MODSIM World 2015

Java Based Visualization and Animation for Teaching the Dijkstra Shortest
Path Algorithm in Transportation Networks

Ivan Makohon, Zhi Li Masha Sosonkina#, Yuzhong Shen”,
Old Dominion University (Graduate Students) Manwo Ng’, Duc T. Nguyen#
Norfolk, Virginia Old Dominion University (°/~#: Asst./Assoc./Full Prof)
imako001@odu.edu, zxxli001@odu.edu Norfolk, Virginia

msosonki@odu.edu, yshen@odu.edu,
mng@odu.edu, dnguyen@odu.edu

ABSTRACT

Shortest path (SP) algorithms, such as the popular Dijkstra algorithm has been considered as the “basic building
blocks” for many advanced transportation network models. Dijkstra algorithm will find the shortest time (ST) and
the corresponding SP to travel from a source node to a destination node. Applications of SP algorithms include real -
time GPS and the Frank-Wolfe network equilibrium.

For transportation engineering students, the Dijkstra algorithm is not easily understood. This paper discusses the
design and development of a software that will help the students to fully understand the key components involved in
the Dijkstra SP algorithm. The software presents an intuitive interface for generating transportation network
nodes/links, and how the SP can be updated in each iteration. The software provides multiple visual representations
of color mapping and tabular display. The software can be executed in each single step or in continuous run,
making it easy for students to understand the Dijkstra algorithm. Voice narratives in different languages (English,
Chinese and Spanish) are available.

ABOUT THE AUTHORS

lvan Makohon is a current Old Dominion University graduate student pursuing his Masters in Modeling and
Simulations. He has received his Bachelors of Science in Computer Science from Christopher Newport University
(CNU). He has been working as a contractor (and now, a civil servant) as a Senior Software Engineer, and he is also
a Private Pilot.

Zhi Li is a graduate student pursuing his Master of Science in Modeling, Simulation and Visualization Engineering
Department at Old Dominion University. He has received his Bachelors of Science in Computer Science and
Technology from Shandong University in 2012. He is currently working on the development of transportation
education software.

Masha Sosonkina has received her B.S. and M.S. degrees in Applied Mathematics from Kiev National University
in Ukraine, and a Ph.D. degree in Computer Science and Applications from Virginia Tech. During 2003-2012, Dr.
Sosonkina was a scientist at the US Department of Energy Ames Laboratory and an adjunct faculty at lowa State
University. She is currently a professor of Modeling, Simulation and Visualization Engineering at Old Dominion
University. She has also been a visiting research scientist at the Minnesota Supercomputing Institute, at CERFACS
and INRIA French research centers. Her research interests include high-performance computing, large-scale
simulations, parallel numerical algorithms, performance analysis, and adaptive algorithms.

Yuzhong Shen received his B.S. degree in Electrical Engineering from Fudan University, Shanghai, China, M.S.
degree in Computer Engineering from Mississippi State University, Starkville, Mississippi, and Ph.D. degree in
Electrical Engineering from the University of Delaware, Newark, Delaware. His research interests include computer
graphics, visualization, serious games, signal and image processing, and modeling and simulation. Dr. Shen is
currently an Associate Professor of the Department of Modeling, Simulation, and Visualization Engineering and the

2015 Paper No. nnnn Page 1 of 10

MODSIM World 2015

Department of Electrical and Computer Engineering of Old Dominion University. He is also affiliated with Virginia
Modeling, Analysis, and Simulation Center (VMASC). Dr. Shen is a Senior Member of IEEE.

Manwo Ng is currently an Assistant Professor of Maritime and Supply Chain Management at Old Dominion
University (ODU). He obtained his Ph.D. degree in Transportation from The University of Texas at Austin. His
research focuses on port operations, container shipping, and transportation network modeling.

Duc T. Nguyen has received his B.S., M.S. and Ph.D (Civil/Structural engineering) degrees from Northeastern
University (Boston), University of California (Berkeley), and the University of lowa (lowa City), respectively. He
has been a Civil Engineering faculty at OIld Dominion University since 1985. He has published 4
undergraduate/graduate textbooks. Over 160 research articles and nearly $ 4 million funded projects have been
generated by him. He has received Cray Research, NASA, ODU shining star, and Rufus Tonelson Distinguished
Faculty Awards. His name has been included in the ISIHighly Cited.com list of most highly cited researchers in
Engineering.

