
Transportation Research Board (TRB) Conference

Unloading and Pre-Marshalling Algorithms with Java Computer Animation for

Terminal Yard Operations January 10-14, 2016

Ivan Makohon

Graduate Student*

Modeling, Simulation & Visualization

Engineering (MSVE) Department

Phone: 757-481-0832

imako001@odu.edu

Mecit Cetin (corresponding author)

Associate Professor*

Civil & Environmental Engineering

(CEE) Department

Phone: 757-683-6700

mcetin@odu.edu

Duc T. Nguyen

Professor*

CEE and MSVE Departments

Phone: 757-683-3761

dnguyen@odu.edu

*Old Dominion University

Manwo Ng

Assistant Professor*

Department of Information

Technology and Decision Sciences

Phone: 757-683-6665

mng@odu.edu

Abstract

 Unloading and pre-marshalling (or reshuffling) operations have been considered as
basic/important tasks in port terminals’ activities, since the economic impacts can be
significant. The primary goal for this paper is to develop simple heuristic unloading and pre-
marshalling algorithms. Detailed explanations for the proposed algorithms are given in the
form of step-by-step numerical procedures, so that the reported results can be reproduced
by the readers. Several numerical examples (including the ones considered by other
researchers) are used to validate the proposed unloading and pre-marshalling algorithms.

 A secondary goal for this paper is to develop a user-friendly and easy-to-use Java Graphical
User Interface (GUI) software application that provides precise and clear step-by-step
instructions with visual animation and voice for the unloading and pre-marshalling
algorithms for Terminal Container Yard operations. The developed Java software can be
used as an additional/educational tool that would serve both academia students and
transportation professionals in solving any complex dynamic Terminal Container Yard layout
visually with provided steps to show the “final/optimal” results. A demo video of the both
the unloading and pre-marshalling algorithm’s animation and result can be viewed
online from any web browser using the website provided in reference [4].

 Keywords: Terminal, Yard, Cargo, Container, Unloading, Pre-marshalling, Reshuffling,
Algorithm, Java, Animation

Overview (1 of 2)

 Container Terminal Yard Operations:

 Quay Crane (Port-side) unload cargo containers from docked vessels pier side to

horizontal transport trucks which transports them to the container yards.

 Container Yards are storage yards for cargo containers.

 Container trucks transport cargo containers to their destinations.

Yard Crane

Container Yard

Quay Crane (Port Side)

Vessel
Transport

(Horizontal)

Containe

r Truck

Overview (1 of 2)

 Container Terminal Yard:

 Crane The yard crane that services bays.

 Bay Contains a set of container stacks.

 Stack Contains stackable cargo containers up to MNCPS.

 Tier Height (level) of the stack.

Legend

Bay

Stack

Tier

Container Yard

Introduction

 Container Terminal Yards are an import storage point since it links the seaside with
landside transportation. It’s an important storage point for loading/unloading cargo
containers between vessels and vehicles (i.e. trucks or trains) for further distribution.

 Increasing traffic of cargo container shipments around the world which is why critical
planning decision with great importance is needed for optimizing the terminal
container yard’s unloading and pre-marshalling (or reshuffling) for cargo containers
within the container yard.

 Very similar to the Blocks World planning domain problem which consists of a finite
number of blocks stacked into columns. The goal is to turn the initial state into a goal
state with the minimal number of moves. This would save time in port operations
which would lead to significant economic gains.

 Two algorithms (unloading and pre-marshalling) are revisited with the primary goal to
demonstrate simple heuristic algorithm for port operations to visually showing step-
by-step animation to solve for the unloading and pre-marshalling problem.

Unloading Algorithm

 The Unloading Algorithm approach is based upon having

the container stacks reshuffled to get to the priority

cargo container when a vehicle arrives.

 When a vehicle arrives for pick up, the container stack is

then reshuffled to get to the priority cargo container so

that it can be unloaded onto the vehicle.

 The container stacks remain the same until the next

vehicle arrives.

