
Hungarian Optimum Assignment Algorithm with

Java Computer Animation 1 April 2016

Ivan Makohon

Graduate Student

Modeling, Simulation &

Visualization Engineering (MSVE)

Old Dominion University

Norfolk, Virginia 23529, USA

imako001@odu.edu

Duc T. Nguyen

Professor

Civil & Environmental

Engineering (CEE) and MSVE

Departments

Old Dominion University

Norfolk, Virginia 23529, USA

Mecit Cetin

Associate Professor

CEE Department

Old Dominion University

Norfolk, Virginia 23529, USA

mcetin@odu.edu

Manwo Ng

Assistant Professor

Department of Information

Technology and Decision

Old Dominion University

Norfolk, Virginia 23529, USA

mng@odu.edu

Overview

 Java Computer Animations to provide a precise and

clear detailed Step-by-Step teachings of the

Hungarian Algorithm:

 Provides Text-To-Speech (TTS) to animate the voice in

several languages (i.e. English, Spanish)

 Provides importing/exporting of the Matrix [A] data

 Provides a views of the Matrix [A] data being modified

 Provides a Step-by-Step logging results (Export Capable)

 Provides voice narrative filtering (i.e. None, Terse, Verbose)

 Solves the Minimum Optimum Assignment (By Default)

[A] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟐. 𝟎

 Minimum Optimum Assignment = (1.0 + 3.0 + 2.0) = 6.0

 Solves the Maximum Optimum Assignment

[A] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟐. 𝟎

 Maximum Optimum Assignment = (3.0 + 3.0 + 3.0) = 9.0

Overview

 Solves for ANY size Matrix (i.e. 3x2, 3x3, 2x3, etc)

[A] =
𝟐. 𝟎 𝟑. 𝟎 𝟎. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟎. 𝟎
𝟑. 𝟎 𝟐. 𝟎 𝟎. 𝟎

[B] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟐. 𝟎

[C] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟎. 𝟎

*yellow-highlight denotes added “dummy” rows/columns

Overview

Hungarian Algorithm Steps

 Initialization:

N = Matrix [A] Dimension

MNOL = Minimum Number of Lines

MUN = Minimum Uncovered Number

Matrix [A] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟐. 𝟎

Hungarian Algorithm Steps

 Step 0A – Determine if the Matrix [A] is squared.
 The user’s input of the matrix [A] is assumed to be a SQUARE

matrix, and the problem is assumed to be a Minimization
Problem. If matrix [A] is a Rectangular matrix, then either
dummy row(s), or column(s) need to be added in order to
make it become a square matrix.

 Examples:

[A] =
𝟏. 𝟎 𝟐. 𝟎 𝟎. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟎. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟎. 𝟎

[A] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟎. 𝟎

*yellow-highlight denotes added “dummy” rows/columns

Hungarian Algorithm Steps

 Step 0B – Determine if the Matrix [A] is being solved

as Minimization (By Default) or Maximization

problem (User Input).

 If the problem is a Maximization problem, then it can be

transformed/converted to a Minimization problem, as

follows:

[A] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟐. 𝟎

[A] =
𝟐. 𝟎 𝟏. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎

Replace each cell entry Aij with negative Aij + C,

where C equals the maximum cell value (C = 3)

Minimization matrixMaximization matrix

Hungarian Algorithm Steps

 Step 1 – Subtract each row with its corresponding

minimum value in Matrix [A].

[A] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟐. 𝟎

[A] =
𝟎. 𝟎 𝟏. 𝟎 𝟐. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟏. 𝟎 𝟎. 𝟎

Hungarian Algorithm Steps

 Step 2 – Subtract each column with its

corresponding minimum value in Matrix [A].

[A] =
𝟎. 𝟎 𝟏. 𝟎 𝟐. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟏. 𝟎 𝟎. 𝟎

[A] =
𝟎. 𝟎 𝟏. 𝟎 𝟐. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟏. 𝟎 𝟎. 𝟎

Hungarian Algorithm Steps

 Step 3 - Cover ALL zeros with the MNOL drawn

through columns and rows.

[A] =
𝟎. 𝟎 𝟏. 𝟎 𝟐. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟏. 𝟎 𝟎. 𝟎

Cover Column 1 with a line

Cover Column 3 with a line

Cover Row 2 with a line

Hungarian Algorithm Steps

 Step 3.1 – Compute the MUN in the matrix.

 Determine the smallest entry not covered by any line (MUN = 1.0)

 Subtract the MUN from each uncovered value

 Add the MUN to each value covered by the two intersecting lines

[A] =
𝟎. 𝟎 𝟏. 𝟎 𝟐. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟏. 𝟎 𝟎. 𝟎

[A] =
𝟎. 𝟎 𝟎. 𝟎 𝟐. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟏. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟎. 𝟎

MUN = 1.0 Rectangles denotes added entries

Ovals denotes subtracted entries

Hungarian Algorithm Steps

 Step 3.2 – Compute the MNOL in the Matrix.