2015 Paper No. nnnn Page 2 of 10

MODSIM World 2015

Java Based Visualization and Animation for Teaching the Dijkstra Shortest
Path Algorithm in Transportation Networks

Ivan Makohon, Zhi Li Masha Sosonkina#, Yuzhong Shen”,
Old Dominion University (Graduate Students) Manwo Ng’, Duc T. Nguyen#
Norfolk, Virginia Old Dominion University (‘/*/#: Asst./Assoc./Full Prof)
imako001@odu.edu, zxxli001@odu.edu Norfolk, Virginia

msosonki@odu.edu, yshen@odu.edu,
mng@odu.edu, dnguyen@odu.edu

l. INRODUCTION

Finding the shortest time (ST), or the shortest distance (SD) and its corresponding shortest path (SP) to travel from
any i-th “source” node to any j-th “destination (or target)” node of a given transportation network is an important,
fundamental problem in transportation modelling. Efficient SP algorithms, such as the Label Correction Algorithm
(LCA) and its improved version of Polynomial (or partitioned) LCA, forward Dijkstra, backward Dijkstra, Bi-
directional Dijkstra, A* algorithms have been developed, tested and well documented in the literatures [1-3].
Teaching the SP algorithms (such as the Dijkstra algorithm), however, can be a difficult/challenging task!

While some teaching information/lecture/tool/animation for Dijkstra algorithms have existed/appeared in the
literatures [4-6], none seems to be suitable/appropriate for our students’ learning environments, due to the lack of
one (or more) of the following desirable features/capabilities:

1. The developed software tool should be user friendly (easy to use).

2. Graphical/colorful animation should be extensively used to display equations, and/or intermediate/final
output results.

3. Clear/attractive computer animated instructor’s voice should be incorporated in the software tool.

4. The instructor’s voice for teaching materials can be in different/major languages (English, Chinese, and
Spanish).

5. User’s input data can be provided in either interactive mode, or in edited input data file mode, or by
graphical mode.

6. Options for partial (or intermediate) results and/or complete (final results) are available for the user to
select.

7. Options for displaying all detailed intermediate results in the first 1-2 iterations, and/or directly show the
final answers are available for users.

8. Users/learners can provide his/her own data, and compare his/her hand-calculated results with the computer
software’s generated results (in each step of the algorithm) for enhancing/improving his/her learning
abilities.

The remaining sections of this article is organized as follow. In section Il, the basic forward Dijkstra algorithm is
summarized (for the readers’ convenience). Java language is adopted in this work due to its powerful graphical and
animated features. Special and useful features of the developed Java software for teaching Dijkstra algorithm are
high-lighted and demonstrated in (including some computer screen captures) Section Ill. Conclusions are
summarized/suggested in Section IV.

1. SUMMARY OF THE BASIC FORWARD DIJKSTRA SHORTEST PATH ALGORITHM

The basic forward Dijkstra algorithm is a graph search
algorithm that solves for the shortest path, time, or distance
from any given source node to a destination node. The graph is 1 6 a
represented/stored within a 2-Dimentional N x N matrix where

[Al= 2 2

2015 Paper No. nnnn Page 3 of 10 8

Figure 1: Matrix and Graph View of Nodes and Links

MODSIM World 2015

the rows and columns of the matrix headers are represented as the nodes and the values within the matrix at a
location (Aj) are the link’s value (path, distance, or time value), refer to Figure 1. Figure 1 shows a simple 3 x 3
matrix where Node 1 > Node 2 has a link value of 6, Node 1 - Node 3 have a link value of 4, and Node 2 - Node
3 has a link value of 2.

With any given N x N size matrix, the shortest path, time, or distance can be solved using the basic forward Dijkstra
shortest path algorithm. For example, we demonstrate and solve for a sample 6 x 6 matrix (Figure 2) and graph
(Figure 3) to find the shortest path, time, or distance from Node 1 (source node) to Node 6 (destination node).