Unloading Algorithm (1 of 5)

8

1 7 5

2

4

6

3 7 5

2

4

6

3

81

1. Move 8 to Stack 2

2. Unload 1

NM = 1, NR = 1

Initial Layout

NS = 4, MNCPS = 3

NS > MNCPS

NM = 0, NR = 0

Unloading Algorithm (2 of 5)

7 54

8

6

3
7

6

34
2 8

5

3. Move 4 to Stack 1

4. Unload 2

NM = 2, NR = 2

5. Move 6 to Stack 2

6. Unload 3

NM = 3, NR = 3

Unloading Algorithm (3 of 5)

7

6

85
7

6

4 8

7. Unload 4

NM = 3, NR = 4

8. Unload 5

NM = 3, NR = 5

5

Unloading Algorithm (4 of 5)

8
7

7
6

9. Unload 6

NM = 3, NR = 6

10.Move 8 to Stack 1

11.Unload 7

NM = 4, NR = 7

8

Unloading Algorithm (5 of 5)

8

12.Unload 8

NM = 4, NR = 8

13.Done Unloading

NM = 4, NR = 8

Unloading Algorithm (1 of 4)

 Layout Validation: Determine if there’s enough empty
spaces to perform the algorithm.

 If the number of available empty spaces (NAES) is greater-
than or equal to the number of empty spaces required
(NESR) minus 1. The NESR-1 should allow us to get to the
priority cargo container for removal.

 If the number of container stack (NS) is greater-than 1
container stacks. Need at least 2 or more container stacks
to be able to do unloading. NAES should provide enough
empty spaces initially to get to the priority cargo container
if it’s on the bottom.

Unloading Algorithm (2 of 4)

 Step 0: Initialization

 Initialize the Number of Stacks (NS)

 Initialize the Maximum Number of Containers Per Stack (MNCPS)

 Initialize the initial stack layout

 Initialized variable for determining the number of spaces
available

 Step 1: Verify the Number of available spaces required (do
only once)

 Simple check to determine if number available spaces is greater-
than equal to the number of number of empty spaces required
(in our case we use MNCPS)

Unloading Algorithm (3 of 4)

 Step 2: Find next cargo container to be removed

 Step 2.1: Determine if cargo container is on top of the stack

 If stacks are empty

 We are done.

 Else if next cargo container to be removed is on top

 Proceed to Step 4: Remove Container

 Else if next cargo container not on top

 Proceed to Step 3: Move Container

 Proceed to Step 2: Find next cargo container to be removed

Unloading Algorithm (4 of 4)

 Step 3: Move Container

 Determine the stack with the highest-lowest cargo

container

 Move cargo container to that stack

 Step 4: Remove Container

 Remove (pop) the cargo container from the stack

Pre-Marshalling (Reshuffling) Algorithm

 The pre-marshalling (reshuffling) algorithm approach is

based on having the container stacks ordered before the

first vehicle arrives so that the priority container is on

top.

 No more reshuffling is required since the container stacks

are reshuffled with the priority containers on top prior to

the first vehicle arriving.

 As each vehicle arrives, the priority container is on top and

is unloading onto the vehicle.

Pre-Marshalling Algorithm (1 of 3)

8

1 7 5

2

4

6

3 7 5

2

4

3

1. Move 6 to Stack 2

NM = 1, NR = 0

Initial Layout

NS = 4; MNCPS = 3

NS > MNCPS

NM = 0, NR = 0

8

1

6

Pre-Marshalling Algorithm (2 of 3)

5

2

4

3. Move 8 to Stack 4

NM = 3, NR = 0

2. Move 3 to Stack 2

NM = 2, NR = 0

3

1 7

6

85

2

4

8

1 7

6

3

Pre-Marshalling Algorithm (3 of 3)

1 7

6

3

4

8

5. Done Reshuffling

6. Begin Unloading

NM = 4, NR = 0  8

4. Move 4 to Stack 4

NM = 4, NR = 0

5

3

1 7

6 2

8

4

5

2

Pre-Marshalling Algorithm (1 of 4)

 Layout Validation: Determine if there’s enough empty
spaces to perform the algorithm.

