstrate and use a simple (easy to use) bookkeeping (Figure 4) method while iterating through the forward

Dijkstra algorithm. Figure 4 shows the initial values for the Set s and Set s prime. Set s is empty during

initialization and is used to bookkeep nodes already visited. Set s prime contains all the nodes during initialization

and nodes are removed as they are visited. The vector {d} bookkeeps the shortest path, time, or distance value and

the vector {pred} bookkeeps the predecessor nodes after each iteration within the Dijkstra algorithm.

During the first iteration, we set the source node

to Node 1 and update Set s = {1} and Set s prime

= {2, 3, 4, 5, 6}. Note that Node 1 is removed

from Set s prime and added to the Set s.

From Node 1, there are 2 outgoing links, Node 2

and Node 3 (Figure 3). We check the outgoing

Nodes (2 and 3) from Node 1 (Source Node) to

determine if Vector [d] and [pred] need to be

updated with the shortest path, time or distance.

This can be done referencing the values stored in

Vector d[2] and d[3]. Compare the stored Vector

d[2] value to see if it’s greater-than the computed

value, which is the stored Vector d[1] plus the

value at C13 (link value between Node 1 and 3).

Compare the stored Vector d[3] value to see if

it’s greater-than the computed value, which is the stored Vector d[1] plus C12 (link value between Node 1 and 2). If

the stored values are greater-than the computed values then update the Vector d with the computed value. If not,

then no update is needed and the stored value remains the same.

MODSIM World 2015

2015 Paper No. nnnn Page 5 of 10

In both of these cases, the stored values for

d[2] and d[3] are infinity (∞) so the values in

Vector [d] and [pred] will need to be updated

with the computed values (Figure 5). Figure 5

shows the simple (easy to use) bookkeeping

method and updates (if needed).

Once this calculation and update has taken

place, we determine the smallest value among

the nodes in Set {s prime} and then we move

the node to the Set {s}. Because Vector d[3]

has the smallest value among the nodes in Set

{s prime}, we move Node 3 to Set {s} = { 1, 3

} and remove it from Set {s prime} = { 2, 4, 5,

6 }. Now Node 3 becomes the next source

node.

The Next iteration (k = 2), begins by checking the outgoing nodes from Node 3 (source node). We check the

outgoing Nodes (4 and 5) from Node 3 (Source Node) to determine if Vector [d] and [pred] need to be updated with

the shortest path, time or distance. This can be done referencing the values stored in Vector d[4] and d[5]. Compare

the stored Vector d[4] value to see if it’s greater-than the computed value, which is the stored Vector d[3] plus the

value at C34 (link value between Node 3 and 4). Compare the stored Vector d[5] value to see if it’s greater-than the

computed value, which is the stored Vector d[3] plus C35 (link value between Node 3 and 5). If the stored values are

greater-than the computed values then update the Vector d with the computed value. If not, then no update is

needed and the stored value remains the same.

In both of these cases, the stored values for

d[4] and d[5] are infinity (∞) so the values

in Vector [d] and [pred] will need to be

updated with the computed values (Figure

6). Figure 6 shows the simple (easy to use)

bookkeeping method and updates (if

needed).

Once this calculation and update has taken

place, we determine the smallest value

among the nodes in Set {s prime} and then

we move the node to the Set {s}. Because

Vector d[4] has the smallest value among

the nodes in Set {s prime}, we move Node

4 to Set {s} = { 1, 3, 4 } and remove it from

Set {s prime} = { 2, 5, 6 }. Now Node 4

becomes the next source node.

The Next iteration (k = 3), begins by checking the outgoing nodes from Node 4 (source node). We check the

outgoing Node 6 from Node 4 (Source Node) to determine if Vector [d] and [pred] need to be updated with the

shortest path, time or distance. This can be done referencing the values stored in Vector d[6]. Compare the stored

Vector d[4] value to see if it’s greater-than the computed value, which is the stored Vector d[4] plus the value at C46

(link value between Node 4 and 6). If the stored value is greater-than the computed value then update the Vector d

with the computed value. If not, then no update is needed and the stored value remains the same.

In this case, the stored value for d[6] is infinity (∞) so the value in Vector [d] and [pred] will need to be updated

with the computed value (Figure 7). Figure 7 shows the simple (easy to use) bookkeeping method and updates (if

needed).

MODSIM World 2015

2015 Paper No. nnnn Page 6 of 10

Once this calculation and update has

taken place, we determine the smallest

value among the nodes in Set {s prime}

and then we move the node to the Set {s}.

Because Vector d[2] and d[5] has the

smallest value, 6 among the nodes in Set

{s prime}, we arbitrarily select and move

Node 2 to Set {s} = { 1, 3, 4, 2 } and

remove it from Set {s prime} = { 5, 6 }.

Now Node 2 becomes the next source

node. Note: we could do further research

here to pick the better of the 2 choices

instead or arbitrarily selecting one.