1 2 3 4 5 6
1 6 4
2 2 2
3 1 2
[Al=,]
5 1 3
6

Figure 3: 6 x 6 Graph

Figure 2: 6 x 6 Matrix

We demonstrate and use a simple (easy to use) bookkeeping (Figure 4) method while iterating through the forward
Dijkstra algorithm. Figure 4 shows the initial values for the Set s and Set s prime. Set s is empty during
initialization and is used to bookkeep nodes already visited. Set s prime contains all the nodes during initialization
and nodes are removed as they are visited. The vector {d} bookkeeps the shortest path, time, or distance value and
the vector {pred} bookkeeps the predecessor nodes after each iteration within the Dijkstra algorithm.

During the first iteration, we set the source node - -
to Node 1 and update Set s = {1} and Set s prime Sets = {empty} Iteration k = 0
= {2, 3, 4, 5, 6}. Note that Node 1 is removed ’_

from Set s prime and added to the Set s. Sets’ = { 1’ 2’ 3’ 4‘ 5’ 6 }

From Node 1, there are 2 outgoing links, Node 2 1 0 1 0

and Node 3 (Figure 3). We check the outgoing 2 0 2 0
Nodes (2 and 3) from Node 1 (Source Node) to

determine if Vector [d] and [pred] need to be d 3 - = pred 3 = — 0 L
updated with the shortest path, time or distance. 4 o0 4 0

This can be done referencing the values stored in 5 0 5 0
Vector d[2] and d[3]. Compare the stored Vector

d[2] value to see if it’s greater-than the computed 6 = 6 0

value, which is the stored Vector d[1] plus the
value at Cis (link value between Node 1 and 3). Figure 4: Iteration k = 0, Initialization

Compare the stored Vector d[3] value to see if

it’s greater-than the computed value, which is the stored Vector d[1] plus Ci> (link value between Node 1 and 2). If
the stored values are greater-than the computed values then update the Vector d with the computed value. If not,
then no update is needed and the stored value remains the same.

2015 Paper No. nnnn Page 4 of 10

MODSIM World 2015

In both of these cases, the stored values for - Iteration k =1
d[2] and d[3] are infinity (o0) so the values in Source Node =1

Vector [d] and [pred] will need to be updated SetS = { 1 }
with the computed values (Figure 5). Figure 5 Set§ = { 2 3 4 56 }

shows the simple (easy to use) bookkeeping
method and updates (if needed).
d(3) > d(l) + Cl3 {d} & {pred} are updated
Once this calculation and update has taken oo > + ﬁ
place, we determine the smallest value among 0 4 UPDATING d(3) 4& prEd(3) 1
the nodes in Set {s prime} and then we move "

the node to the Set {s}. Because Vector d[3] iy

has the smallest value among the nodes in Set d(2) > d(1) + Cio {d} & {pred} are updated
{s prime}, we move Node 3to Set{s} ={1,3 o> 0 + 6 W d(2)=2 & pred(2)=1
} and remove it from Set {s prime} = { 2, 4, 5, YES _ _

6 }. Now Node 3 becomes the next source Figure 5: Iteration k = 1, Source Node = 1

node.

The Next iteration (k = 2), begins by checking the outgoing nodes from Node 3 (source node). We check the
outgoing Nodes (4 and 5) from Node 3 (Source Node) to determine if Vector [d] and [pred] need to be updated with
the shortest path, time or distance. This can be done referencing the values stored in Vector d[4] and d[5]. Compare
the stored Vector d[4] value to see if it’s greater-than the computed value, which is the stored Vector d[3] plus the
value at Cas (link value between Node 3 and 4). Compare the stored Vector d[5] value to see if it’s greater-than the
computed value, which is the stored Vector d[3] plus Css (link value between Node 3 and 5). If the stored values are
greater-than the computed values then update the Vector d with the computed value. If not, then no update is
needed and the stored value remains the same.

