O
OLD DOMINION

UNIVERSITY

| D EA FUSION

i

Hungarian Optimum Assignment Algorithm with

Ivan Makohon

Graduate Student

Modeling, Simulation &
Visualization Engineering (MSVE)
Old Dominion University
Norfolk, Virginia 23529, USA
imako001@odu.edu

Java Computer Animation

Duc T. Nguyen Mecit Cetin

Professor Associate Professor

Civil & Environmental CEE Department
Engineering (CEE) and MSVE Old Dominion University
Departments Norfolk, Virginia 23529, USA
Old Dominion University mcetin@odu.edu

Norfolk, Virginia 23529, USA

1 April 2016

Manwo Ng

Assistant Professor
Department of Information
Technology and Decision

Old Dominion University
Norfolk, Virginia 23529, USA
mng@odu.edu

Overview

m Java Computer Animations to provide a precise and
clear detailed Step-by-Step teachings of the
Hungarian Algorithm:

Provides Text-To-Speech (TTS) to animate the voice in
several languages (i.e. English, Spanish)

Provides importing/exporting of the Matrix [A] data
Provides a views of the Matrix [A] data being modified
Provides a Step-by-Step logging results (Export Capable)
Provides voice narrative filtering (i.e. None, Terse, Verbose)

Overview

m Solves the Minimum Optimum Assignment (By Default)

1.0: 2.0 3.0]

[A] =

Minimum Optimum Assignment = (1.0 + 3.0 + 2.0) = 6.0

m Solves the Maximum Optimum Assignment

1.0 2.0 3.0
[A]=[3.0 3.0 3.0

3.0 3.0 2.0

Maximum Optimum Assignment = (3.0 + 3.0 + 3.0) = 9.0

Overview

m Solves for ANY size Matrix (i.e. 3x2, 3x3, 2x3, etc)

- —— -

*yellow-highlight denotes added “dummy” rows/columns

Hungarian Algorithm Steps

m Initialization:

N = Matrix [A] Dimension
MNOL = Minimum Number of Lines
MUN = Minimum Uncovered Number
1.0 2.0 3.0
Matrix [A] = [3.0 3.0 3.0}
3.0 3.0 2.0

Hungarian Algorithm Steps

m Step OA - Determine if the Matrix [A] is squared.

The user’s input of the matrix [A] is assumed to be a SQUARE
matrix, and the problem is assumed to be a Minimization
Problem. If matrix [A] is a Rectangular matrix, then either

dummy row(s), or column(s) need to be added in order to
make it become a square matrix.

Examples:

*yellow-highlight denotes added “dummy” rows/columns

Hungarian Algorithm Steps

m Step OB - Determine if the Matrix [A] is being solved
as Minimization (By Default) or Maximization
problem (User Input).

If the problem is a Maximization problem, then it can be
transformed/converted to a Minimization problem, as
follows:

Replace each cell entry A;; with negative A; + C,
where C equals the maximum cell value (C = 3)

1.0 2.0 3.0) 2.0 1.0 0.0
3.0 3.0 3.0 [A] =
3.0 3.0 2.0

[A] = 0.0 0.0 0.0
Maximization matrix Minimization matrix

0.0 0.0 1.0

Hungarian Algorithm Steps

m Step 1 - Subtract each row with its corresponding
minimum value in Matrix [A].

Hungarian Algorithm Steps

m Step 2 - Subtract each column with its
corresponding minimum value in Matrix [A].

[A] =

Hungarian Algorithm Steps

m Step 3 - Cover ALL zeros with the MNOL drawn
through columns and rows.

[A] =

Cover Column 1 with a line
Cover Column 3 with a line
Cover Row 2 with a line

Hungarian Algorithm Steps

m Step 3.1 - Compute the MUN in the matrix.
Determine the smallest entry not covered by any line (MUN = 1.0)
Subtract the MUN from each uncovered value
Add the MUN to each value covered by the two intersecting lines

Rectangles denotes added entries
O Ovals denotes subtracted entries

Hungarian Algorithm Steps

m Step 3.2 - Compute the MNOL in the Matrix.

If MNOL greater-than or equal-to the Matrix [A] Dimension
then the Matrix is converged; continue to Step 4.

If MNOL is less-than N; continue to Step 3.

[A] =

MNOL = 3 is greater-than equal-to N = 3
Matrix [A] is Converged
Continue to Step 4

Hungarian Algorithm Steps

m Step 4 - Optimum Assignment (Minimum)
Starting with the top row and work your way downwards as
you make assignments.

An assighment can be uniquely made when there is exactly
one zero in a row.

il - ————

0.0; 0.0 2.0 1.0; 2.0 3.0
[A]=]1.0 (0.0} 1.0 [A]=]3.0 {3.0{ 3.0
1.0 0.0 0.0 3.0 3.0 (2.0

Assignment Score
Worker #1 assigned to Job #1 1.0
Worker #2 assigned to Job #2 3.0
Worker #3 assigned to Job #3 2.0

Optimum Minimum Score: 6.0

Demo - Minimization Optimum
Assignment Problem

m Demo video will show the opening of an existing
stored Matrix [A] (below) and then solve for the
Minimization Optimum Assignment.

1.0 2.0 3.0
[A]=(3.0 3.0 3.0
3.0 3.0 2.0

Demo Video

=

File Preferences Help

Matrix Input Controls Tutorial Lesson Controls

Yy

| Tutorial View |

Algorithm Step

Tutorial Information

Matrix Table View Matrix Canvas View
1

B e

Questions/Comments

Additional Demos Online:
http://www.lions.odu.edu/~imako001/

Appendix A: 4x3 Maximization
Problem Step-by-Step

m Starting with a user input “tall” (4x3) Matrix [A],
and the original problem is to “maximize” the
“profit”.

