W

Transportation Research Board (TRB) Conference

Unloading and Pre-Marshalling Algorithms with Java Computer Animation for
Terminal Yard Operations January 10-14, 2016

Java
OLD DOMINION

Ivan Makohon Mecit Cetin (corresponding author) Manwo Ng Duc T. Nguyen
Graduate Student* Associate Professor* Assistant Professor* Professor*
Modeling, Simulation & Visualization Civil & Environmental Engineering Department of Information CEE and MSVE Departments
Engineering (MSVE) Department (CEE) Department Technology and Decision Sciences Phone: 757-683-3761

I D EA FUSION Phone: 757-481-0832 Phone: 757-683-6700 Phone: 757-683-6665 dnguyen@odu.edu
imako001@odu.edu mcetin@odu.edu mng@odu.edu

*0ld Dominion University

0

D)

0

Abstract

Unloading and pre-marshalling (or reshuffling) operations have been considered as
basic/important tasks in port terminals’ activities, since the economic impacts can be
significant. The primary goal for this paper is to develop simple heuristic unloading and pre-
marshalling algorithms. Detailed explanations for the proposed algorithms are given in the
form of step-by-step numerical procedures, so that the reported results can be reproduced
by the readers. Several numerical examples (including the ones considered by other
researchers) are used to validate the proposed unloading and pre-marshalling algorithms.

A secondary goal for this paper is to develop a user-friendly and easy-to-use Java Graphical
User Interface (GUI) software application that provides precise and clear step-by-step
instructions with visual animation and voice for the unloading and pre-marshalling
algorithms for Terminal Container Yard operations. The developed Java software can be
used as an additional/educational tool that would serve both academia students and
transportation professionals in solving any complex dynamic Terminal Container Yard layout
visually with provided steps to show the “final/optimal” results. A demo video of the both
the unloading and pre-marshalling algorithm’s animation and result can be viewed
online from any web browser using the website provided in reference [4].

Keywords: Terminal, Yard, Cargo, Container, Unloading, Pre-marshalling, Reshuffling,
Algorithm, Java, Animation

Overview (1 of 2)

< Container Terminal Yard Operations:

Quay Crane (Port-side) unload cargo containers from docked vessels pier side to
horizontal transport trucks which transports them to the container yards.

Container Yards are storage yards for cargo containers.
Container trucks transport cargo containers to their destinations.

Quay Crane (Port Side)

[|

Contpiner Yard

|

EE Transport

Containe

: Yard Crane
(Horizontal) r Truck

Overview (1 of 2)

< Container Terminal Yard:
Crane The yard crane that services bays.

Bay Contains a set of container stacks.
Stack Contains stackable cargo containers up to MNCPS.
Tier Height (level) of the stack.

Contamer Yard

e==l== =

1

U

)
0’0

Introduction

Container Terminal Yards are an import storage point since it links the seaside with
landside transportation. It’s an important storage point for loading/unloading cargo
containers between vessels and vehicles (i.e. trucks or trains) for further distribution.

Increasing traffic of cargo container shipments around the world which is why critical
planning decision with great importance is needed for optimizing the terminal
container yard’s unloading and pre-marshalling (or reshuffling) for cargo containers
within the container yard.

Very similar to the Blocks World planning domain problem which consists of a finite
number of blocks stacked into columns. The goal is to turn the initial state into a goal
state with the minimal number of moves. This would save time in port operations
which would lead to significant economic gains.

Two algorithms (unloading and pre-marshalling) are revisited with the primary goal to
demonstrate simple heuristic algorithm for port operations to visually showing step-
by-step animation to solve for the unloading and pre-marshalling problem.

Unloading Algorithm

< The Unloading Algorithm approach is based upon having
the container stacks reshuffled to get to the priority
cargo container when a vehicle arrives.
When a vehicle arrives for pick up, the container stack is

then reshuffled to get to the priority cargo container so
that it can be unloaded onto the vehicle.

The container stacks remain the same until the next
vehicle arrives.