In both of these cases, the stored values for

d[4] and d[5] are infinity (=0) so the values SOUICE Node =3 Iteration k = 2

in Vector [d] and [pred] will need to be -
updated with the computed values (Figure SEt S { 1' 3 }

6). Figure 6 shows the simple (easy to use) -
bookkeeping method and updates (if SEtS {2 4 5 6}

needed).

o s caloulati 4 uodate has tak d(4) > d(3) + C34 & {pred) are updated
nce this calculation and update has taken ﬁ

place, we determine the smallest value MY>E‘5 4 +1 UPDATING d(4) 5 & prEd(4) 3

among the nodes in Set {s prime} and then

we move the node to the Set {s}. Because

”
Vector d[4] has the smallest value among (5} > d(3) + C
the nodes in Set {s prime}, we move Node () () 35 {d} & fpred) are updated

4 to Set {s} ={ 1, 3, 4 } and remove it from o> 4 + 2 W d(5) =6& pI'Ed(S) =3
Set {s prime} = { 2, 5, 6 }. Now Node 4 YES
becomes the next source node. Figure 6: Iteration k = 2, Source Node = 3

The Next iteration (k = 3), begins by checking the outgoing nodes from Node 4 (source node). We check the
outgoing Node 6 from Node 4 (Source Node) to determine if Vector [d] and [pred] need to be updated with the
shortest path, time or distance. This can be done referencing the values stored in Vector d[6]. Compare the stored
Vector d[4] value to see if it’s greater-than the computed value, which is the stored Vector d[4] plus the value at Css
(link value between Node 4 and 6). If the stored value is greater-than the computed value then update the Vector d
with the computed value. If not, then no update is needed and the stored value remains the same.

In this case, the stored value for d[6] is infinity (e0) so the value in Vector [d] and [pred] will need to be updated

with the computed value (Figure 7). Figure 7 shows the simple (easy to use) bookkeeping method and updates (if
needed).

2015 Paper No. nnnn Page 5 of 10

MODSIM World 2015

Once this calculation and update has : -
taken place, we determine the smallest SOUI’CE NOdE = 4 Iteration k - 3

value among the nodes in Set {s prime} -
and then we move the node to the Set {s}. Sets = { 1: 3: 4 }

Because Vector d[2] and d[5] has the !’ _

smallest value, 6 among the nodes in Set SetS { 2’ 5’ 6 }
{s prime}, we arbitrarily select and move n

Node 2 to Set {s} = {1, 3, 4, 2 } and d(6) > d(4) t C46 {d} & {pred} are updated

remove it from Set {s prime} = { 5, 6 }. - -
Now Node 2 becomes the next source WY:ES 5+ 7 Wd(ﬂ =12 & prEd(G) =4
node. Note: we could do further research

here to pick the better of the 2 choices Figure 7: Iteration k = 3, Source Node =4
instead or arbitrarily selecting one.

The Next iteration (k = 4), begins by checking the outgoing nodes from Node 2 (source node). We check the
outgoing Nodes (3 and 4) from Node 2 (Source Node) to determine if Vector [d] and [pred] need to be updated with
the shortest path, time or distance. This can be done referencing the values stored in Vector d[3] and d[4]. Compare
the stored Vector d[3] value to see if it’s greater-than the computed value, which is the stored Vector d[2] plus the
value at Cys (link value between Node 2 and 3). Compare the stored Vector d[4] value to see if it’s greater-than the
computed value, which is the stored Vector d[2] plus C24 (link value between Node 2 and 4). If the stored values are
greater-than the computed values then update the Vector d with the computed value. If not, then no update is
needed and the stored value remains the same.

In both of these cases, the stored values - Iteration k = 4
for d[3] and d[4] are 4 and 5 Source Node =2

respectively so the values are not SetS ={1,3,4,2}

greater-than the computed values so no ’ _

update is needed (Figure 8). Figure 8 Set§' = { 56 }

shows the simple (easy to use) 2
bookkeeping method and updates (if d(?’) > d(Z) + C23 {d} & {pred} remains the same

needed). In this case, no update is 4 > 6 + 2 ﬁd 3)=4 &pred(3)=1
needed since the stored values are not NO RO LFDAIE () P ()
greater-than the computed values.

??