The Next iteration (k = 4), begins by checking the outgoing nodes from Node 2 (source node). We check the

outgoing Nodes (3 and 4) from Node 2 (Source Node) to determine if Vector [d] and [pred] need to be updated with

the shortest path, time or distance. This can be done referencing the values stored in Vector d[3] and d[4]. Compare

the stored Vector d[3] value to see if it’s greater-than the computed value, which is the stored Vector d[2] plus the

value at C23 (link value between Node 2 and 3). Compare the stored Vector d[4] value to see if it’s greater-than the

computed value, which is the stored Vector d[2] plus C24 (link value between Node 2 and 4). If the stored values are

greater-than the computed values then update the Vector d with the computed value. If not, then no update is

needed and the stored value remains the same.

In both of these cases, the stored values

for d[3] and d[4] are 4 and 5

respectively so the values are not

greater-than the computed values so no

update is needed (Figure 8). Figure 8

shows the simple (easy to use)

bookkeeping method and updates (if

needed). In this case, no update is

needed since the stored values are not

greater-than the computed values.

Once this calculation and update has

taken place, we determine the smallest

value among the nodes in Set {s prime}

and then we move the node to the Set

{s}. Because Vector d[5] has the smallest value among the nodes in Set {s prime}, we move Node 5 to Set {s} = {

1, 3, 4, 2, 5 } and remove it from Set {s prime} = { 6 }. Now Node 5 becomes the next source node. Remark:

When determining the smallest value was a tie for Nodes 2 and 5 (see previous iteration), we were better off to

select and move Node 5 instead of arbitrarily selecting Node 2.

The Next iteration (k = 5), begins by checking the outgoing nodes from Node 5 (source node). We check the

outgoing Nodes (4 and 6) from Node 5 (Source Node) to determine if Vector [d] and [pred] need to be updated with

the shortest path, time or distance. This can be done referencing the values stored in Vector d[4] and d[6]. Compare

the stored Vector d[4] value to see if it’s greater-than the computed value, which is the stored Vector d[5] plus the

value at C54 (link value between Node 5 and 4). Compare the stored Vector d[6] value to see if it’s greater-than the

computed value, which is the stored Vector d[5] plus C56 (link value between Node 5 and 6). If the stored values are

greater-than the computed values then update the Vector d with the computed value. If not, then no update is

needed and the stored value remains the same.

In both of these cases, the stored values for d[4] and d[6] are 5 and 12 respectively so the value for d[4] is not

greater-than the computed values so no update is needed (Figure 9). However, the value for d[6] is greater-than the

computed values in Vector [d] and [pred] will need to be updated with the computed values (Figure 9). Figure 9

MODSIM World 2015

2015 Paper No. nnnn Page 7 of 10

shows the simple (easy to use) bookkeeping method and updates (if needed). In this case, one outgoing node is

updated is needed since the stored values is greater-than the computed values.

Once this calculation and update has

taken place, we determine the smallest

value among the nodes in Set {s prime}

and then we move the node to the Set

{s}. Because Vector d[6] is the only

remaining node and is the destination

node, we move Node 6 to Set {s} = { 1,

3, 4, 2, 5, 6 } and remove it from Set {s

prime} = { empty }. Now Node 6

becomes the next source node and is our

destination node. This completes the

shortest path, time, or distance for solving

for the basic forward Dijkstra algorithm.

The updates for each iteration for Vector

[d], Vector [pred], and Set {s} are displayed in Figures 10, 11, and 12, respectively. For each iteration, the

highlighted circle (light blue circle) shows the corresponding values being updated during that iteration.

III. JAVA COMPUTER ANIMATED SOFTWARE TOOL FOR TEACHING FORWARD

DIKSTRA ALGORITHM

MODSIM World 2015

2015 Paper No. nnnn Page 8 of 10

The previous section’s small-scale 6 x 6

Matrix [A] graph data will be used for the

Java [7-9] computer animated software tool

for teaching the Dijkstra algorithm. The

users/learner will initialize and run the Java

software. Once initialized, the application’s

“Main Control” Graphical User Interface

(GUI) is displayed (Figure 13). This GUI

controls the flow of the basic forward

Dijkstra algorithm teaching steps from start

to finish and will provide detailed algorithm

steps while solving for the shortest path,

time, or distance.

The users/learners will be able to input the

matrix [A] data from several input options (input file, manual input or randomly generated values) from the “Main

Control” GUI. When an input option is selected the user/learner will be able to modify the data within the “Matrix

Editor” GUI. The “Matrix Editor” GUI (Figure 14) allows the user/learner to change the size of the matrix [A]

dimensions and modify the values before

solving for the shortest path, time, or

distance.

After the Matrix data [A] is entered into the

"Matrix Editor" and "Ok" is selected, the

focus is returned back to the "Main Control"

GUI. The matrix data [A] is shown in to

viewable formats, the “Matrix Canvas”,

"Data", and "Network Graph" views. Both

views will be updated accordingly

throughout the steps in the basic forward

Dijkstra Algorithm.