Unloading Algorithm (1 of 5)

Unloading Algorithm (2 of 5)

Unloading Algorithm (3 of 5)

Unloading Algorithm (4 of 5)

Unloading Algorithm (5 of 5)

Unloading Algorithm (1 of 4)

< Layout Validation: Determine if there’s enough empty
spaces to perform the algorithm.

If the number of available empty spaces (NAES) is greater-
than or equal to the number of empty spaces required
(NESR) minus 1. The NESR-1 should allow us to get to the
priority cargo container for removal.

If the number of container stack (NS) is greater-than 1
container stacks. Need at least 2 or more container stacks
to be able to do unloading. NAES should provide enough
empty spaces initially to get to the priority cargo container
if it’s on the bottom.

Unloading Algorithm (2 of 4)

< Step 0: Initialization
Initialize the Number of Stacks (NS)
Initialize the Maximum Number of Containers Per Stack (MNCPS)
Initialize the initial stack layout

Initialized variable for determining the number of spaces
available

< Step 1: Verify the Number of available spaces required (do
only once)
Simple check to determine if humber available spaces is greater-

than equal to the number of number of empty spaces required
(in our case we use MNCPS)

Unloading Algorithm (3 of 4)

< Step 2: Find next cargo container to be removed

< Step 2.1: Determine if cargo container is on top of the stack
If stacks are empty
< We are done.
Else if next cargo container to be removed is on top
< Proceed to Step 4: Remove Container
Else if next cargo container not on top
< Proceed to Step 3: Move Container
Proceed to Step 2: Find next cargo container to be removed

Unloading Algorithm (4 of 4)

< Step 3: Move Container

Determine the stack with the highest-lowest cargo
container

Move cargo container to that stack

< Step 4: Remove Container
Remove (pop) the cargo container from the stack

Pre-Marshalling (Reshuffling) Algorithm

< The pre-marshalling (reshuffling) algorithm approach is
based on having the container stacks ordered before the
first vehicle arrives so that the priority container is on
top.
No more reshuffling is required since the container stacks

are reshuffled with the priority containers on top prior to
the first vehicle arriving.

As each vehicle arrives, the priority container is on top and
is unloading onto the vehicle.

Pre-Marshalling Algorithm (1 of 3)

Pre-Marshalling Algorithm (2 of 3)

Pre-Marshalling Algorithm (3 of 3)

Pre-Marshalling Algorithm (1 of 4)

< Layout Validation: Determine if there’s enough empty
spaces to perform the algorithm.

If the number of available empty spaces (NAES) is greater-
than or equal to the number of empty spaces required
(NESR). Need NAES in order to do reshuffling without

removal.

If the number of container stacks (NS) is greater-than 2
container stacks. Need at least 3 or more container stacks
to be able to do reshuffling. Note: some layouts can be
solved without these validations for reshuffling, though
these verifications avoid deadlock cases.

Pre-Marshalling Algorithm (2 of 4)

< Step 0: Initialization
Initialize the Number of Stacks (NS)
Initialize the Maximum Number of Containers Per Stack (MNCPS)
Initialize the initial stack layout

Initialized variable for determining the number of spaces
available

< Step 1: Verify the Number of available spaces required (do
only once)
Simple check to determine if humber available spaces is greater-

than equal to the number of number of empty spaces required
(in our case we use MNCPS)

Pre-Marshalling Algorithm (3 of 4)

< Step 2: Reshuffle Stacks

Determine if all the stacks are in order, if so proceed to Step 4: Removing Containers
From Stacks.

Calculate costs for all stacks (determine the number of moves)

Find container with the lowest cost value (number of moves).

If cost value is greater-than 0.0

< Perform Step 2.1

Else if cost is equal-to 0.0

< Perform Step 3: Move Containers (info is provided from Calculating Costs for all stacks)
Perform Step 2: Reshuffle Stacks (Recursion)

< Step 2.1: Determine if there’s a Stack with One container that can be moved

If so then try to find a stack that’s in order with a container with the highest-lowest
crcl)ntaineé tgat this container being moved. Also, check stack to determine if it’s less-
than MNCPS.