Once this calculation and update has d(4) > d(Z) N C24 {0} & fpred] remains the same
taken place, we determine the smallest 5 I\I>O 6 + 2 W d(4)=5& pred(4) =3
value among the nodes in Set {s prime}
and then we move the node to the Set
{s}. Because Vector d[5] has the smallest value among the nodes in Set {s prime}, we move Node 5 to Set {s} = {
1, 3,4,2,5} and remove it from Set {s prime} = { 6 }. Now Node 5 becomes the next source node. Remark:
When determining the smallest value was a tie for Nodes 2 and 5 (see previous iteration), we were better off to
select and move Node 5 instead of arbitrarily selecting Node 2.

Figure 8: Iteration k =4, Source Node =2

The Next iteration (k = 5), begins by checking the outgoing nodes from Node 5 (source node). We check the
outgoing Nodes (4 and 6) from Node 5 (Source Node) to determine if Vector [d] and [pred] need to be updated with
the shortest path, time or distance. This can be done referencing the values stored in Vector d[4] and d[6]. Compare
the stored Vector d[4] value to see if it’s greater-than the computed value, which is the stored Vector d[5] plus the
value at Csq4 (link value between Node 5 and 4). Compare the stored Vector d[6] value to see if it’s greater-than the
computed value, which is the stored Vector d[5] plus Csg (link value between Node 5 and 6). If the stored values are
greater-than the computed values then update the Vector d with the computed value. If not, then no update is
needed and the stored value remains the same.

In both of these cases, the stored values for d[4] and d[6] are 5 and 12 respectively so the value for d[4] is not

greater-than the computed values so no update is needed (Figure 9). However, the value for d[6] is greater-than the
computed values in Vector [d] and [pred] will need to be updated with the computed values (Figure 9). Figure 9

2015 Paper No. nnnn Page 6 of 10

MODSIM World 2015

shows the simple (easy to use) bookkeeping method and updates (if needed). In this case, one outgoing node is
updated is needed since the stored values is greater-than the computed values.

Once this calculation and update has — i =
taken place, we determine the smallest Source Node =5 Iteration k = 5

value among the nodes in Set {s prime} SetS :{ 1,3,4,2,5 }
and then we move the node to the Set

’ —
{s}. Because Vector d[6] is the only SEtE - { 6 }
remaining node and is the destination &
node, we move Node 6 to Set {s} = { 1, d(4)>d(5) + Cs, {d} & {pred} remains the same

3,4,2,5,6 } and remove it from Set {s 5 > 6 + 1 NW d(5) =6 & pred(5) =3

prime} = { empty }. Now Node 6

becomes the next source node and is our 2

destination node. This completes the d(6) > d(5) + C56 {d} & {pred} remains the same

shortest path, time, or distance for solving ﬁ - -

for the basic forward Dijkstra algorithm. 12\% 6+ 3 UPDATING d(ﬁ) 9& pred(6) >
Figure 9: Iteration k=5, Source Node =5

The updates for each iteration for Vector

[d], Vector [pred], and Set {s} are displayed in Figures 10, 11, and 12, respectively. For each iteration, the

highlighted circle (light blue circle) shows the corresponding values being updated during that iteration.

k=1 k=2 k=3 k=4 k=5 k=6 k=1 k=2 k=3 k=4 k=5 k=6
) 0 o 0 0 0 ® 0 0 0 0 0
o0 ® 6 6 6 6 0 @ 1 1 1 1
% ® 4 4 a 4 pred | ° v ! ! ! !
A=\ B e P s =)o PR T o P T 1T

o w ® 6 6 6 0 0 ® 3 3 8

_ o 0 0 0 @ 4 5
o0 o0 o0 f\l_z} 12 @) = ~

NO UPDATE

NOUPOATE Figure 11: Vector [pred] Updates During Iterations

Figure 10: Vector [d] Updates During Iterations

+
£3
el
:
%

o
o
o
o |
(wn
&
(9,]

0 0 0 0 0 6)

(b)
p

Figure 12: Set {s} Updates During Iterations

1. JAVA COMPUTER ANIMATED SOFTWARE TOOL FOR TEACHING FORWARD
DIKSTRA ALGORITHM

2015 Paper No. nnnn Page 7 of 10

MODSIM World 2015

Do et s pplcaton — -

The previous section’s small-scale 6 x 6
Matrix [A] graph data will be used for the : M : °
Java [7-9] computer animated software tool =~
for teaching the Dijkstra algorithm. The
users/learner will initialize and run the Java
software. Once initialized, the application’s
“Main Control” Graphical User Interface
(GUI) is displayed (Figure 13). This GUI Nework Grapn view

controls the flow of the basic forward

Dijkstra algorithm teaching steps from start

to finish and will provide detailed algorithm |
steps while solving for the shortest path, ——— NKe
time, or distance.