Once the matrix data [A] is inputted, the "Play" button is enabled. Once the user/learner selects the "Play" button,

the teaching of the basic forward Dijkstra Algorithm steps begins. The basic forward Dijkstra Algorithm performs

the algorithm steps against the matrix data [A], the matrix data [A] is updated accordingly and displayed within the

Views, and the algorithm steps is lectured to the user/learner by a computer animated voice. The algorithm steps

handled within the Java software are as follows:

Step 0

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will handle

the matrix data if provided as a rectangular

or tall matrix. The algorithm will add

"dummy" rows (or columns) with the

maximum corresponding value within the

matrix.

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will solve

for shortest path, time, or distance. The GUI

will prompt an input dialog for the

user/learning to select what the source and

destination nodes.

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will initialize the data vectors and sets and set the source node (Figure 15).

MODSIM World 2015

2015 Paper No. nnnn Page 9 of 10

Step 1

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will

consider all outgoing links from the current

node.

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will

determine if the stored Vector [d] values for

the outgoing nodes are greater-than the

computed values of the previous node plus

the link (edge) values. If the stored Vector

[d] value is greater-than the computed value

then the Vector [d] value is updated accordingly; otherwise, the value remains the same.

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will

animated each step and provide detailed

animated voice and text for each step

(Figure 16).

Step 2

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will

determine the smallest value from the Set {s

prime} and remove the smallest from Set {s

prime} and add it to Set {s}.

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will update

the current node as the source node for the next iteration (Figure 17).

Step 3

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will

determine the shortest path, time, or

distance based on the outcome of the

Dijkstra algorithms using the bookkeeping

of Vector [d], Vector [pred], Set {s}, Set {s

prime}.

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will

highlight the shortest path (Figure 18).

Results

The Java Computer Animation for Teaching

the Forward Dijkstra Algorithm will display

the final results of the shortest path, time, or distance by highlighting the nodes and links from the source to

destination node.

MODSIM World 2015

2015 Paper No. nnnn Page 10 of 10

IV. CONCLUSIONS

In this article, the basic Dijkstra algorithm has been firstly summarized. Then, Java Computer Animated Software

Tool has been developed to enhance student’s learning. The developed Java animated software has all the following

desirable features/capabilities, such as:

1. The developed software tool should be user friendly (easy to use).

2. Graphical/colorful animation should be extensively used to display equations, and/or intermediate/final

output results.

3. Clear/attractive computer animated instructor’s voice should be incorporated in the software tool.

4. The instructor’s voice for teaching materials can be in different/major languages (English, Chinese, and

Spanish).

5. User’s input data can be provided in either interactive mode, or in edited input data file mode, or by

graphical mode.

6. Options for partial (or intermediate) results and/or complete (final results) are available for the user to

select.

7. Options for displaying all detailed intermediate results in the first 1-2 iterations, and/or directly show the

final answers are available for users.

8. Users/learners can provide his/her own data, and compare his/her hand-calculated results with the computer

software’s generated results (in each step of the algorithm) for enhancing/improving his/her learning

abilities.

ACKNOWLEDGEMENTS

The partial support provided by the NSF grant # ACI-1440673 (ODU-RF Project # 100507-010) to Duc T. Nguyen

is gratefully acknowledged. The work of Sosonkina was supported in part by the Air Force Office of Scientific

Research under the AFOSR award FA9550-12-1-0476, and by the National Science Foundation grants NSF/OCI---

0941434, 0904782, 1047772.

REFERENCES

[1] Sheffi, Y., 1985. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming

Methods. Available free of charge at: http://web.mit.edu/sheffi/www/urbanTransportation.html

[2] Lawson, G., Allen, S., Rose, G., Nguyen, D.T., Ng, M.W. “Parallel Label Correcting Algorithms For Large-

Scale Static and Dynamic Transportation Networks on Laptop Personal Computers”, TRB 2013 Annual

Meeting (Washington, D.C.; Jan. 13-17, 2013); Session 844 Presentation # 13-2103 (Thursday, Jan. 17-2013;

10:15am-noon); Poster Presentation # P13-6655.

[3] Paul Johnson III, Duc T. Nguyen, and Manwo Ng, “An Efficient Shortest Distance Decomposition Algorithm

For Large-Scale Transportation Network Problems”, TRB 2014 Annual Meeting (Washington, D.C.; January

2014); Oral, and Poster Presentations.

[4] Dijkstra’s Shortest Path Algorithm. http://www.cs.uah.edu/~rcoleman/CS221/Graphs/ShortestPath.html

[5] Dijkstra Algorithm. http://students.ceid.upatras.gr/~papagel/project/kef5_7_1.htm

[6] Dijkstra’s Algorithm. http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/dijkstra.html

[7] Efficient Java Matrix Library (EJML). http://code.google.com/p/efficient-java-matrix-library/wiki/EjmlManual

[8] Google Translate Java. http://code.google.com/p/google-api-translate-java/

[9] Java Platform Standard Edition. http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://web.mit.edu/sheffi/www/urbanTransportation.html
http://www.cs.uah.edu/~rcoleman/CS221/Graphs/ShortestPath.html
http://students.ceid.upatras.gr/~papagel/project/kef5_7_1.htm
http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/dijkstra.html
http://code.google.com/p/efficient-java-matrix-library/wiki/EjmlManual
http://code.google.com/p/google-api-translate-java/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