 If MNOL greater-than or equal-to the Matrix [A] Dimension

then the Matrix is converged; continue to Step 4.

 If MNOL is less-than N; continue to Step 3.

[A] =
𝟎. 𝟎 𝟎. 𝟎 𝟐. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟏. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟎. 𝟎

MNOL = 3 is greater-than equal-to N = 3

Matrix [A] is Converged

Continue to Step 4

Hungarian Algorithm Steps

 Step 4 – Optimum Assignment (Minimum)
 Starting with the top row and work your way downwards as

you make assignments.

 An assignment can be uniquely made when there is exactly
one zero in a row.

[A] =
𝟎. 𝟎 𝟎. 𝟎 𝟐. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟏. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟎. 𝟎

[A] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟐. 𝟎

Assignment Score

Worker #1 assigned to Job #1 1.0

Worker #2 assigned to Job #2 3.0

Worker #3 assigned to Job #3 2.0

Optimum Minimum Score: 6.0

Demo – Minimization Optimum

Assignment Problem

 Demo video will show the opening of an existing

stored Matrix [A] (below) and then solve for the

Minimization Optimum Assignment.

[A] =
𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟑. 𝟎 𝟐. 𝟎

Demo Video

Questions/Comments

Additional Demos Online:

http://www.lions.odu.edu/~imako001/

Appendix A: 4x3 Maximization

Problem Step-by-Step

 Starting with a user input “tall” (4x3) Matrix [A],

and the original problem is to “maximize” the

“profit”.

[A] =

𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟐. 𝟎 𝟓. 𝟎 𝟒. 𝟎
𝟏. 𝟎 𝟔. 𝟎 𝟖. 𝟎
𝟑. 𝟎 𝟕. 𝟎 𝟐. 𝟎

Hungarian Algorithm Steps

 Step 0A – Determine if the Matrix [A] is squared.

 The Matrix [A] is NOT squared since it’s a 4x3

 Add a “Dummy” column with 0.0 values so that Matrix [A]

becomes a 4x4 matrix

[A] =

𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎
𝟐. 𝟎 𝟓. 𝟎 𝟒. 𝟎
𝟏. 𝟎 𝟔. 𝟎 𝟖. 𝟎
𝟑. 𝟎 𝟕. 𝟎 𝟐. 𝟎

[A] =

𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎 𝟎. 𝟎
𝟐. 𝟎 𝟓. 𝟎 𝟒. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟔. 𝟎 𝟖. 𝟎 𝟎. 𝟎
𝟑. 𝟎 𝟕. 𝟎 𝟐. 𝟎 𝟎. 𝟎

*yellow-highlight denotes the added “dummy” columns with zeros

Hungarian Algorithm Steps

 Step 0B – Determine if the Matrix [A] is being solved

as Minimization (By Default) or Maximization

problem (User Input).

 If the problem is a Maximization problem, then it can be

transformed/converted to a Minimization problem, as

follows:

[A] =

𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎 𝟎. 𝟎
𝟐. 𝟎 𝟓. 𝟎 𝟒. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟔. 𝟎 𝟖. 𝟎 𝟎. 𝟎
𝟑. 𝟎 𝟕. 𝟎 𝟐. 𝟎 𝟎. 𝟎

[A] =

𝟕. 𝟎 𝟔. 𝟎 𝟓. 𝟎 𝟖. 𝟎
𝟔. 𝟎 𝟑. 𝟎 𝟒. 𝟎 𝟖. 𝟎
𝟕. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟖. 𝟎
𝟓. 𝟎 𝟏. 𝟎 𝟔. 𝟎 𝟖. 𝟎

Replace each cell entry Aij with negative Aij + C,

where C equals the maximum cell value (C = 8)

Minimization matrixMaximization matrix

Hungarian Algorithm Steps

 Step 1 – Subtract each row with its corresponding

minimum value in Matrix [A].

[A] =

𝟕. 𝟎 𝟔. 𝟎 𝟓. 𝟎 𝟖. 𝟎
𝟔. 𝟎 𝟑. 𝟎 𝟒. 𝟎 𝟖. 𝟎
𝟕. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟖. 𝟎
𝟓. 𝟎 𝟏. 𝟎 𝟔. 𝟎 𝟖. 𝟎

[A] =

𝟐. 𝟎 𝟏. 𝟎 𝟎. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟓. 𝟎
𝟕. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟖. 𝟎
𝟒. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟕. 𝟎

Subtract 5.0 from each value in Row 1

Subtract 3.0 from each value in Row 2

Subtract 0.0 from each value in Row 3

Subtract 1.0 from each value in Row 4

Hungarian Algorithm Steps

 Step 2 – Subtract each column with its

corresponding minimum value in Matrix [A].