Pre-Marshalling Algorithm (4 of 4)

< Step 3: Move Container

Move cargo container to container stack. Basically,
removes (pops) the cargo container from the existing
(source) stack and adds (pushes) it to the new (destination)

stack.
< Step 4: Removing Containers From Stacks

Stack should be in order (lowest (on top) and highest (on
bottom)).

Loop through container stack and find the next lowest
cargo container to be removed.

Java Computer Animation (1 of 3)

< A user-friendly and easy-to-use Java Graphical User
Interface (GUI) software application that provides precise
and clear step-by-step instructions with visual animation
and voice for the unloading and pre-marshalling
algorithms for Terminal Container Yard operations.

4

» The software can be used as an additional/educational
tool that would serve both academia students and
transportation professionals in solving any complex
dynamic Terminal Container Yard layout visually with
provided steps to show the “final/optimal” results.

Java Computer Animation (2 of 3)

rmi (Yard) ey
1l—
Terminal (Yard) Layout Input Controls Terminal (Yard) Layout Tutorial Lesson Controls
2) = g ® 5
il
| | Terminal (Yard) Layout View (Animated Layout) Algorithm Step 6
MNCPS: 3
Ns:3 Fial
NM:
NR: 0
H H H Terminal (Yard) Layout View (Initial Layout)
Stack 1 Stack 2 Stack 3 8
STATUS: Layout Valid - Enough Available Empty Spaces =
; e :
cubls b
= i || |
a =

MAIN Graphical User Interface (GUI):

1. Menu Buttons (File, Preferences, and Help) 5. Lesson Control Buttons
2. Input Control Buttons 6. Algorithm Step
3. Terminal Yard Layout (Animation View) 7. Tutorial Information View

4. Status View 8. Terminal Yard Layout (Initial View)

Java Computer Animation (3 of 3)

& | 2 =5
Terminal Yard Editor GUI:
1. Display & Information View 4. Visualization Editor View
2. Editor Buttons 5. Confirmation/Close Button

3. Zoom Buttons

Unloading Algorithm Demo

=
File

Terminal (Yard) Tutorial View

Preferences Help

Terminal (Yard) Layout Input Controls Terminal (Yard) Layout Tutorial Lesson Controls

T - T | L& . ® |

Terminal (Yard) Layout View (Animated Layout) Algorithm Step
MNCPS: 3 Tutorial Information
NS: 3
NM: 0
NR: 0
Terminal (Yard) Layout View (Initial Layout)
Stack 1 Stack 2 Stack 3
STATUS: =
(4] — >
Stack 1 Stack 2 Stack 3 =
Slow Hormal Fast 4] ¥

Ready

Pre-Marshalling Algorithm Demo

%
File Preferences Help
[Terminal (Yard) Tutorial View |

Terminal (Yard) Layout Input Controls Terminal (Yard) Layout Tutorial Lesson Controls

Terminal (Yard) Layout View (Animated Layout) Algorithm Step

MNCPS: 3 Tutorial Information

NS:3

NM: 0

NR: 0

Terminal (Yard) Layout View (Initial Layout)
[l
Stack 1 Stack 2 Stack 3

STATUS: =
< = ;1

- 7 = Stack 1 Stack 2 Stack 3 =
Slow Normal Fast [o

Ready

Terminal Yard Editor Demo

=
File

Terminal (Yard) Tutorial View

Preferences Help

Terminal (Yard) Layout Input Controls Terminal (Yard) Layout Tutorial Lesson Controls

T - T | L8 . 8 |

Terminal (Yard) Layout View (Animated Layout) Algorithm Step
MNCPS: 3 Tutorial Information
NS:3
NM: 0
NR: 0
Terminal (Yard) Layout View (Initial Layout)
Stack 1 Stack 2 Stack 3
STATUS: =
[4] _ >
Stack 1 Stack 2 Stack 3 =
Slow Hormal Fast A1 N