.) Figure 13: Main GUI
The users/learners will be able to input the

matrix [A] data from several input options (input file, manual input or randomly generated values) from the “Main
Control” GUI. When an input option is selected the user/learner will be able to modify the data within the “Matrix
Editor” GUI. The “Matrix Editor” GUI (Figure 14) allows the user/learner to change the size of the matrix [A]
dimensions and modify the values before
solving for the shortest path, time, or
ww distance.

: S ——
' il e i e After the Matrix data [A] is entered into the
2 2|2 : 3 "Matrix Editor" and "OKk" is selected, the
5 Ml YUl ‘ focus is returned back to the "Main Control”
[A] = H} GUI. The matrix data [A] is shown in to
' N 4 viewable formats, the “Matrix Canvas”,
5 1 3 "Data", and "Network Graph" views. Both
ol C T | 1 views will be updated accordingly
‘ % = throughout the steps in the basic forward
Figure 14: Matrix Editor (Matrix [A] Data) Dijkstra Algorithm.

Once the matrix data [A] is inputted, the "Play"” button is enabled. Once the user/learner selects the "Play" button,
the teaching of the basic forward Dijkstra Algorithm steps begins. The basic forward Dijkstra Algorithm performs
the algorithm steps against the matrix data [A], the matrix data [A] is updated accordingly and displayed within the
Views, and the algorithm steps is lectured to the user/learner by a computer animated voice. The algorithm steps
handled within the Java software are as follows:

Step 0
The Java Computer Animation for Teaching
the Forward Dijkstra Algorithm will handle
the matrix data if provided as a rectangular
or tall matrix. The algorithm will add
"dummy" rows (or columns) with the
maximum corresponding value within the
matrix.

e the Vector d, Vector pred, Set S and Set S

Data View Network Graph View

The Java Computer Animation for Teaching A "
the Forward Dijkstra Algorithm will solve : ‘
for shortest path, time, or distance. The GUI
will prompt an input dialog for the
user/learning to select what the source and
destination nodes.

The Java Computer Animation for Teaching Figure 15: Main GUI (Step 0)

the Forward Dijkstra Algorithm will initialize the data vectors and sets and set the source node (Figure 15).

2015 Paper No. nnnn Page 8 of 10

MODSIM World 2015

Step 1 e — o

The Java Computer Animation for Teaching
the Forward Dijkstra Algorithm will
consider all outgoing links from the current
node.

Data View Network Graph View

The Java Computer Animation for Teaching
the Forward Dijkstra Algorithm will
determine if the stored Vector [d] values for , : ;
the outgoing nodes are greater-than the L
computed values of the previous node plus
the link (edge) values. If the stored Vector
[d] value is greater-than the computed value
then the Vector [d] value is updated accordingly; otherwise, the value remains the same.

Figure 16: Main GUI (Step 1)

The Java Computer Animation for Teaching
the Forward Dijkstra Algorithm will
animated each step and provide detailed
animated voice and text for each step
(Figure 16).

s

Step 2

The Java Computer Animation for Teaching Data iew Htwork Graph View
the Forward Dijkstra Algorithm will A .
determine the smallest value from the Set {s : ' h
prime} and remove the smallest from Set {s Y ‘
prime} and add it to Set {s}. —x e

The Java Computer Animation for Teaching
the Forward Dijkstra Algorithm will update
the current node as the source node for the next iteration (Figure 17).

Figure 17: Main GUI (Step 2)

Step 3

The Java Computer Animation for Teaching — jssummmm— = gt
the Forward Dijkstra Algorithm will 0 o 8 o
determine the shortest path, time, or =

distance based on the outcome of the o e s s o SRl s

Dijkstra algorithms using the bookkeeping
of Vector [d], Vector [pred], Set {s}, Set {s
prime}.