1.0 2.0 3.0
~12.0 5.0 4.0
[A] = 1.0 6.0 8.0
3.0 7.0 2.0

Hungarian Algorithm Steps

m Step OA - Determine if the Matrix [A] is squared.
The Matrix [A] is NOT squared since it’s a 4x3

Add a “Dummy” column with 0.0 values so that Matrix [A]
becomes a 4x4 matrix

1.0 2.0 3.0] 1.0 2.0 3.0 [0.0
_|2.0 5.0 4.0 _|2.0 5.0 4.0 0.0
[AI=110 6.0 80 W[A]‘ 1.0 6.0 8.0 0.0
3.0 7.0 2.0 3.0 7.0 2.0 0.0

*yellow-highlight denotes the added “dummy” columns with zeros

Hungarian Algorithm Steps

m Step OB - Determine if the Matrix [A] is being solved
as Minimization (By Default) or Maximization
problem (User Input).

If the problem is a Maximization problem, then it can be
transformed/converted to a Minimization problem, as

follows:
Replace each cell entry A;; with negative A; + C,
where C equals the maximum cell value (C = 8)
1.0 2.0 3.0 0.0] (7.0 6.0 5.0 8.0]
[A] = |20 50 4.0 0.0 ﬁ [A] = [6:0 3.0 4.0 8.0
1.0 6.0 (8.0) 0.0 7.0 2.0 0.0 8.0
3.0 7.0 2.0 0.0 5.0 1.0 6.0 8.0.

Maximization matrix Minimization matrix

Hungarian Algorithm Steps

m Step 1 - Subtract each row with its corresponding
minimum value in Matrix [A].

7.0 6.0 i5.0i 8.0 2.0 1.0 0.0 3.0]
_|6.0 3.0; 4.0 8.0 _[3.0 0.0 1.0 5.0
[A] = 7.0 2.0 i0.0! 8.0 ﬁ [A] 7.0 2.0 0.0 8.0
5.0 11.00 6.0 8.0 4.0 0.0 50 7.0

Subtract 5.0 from each value in Row 1
Subtract 3.0 from each value in Row 2
Subtract 0.0 from each value in Row 3
Subtract 1.0 from each value in Row 4

Hungarian Algorithm Steps

m Step 2 - Subtract each column with its
corresponding minimum value in Matrix [A].

2.00 1.0 10.0: 3.0 0.0 1.0 0.0 0.0
_13.0 i0.00 1.0 5.0 _|1.0 0.0 1.0 20
[AI=170 270 00 80 ﬁ [Al=150 2.0 00 5.0
4.0 0.0 5.0 7.0 2.0 0.0 5.0 4.0

Subtract 2.0 from each value in Column 1
Subtract 0.0 from each value in Column 2
Subtract 0.0 from each value in Column 3
Subtract 3.0 from each value in Column 4

Hungarian Algorithm Steps

m Step 3 - Cover ALL zeros with the MNOL drawn
through columns and rows.

[A] =

Cover Column 2 with a line
Cover Column 3 with a line
Cover Row 1 with a line

Hungarian Algorithm Steps

m Step 3.1 - Compute the MUN in the matrix.
Determine the smallest entry not covered by any line (MUN = 1.0)
Subtract the MUN from each uncovered value
Add the MUN to each value covered by the two intersecting lines

| ﬁw?:

Rectangles denotes added entries
O Ovals denotes subtracted entries

[A] = |5

Hungarian Algorithm Steps

m Step 3.2 - Compute the MNOL in the Matrix.

If MNOL greater-than or equal-to the Matrix [A] Dimension
then the Matrix is converged; continue to Step 4.

If MNOL is less-than N; continue to Step 3.

0.0 {0§0::1§0: 1.0
4.0 20 OO 4.0
1.0 [0f0: 50 3.0

[A] =

MNOL = 3 is NOT greater-than equal-to N = 4
Matrix [A] is NOT Converged
Clear ALL lines & Repeat Step 3

Hungarian Algorithm Steps

m Step 3 - Cover ALL zeros with the MNOL drawn
through columns and rows (lteration #2).

[A] = |

Cover Column 3 with a line
Cover Column 2 with a line
Cover Row 1 with a line

Cover Column 1 with a line

Hungarian Algorithm Steps

m Step 3.1 - Compute the MUN in the matrix.
Determine the smallest entry not covered by any line (MUN = 1.0)
Subtract the MUN from each uncovered value
Add the MUN to each value covered by the two intersecting lines

Rectangles denotes added entries
Q Ovals denotes subtracted entries

Hungarian Algorithm Steps

m Step 3.2 - Compute the MNOL in the Matrix.

If MNOL greater-than or equal-to the Matrix [A] Dimension
then the Matrix is converged; continue to Step 4.

If MNOL is less-than N; continue to Step 3.

[A] = |

MNOL = 4 is greater-than equal-to N = 4
Matrix [A] is Converged
Continue to Step 4

Hungarian Algorithm Steps

m Step 4 - Optimum Assignment (Maximum)

Starting with the top row and work your way downwards as you make
assignments.

An assignment can be uniquely made when there is exactly one zero in

a row.
1.0 3.0 2.0 {0.0] 1.0 2.0 3.0 {0.0]
-10.0: 0.0 1.0 0.0 =12.0{50 40 0.0
[AT=12% 2.010.0: 3.0 @ [AT= 15 6.0 18.01 0.0
1.0 {0.0{ 5.0° 2.0 3.0 {7.0/ 20 0.0

Assignment Score
Worker #1 assigned to Job #4 0.0
Worker #2 assigned to Job #1 2.0
Worker #3 assigned to Job #3 8.0
Worker #4 assigned to Job #2 7.0

Optimum Maximum Score: 17.0