Ready

Experimental Results

Stack 1 Stack 2 Stack 3 Stack 4
Humber of Moves: T .
Number of Moves: 4
Stack 1 Stack 2 Stack 3 Number of Removes: 9 Number of Removes: B
MNumber of Moves: 3 Order of Removak [1, 2,3, 4,5,6,7, 8, 9] Order of Removalk: [1, 2, 3, 4, 5, 6, 7, 8]
Humber of Remowes: 7
Order of Removal: [1, 2, 3,4, 5,6, 7]
10 k-]
B [
1 3
Stack 1 Stack 2 Stack 3 Stack 4
Number of Moves: 9 stack 1 Stack 2
HNumiber of Removes: 10 .
Order of Remowal: [1, 2, 3, 4, 5,6, T, 8,9, 10] Stack 1 Stack 2 Stack 3 ::mx: :: :::131 5
Number of Moves: 39 e ey

NHumber of Removes: 16
Order of Removal: [1,2, 3, 4.5, 6,7,8,9, 10, 11,12, 13, 14, 15, 16]

Questions/Comments

Acronyms

R NS Number of Stacks

R MNCPS Maximum Number of Containers Per Stack

o NAES Number of Available Empty Spaces (a.k.a. NAES = TNS - NCC)
o NESR Number of Empty Spaces Required (a.k.a. NESR = MNCPS)

o NCC Number of Cargo Containers

2 TNS Total Number of Spaces (a.k.a. TNS = M x N)

R NM Number of Moves

o NR Number of Removes

o M The number of Rows (a.k.a. MNCPS)

> N The number of Columns (a.k.a. NS)

Extra Slides

Additional Slides

Pre-Marshalling Algorithm

Pre-Marshalling (Reshuffling)
(Examples)

HW Set #1 - Problem 6 Special Team’s Project

< Referring to the instructor’s (26 page) notes on “Port Container
Terminals”, and based on the explanation/discussion and illustrated
example shown on page 17-26 (Pre-marshalling, or Reshuffling
algorithm):
Write a “General” step-by-step computer program (any computer language) for
the reshuffling operations.

Solve for the initial storage layout: Solve for the initial storage layout:
NS =4 % NS =4
MNCPS = b_max = 3 < MNCPS =b_max =3
NS > MNCPS < NS > MNCPS
a aq 9
8 2 6 8 2 6
1 7 5 3 1 7 5 3

NS = Number of Stacks
MNCPS = Maximum Number of Containers Per Stack

Y HW Set #1 - Problem 6 (h) - Solution

Solve for the initial storage layout:

NS =4 4

MNCPS = b_max = 3 8 2 6

NS > MNCPS 1 7 5 3
Iteration # 1 % |teration # 2

Moved Container 6 to Stack 2 Moved Container 3 to Stack 2

* * a * | * [3] a *
g8 [e] 2 * \[_‘ 8 6 2 *
1 7 5 3 / 1 7 5 *

Y HW Set #1 - Problem 6 (h) - Solution

% |teration # 3 % |teration # 4
Moved Container 8 to Stack 4 Moved Container 4 to Stack 4
% 3 4 * | % 3 * *
% 6 2 % \[_‘ / * 6 2 E
1 7 5 | 1 7 5 8
% |teration #5 % lteration # 6
Removed Container 1 Removed Container 2
* 3 * * | * 3 % *
% 7 5 8 4 % 7 5 8

* = Denotes empty space

Y HW Set #1 - Problem 6 (h) - Solution

\/
0’0

\/
0’0

Iteration # 7
Removed Container 3

* * *
* 6 *
* 7 5

Iteration # 9
Removed Container 5

* * E 3
* 6 s
* 7 *

* = Denotes empty space

% |teration # 8
Removed Container 4

[y % * *
- 3 6 %k
L) [+ s *

% |teration # 10
Removed Container 6

| % * *
[. oe * %
\—!/ * 7 *

*

0 *

*

0 *

Y HW Set #1 - Problem 6 (h) - Solution

Iteration # 11 % |teration # 12
Removed Container 7 Removed Container 8
* * E 3 * y E 3 * * E 3