The Java Computer Animation for Teaching e v ReRPOrE UF Ve
the Forward Dijkstra Algorithm will N
highlight the shortest path (Figure 18). o B o | } a_ ~N,

Results — e o

The Java Computer Animation for Teaching
the Forward Dijkstra Algorithm will display Figure 18: Main GUI (Step 3)

the final results of the shortest path, time, or distance by highlighting the nodes and links from the source to
destination node.

2015 Paper No. nnnn Page 9 of 10

MODSIM World 2015

(AVA CONCLUSIONS

In this article, the basic Dijkstra algorithm has been firstly summarized. Then, Java Computer Animated Software
Tool has been developed to enhance student’s learning. The developed Java animated software has all the following
desirable features/capabilities, such as:

1. The developed software tool should be user friendly (easy to use).

2. Graphical/colorful animation should be extensively used to display equations, and/or intermediate/final
output results.

3. Clear/attractive computer animated instructor’s voice should be incorporated in the software tool.

4. The instructor’s voice for teaching materials can be in different/major languages (English, Chinese, and
Spanish).

5. User’s input data can be provided in either interactive mode, or in edited input data file mode, or by
graphical mode.

6. Options for partial (or intermediate) results and/or complete (final results) are available for the user to
select.

7. Options for displaying all detailed intermediate results in the first 1-2 iterations, and/or directly show the
final answers are available for users.

8. Users/learners can provide his/her own data, and compare his/her hand-calculated results with the computer
software’s generated results (in each step of the algorithm) for enhancing/improving his/her learning
abilities.

ACKNOWLEDGEMENTS

The partial support provided by the NSF grant # ACI-1440673 (ODU-RF Project # 100507-010) to Duc T. Nguyen
is gratefully acknowledged. The work of Sosonkina was supported in part by the Air Force Office of Scientific
Research under the AFOSR award FA9550-12-1-0476, and by the National Science Foundation grants NSF/OCI ---
0941434, 0904782, 1047772.

REFERENCES

[1] Sheffi, Y., 1985. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming
Methods. Available free of charge at: http://web.mit.edu/sheffi/wwwi/urbanTransportation.html

[2] Lawson, G., Allen, S., Rose, G., Nguyen, D.T., Ng, M.W. “Parallel Label Correcting Algorithms For Large-
Scale Static and Dynamic Transportation Networks on Laptop Personal Computers”, TRB 2013 Annual
Meeting (Washington, D.C.; Jan. 13-17, 2013); Session 844 Presentation # 13-2103 (Thursday, Jan. 17-2013;
10:15am-noon); Poster Presentation # P13-6655.

[3] Paul Johnson III, Duc T. Nguyen, and Manwo Ng, “An Efficient Shortest Distance Decomposition Algorithm
For Large-Scale Transportation Network Problems”, TRB 2014 Annual Meeting (Washington, D.C.; January
2014); Oral, and Poster Presentations.

[4] Dijkstra’s Shortest Path Algorithm. http://www.cs.uah.edu/~rcoleman/CS221/Graphs/ShortestPath.html

[5] Dijkstra Algorithm. http://students.ceid.upatras.gr/~papagel/project/kef5 7_1.htm

[6] Dijkstra’s Algorithm. http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/dijkstra.html
[7] Efficient Java Matrix Library (EJML). http://code.google.com/p/efficient-java-matrix-library/wiki/EjmlManual
[8] Google Translate Java. http://code.google.com/p/google-api-translate-java/

[9] Java Platform Standard Edition. http://www.oracle.com/technetwork/java/javase/downloads/index.html

2015 Paper No. nnnn Page 10 of 10

http://web.mit.edu/sheffi/www/urbanTransportation.html
http://www.cs.uah.edu/~rcoleman/CS221/Graphs/ShortestPath.html
http://students.ceid.upatras.gr/~papagel/project/kef5_7_1.htm
http://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/dijkstra.html
http://code.google.com/p/efficient-java-matrix-library/wiki/EjmlManual
http://code.google.com/p/google-api-translate-java/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