[A] =

𝟐. 𝟎 𝟏. 𝟎 𝟎. 𝟎 𝟑. 𝟎
𝟑. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟓. 𝟎
𝟕. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟖. 𝟎
𝟒. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟕. 𝟎

[A] =

𝟎. 𝟎 𝟏. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟐. 𝟎
𝟓. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟓. 𝟎
𝟐. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟒. 𝟎

Subtract 2.0 from each value in Column 1

Subtract 0.0 from each value in Column 2

Subtract 0.0 from each value in Column 3

Subtract 3.0 from each value in Column 4

Hungarian Algorithm Steps

 Step 3 - Cover ALL zeros with the MNOL drawn

through columns and rows.

[A] =

𝟎. 𝟎 𝟏. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟐. 𝟎
𝟓. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟓. 𝟎
𝟐. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟒. 𝟎

Cover Column 2 with a line

Cover Column 3 with a line

Cover Row 1 with a line

Hungarian Algorithm Steps

 Step 3.1 – Compute the MUN in the matrix.

 Determine the smallest entry not covered by any line (MUN = 1.0)

 Subtract the MUN from each uncovered value

 Add the MUN to each value covered by the two intersecting lines

[A] =

𝟎. 𝟎 𝟏. 𝟎 𝟎. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟐. 𝟎
𝟓. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟓. 𝟎
𝟐. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟒. 𝟎

[A] =

𝟎. 𝟎 𝟐. 𝟎 𝟏. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟏. 𝟎
𝟒. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟒. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟑. 𝟎

MUN = 1.0 Rectangles denotes added entries

Ovals denotes subtracted entries

Hungarian Algorithm Steps

 Step 3.2 – Compute the MNOL in the Matrix.

 If MNOL greater-than or equal-to the Matrix [A] Dimension

then the Matrix is converged; continue to Step 4.

 If MNOL is less-than N; continue to Step 3.

[A] =

𝟎. 𝟎 𝟐. 𝟎 𝟏. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟏. 𝟎
𝟒. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟒. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟑. 𝟎

MNOL = 3 is NOT greater-than equal-to N = 4

Matrix [A] is NOT Converged

Clear ALL lines & Repeat Step 3

Hungarian Algorithm Steps

 Step 3 – Cover ALL zeros with the MNOL drawn

through columns and rows (Iteration #2).

[A] =

𝟎. 𝟎 𝟐. 𝟎 𝟏. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟏. 𝟎
𝟒. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟒. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟑. 𝟎

Cover Column 3 with a line

Cover Column 2 with a line

Cover Row 1 with a line

Cover Column 1 with a line

Hungarian Algorithm Steps

 Step 3.1 – Compute the MUN in the matrix.

 Determine the smallest entry not covered by any line (MUN = 1.0)

 Subtract the MUN from each uncovered value

 Add the MUN to each value covered by the two intersecting lines

[A] =

𝟎. 𝟎 𝟐. 𝟎 𝟏. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟏. 𝟎
𝟒. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟒. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟑. 𝟎

[A] =

𝟏. 𝟎 𝟑. 𝟎 𝟐. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟎. 𝟎
𝟒. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟑. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟐. 𝟎

MUN = 1.0 Rectangles denotes added entries

Ovals denotes subtracted entries

Hungarian Algorithm Steps

 Step 3.2 – Compute the MNOL in the Matrix.

 If MNOL greater-than or equal-to the Matrix [A] Dimension

then the Matrix is converged; continue to Step 4.

 If MNOL is less-than N; continue to Step 3.

[A] =

𝟏. 𝟎 𝟑. 𝟎 𝟐. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟎. 𝟎
𝟒. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟑. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟐. 𝟎

MNOL = 4 is greater-than equal-to N = 4

Matrix [A] is Converged

Continue to Step 4

Hungarian Algorithm Steps

 Step 4 – Optimum Assignment (Maximum)
 Starting with the top row and work your way downwards as you make

assignments.

 An assignment can be uniquely made when there is exactly one zero in
a row.

[A] =

𝟏. 𝟎 𝟑. 𝟎 𝟐. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟎. 𝟎 𝟏. 𝟎 𝟎. 𝟎
𝟒. 𝟎 𝟐. 𝟎 𝟎. 𝟎 𝟑. 𝟎
𝟏. 𝟎 𝟎. 𝟎 𝟓. 𝟎 𝟐. 𝟎

[A] =

𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎 𝟎. 𝟎
𝟐. 𝟎 𝟓. 𝟎 𝟒. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟔. 𝟎 𝟖. 𝟎 𝟎. 𝟎
𝟑. 𝟎 𝟕. 𝟎 𝟐. 𝟎 𝟎. 𝟎

Assignment Score

Worker #1 assigned to Job #4 0.0

Worker #2 assigned to Job #1 2.0

Worker #3 assigned to Job #3 8.0

Worker #4 assigned to Job #2 7.0

Optimum Maximum Score: 17.0