* = Denotes empty space

Y HW Set #1 - Problem 6 (h) - Solution

Solve for the initial storage layout:

NS =4 4 9
MNCPS = b_max = 3 8 2 6
NS > MNCPS 1 7 5 3
Iteration # 1 % lteration # 2
Moved Container 4 to Stack 2 Moved Container 8 to Stack 3
* * * 9 , * * 9
8 E 2 G \[_‘ / * 4 2 6
1 7 5 3 ' 1 7 5 3

Y HW Set #1 - Problem 6 (h) - Solution

% lteration # 3 % |teration # 4
Moved Container 1 to Stack 2 Moved Container 8 to Stack 1
c 3 m 8 9 | 3 1 3 9
x 4 2 6 [x4 2 6
% |teration #5 % lteration # 6
Moved Container 1 to Stack 1 Moved Container 9 to Stack 1
* * * 9 , [a] =« * *
1] a4 2 6 L‘) 1 a4 2 6
8 7 5 3 | 8 7 5 3

* = Denotes empty space

Y HW Set #1 - Problem 6 (h) - Solution

s |teration # 7 % |teration # 8
Moved Container 6 to Stack 2 Moved Container 3 to Stack 3

8 7 5 3 8 7 5 *
% lteration # 9 % lteration # 10
Moved Container 9 to Stack 4 Moved Container 6 to Stack 4
% 6 3 % | * % 3 %
1 a4 2 * L‘ oojr a2 [€]
8 7 s [2] | 8 7 5 9

* = Denotes empty space

Y HW Set #1 - Problem 6 (h) - Solution

s lteration # 11 % |teration # 12
Moved Container 3 to Stack 4 Removed Container 1

* % * [3] , * * % 3
1 4 2 6 L‘) x 4 2 6
8 7 5 9 8 7 5 9
% lteration # 13 % lteration # 14
Removed Container 2 Removed Container 3
* % * 3 | % % =S %

* = Denotes empty space

Y HW Set #1 - Problem 6 (h) - Solution

s lteration # 15 % lteration # 16
Removed Container 4 Removed Container 5
* * * * | * * * *
* % x 6 [R 6
8 7 5 9 8 7 * 9
% |teration # 17 % |teration # 18
Removed Container 6 Removed Container 7
% * * % | % % % %

* = Denotes empty space

Y HW Set #1 - Problem 6 (h) - Solution

Iteration # 19 % lteration # 20
Removed Container 8 Removed Container 9
* * %k = 3 | * * %x *

* = Denotes empty space

< Solve for the initial storage layout

NS =4
MNCPS = b_max = 3
NS > MNCPS
4
8 2 6
1 7 5 3

< Results:
Number of Moves: 4
Number of Removes: 8
Remove [Order]: 1, 2, 3,4,5,6,7,8
Start Time: 2015.04.18.17.022.14
End Time: 2015.04.18.17.022.14

L)

Solve for the initial storage layout

NS =4
MNCPS =b_max = 3
NS > MNCPS
4 9
8 2 6
1 7 5 3
Results:

Number of Moves: 11

Number of Removes: 9

Remove [Order]: 1, 2, 3,4,5,6,7,8,9
Start Time: 2015.04.18.17.023.12

End Time: 2015.04.18.17.023.12

Unloading Algorithm

Unloading
(Examples)

HW Set #1 - Problem 5 Special Team’s Project

&

< Referring to the instructor’s (26 page) notes on “Port Container

Terminals”, and based on the explanation/discussion and illustrated
example shown on page 13 (see Figure 11: Unloading Operations, and
based on your results in Problem 4a,b,c):

Write a “General” step-by-step computer program (any computer language) for
the unloading operations.

Solve for the initial storage layout Solve for the initial storage layout
o NS=4 <« NS=3
< MNCPS =b_max =3 < MNCPS = b_max = 4
< NS > MNCPS < NS < MNCPS
> 2
8 ri 4 6 7 a
1 5 3 6
1 5 3

NS = Number of Stacks
MNCPS = Maximum Number of Containers Per Stack

Y HW Set #1 - Problem 6 (e) - Solution

< Solve for the initial storage layout

NS =4 2

MNCPS = b_max = 3 a8 7 4

NS > MNCPS 1 5 3 B

% |teration # 1 % |teration # 2

GOAL: Remove Container 1 Removed Container 1

Moved Container 8 to Stack 4
* 2 t 3 % | % 2 * *
% 7 4q 8| [/ % 7 4 8
1 5 3 6 | % 5 3 6

* = Denotes empty space

Y HW Set #1 - Problem 6 (e) - Solution

% |teration # 3 % |teration # 4
Removed Container 2 GOAL: Remove Container 3
Moved Container 4 to Stack 1

* * * * | *® * * *
¥ 7 4 g | Dlx7 A 8
% lteration # 5 % lteration # 6
Removed Container 3 Removed Container 4
% * % % | % * % E 3
* 7 * 8 L‘ K 7 * 8
a 5 * 6 % 5 % 6

* = Denotes empty space

Y HW Set #1 - Problem 6 (e) - Solution

s |teration # 7 % lteration # 8
GOAL: Remove Container 5 Removed Container 5
Moved Container 7 to Stack 1

E 3 E 3 * %k | %* * * %
* * * 8 { / * % * 8
5 % 6 - * % p
% |teration # 9 % lteration # 10
GOAL: Remove Container 6 Removed Container 6
Moved Container 8 to Stack 2
* * * t 3 | * E 3 * *
*® % % * \L‘// * * * *
7 % 6 | 7 8 % %

* = Denotes empty space

Y HW Set #1 - Problem 6 (e) - Solution

Iteration # 12
Removed Container 8

Iteration # 11
Removed Container 7

% ¥ * * | % % % *
* * * % [L * % *
% 8 % * * 5 * *

* = Denotes empty space

< Solve for the initial storage layout
NS =3
MNCPS = b_max = 4
NS < MNCPS

% |teration # 1 X
GOAL: Remove Container 1
Moved Container 6 to Stack 4

* = Denotes empty space

2
6 7
1 5

Iteration # 2

Removed Container 1

* 2 6
* 7 q
* 5 3

% |teration # 3 % |teration # 4
Removed Container 2 GOAL: Remove Container 3
Moved Container 6 to Stack 1

& ES 6 * * *
|
% 7 4 [) * 7 4
* 5 3 [e]l] s 3
% |teration #5 % lteration # 6
GOAL: Remove Container 3 Removed Container 3

Moved Container 4 to Stack 2

* E * % a %
% 7 * L‘ % 7 %
6 5 3 / 6 5 %

s lteration #7
Removed Container 4

* * *
* 7 *
6 5 *

% |teration # 9
Removed Container 5

% |teration # 8
GOAL: Remove Container 5
Moved Container 7 to Stack 3

% |teration # 10
Removed Container 6

* * %
|

[| * * %
/ % % 7

@ HW Set #1 - Problem 6 (f) - Solution

% |Iteration # 11
Removed Container 7

< Solve for the initial storage layout

NS =4
MNCPS = b_max = 3
NS > MNCPS
2
3 r 4
1 L 3 6

< Results:
Number of Moves: 4
Number of Removes: 8
Remove [Order]: 1, 2, 3,4,5,6,7, 8
Start Time: 2015.04.18.15.022.43
End Time: 2015.04.18.15.022.43

< Solve for the initial storage layout

NS =3
MNCPS =b_max =4
NS < MNCPS
2
[7 4q
1 5 3

< Results:
Number of Moves: 4
Number of Removes: 7
Remove [Order]: 1, 2, 3, 4,5, 6,7
Start Time: 2015.04.18.15.027.13
End Time: 2015.04.18.15.027.13