 If the number of available empty spaces (NAES) is greater-
than or equal to the number of empty spaces required
(NESR). Need NAES in order to do reshuffling without
removal.

 If the number of container stacks (NS) is greater-than 2
container stacks. Need at least 3 or more container stacks
to be able to do reshuffling. Note: some layouts can be
solved without these validations for reshuffling, though
these verifications avoid deadlock cases.

Pre-Marshalling Algorithm (2 of 4)

 Step 0: Initialization

 Initialize the Number of Stacks (NS)

 Initialize the Maximum Number of Containers Per Stack (MNCPS)

 Initialize the initial stack layout

 Initialized variable for determining the number of spaces
available

 Step 1: Verify the Number of available spaces required (do
only once)

 Simple check to determine if number available spaces is greater-
than equal to the number of number of empty spaces required
(in our case we use MNCPS)

Pre-Marshalling Algorithm (3 of 4)

 Step 2: Reshuffle Stacks

 Determine if all the stacks are in order, if so proceed to Step 4: Removing Containers
From Stacks.

 Calculate costs for all stacks (determine the number of moves)

 Find container with the lowest cost value (number of moves).

 If cost value is greater-than 0.0

 Perform Step 2.1

 Else if cost is equal-to 0.0

 Perform Step 3: Move Containers (info is provided from Calculating Costs for all stacks)

 Perform Step 2: Reshuffle Stacks (Recursion)

 Step 2.1: Determine if there’s a Stack with One container that can be moved

 If so then try to find a stack that’s in order with a container with the highest-lowest
container that this container being moved. Also, check stack to determine if it’s less-
than MNCPS.

Pre-Marshalling Algorithm (4 of 4)

 Step 3: Move Container

 Move cargo container to container stack. Basically,

removes (pops) the cargo container from the existing

(source) stack and adds (pushes) it to the new (destination)

stack.

 Step 4: Removing Containers From Stacks

 Stack should be in order (lowest (on top) and highest (on

bottom)).

 Loop through container stack and find the next lowest

cargo container to be removed.

Java Computer Animation (1 of 3)

 A user-friendly and easy-to-use Java Graphical User

Interface (GUI) software application that provides precise

and clear step-by-step instructions with visual animation

and voice for the unloading and pre-marshalling

algorithms for Terminal Container Yard operations.

 The software can be used as an additional/educational

tool that would serve both academia students and

transportation professionals in solving any complex

dynamic Terminal Container Yard layout visually with

provided steps to show the “final/optimal” results.

Java Computer Animation (2 of 3)

MAIN Graphical User Interface (GUI):

1. Menu Buttons (File, Preferences, and Help)

2. Input Control Buttons

3. Terminal Yard Layout (Animation View)

4. Status View

5. Lesson Control Buttons

6. Algorithm Step

7. Tutorial Information View

8. Terminal Yard Layout (Initial View)

Java Computer Animation (3 of 3)

Terminal Yard Editor GUI:

1. Display & Information View

2. Editor Buttons

3. Zoom Buttons

4. Visualization Editor View

5. Confirmation/Close Button

Unloading Algorithm Demo

Pre-Marshalling Algorithm Demo

Terminal Yard Editor Demo

Experimental Results

Questions/Comments

Acronyms

 NS Number of Stacks

 MNCPS Maximum Number of Containers Per Stack

 NAES Number of Available Empty Spaces (a.k.a. NAES = TNS – NCC)

 NESR Number of Empty Spaces Required (a.k.a. NESR = MNCPS)

 NCC Number of Cargo Containers

 TNS Total Number of Spaces (a.k.a. TNS = M x N)

 NM Number of Moves

 NR Number of Removes

 M The number of Rows (a.k.a. MNCPS)

 N The number of Columns (a.k.a. NS)

Extra Slides

Additional Slides

Pre-Marshalling Algorithm

Pre-Marshalling (Reshuffling)

(Examples)

HW Set #1 – Problem 6 Special Team’s Project

 Referring to the instructor’s (26 page) notes on “Port Container

Terminals”, and based on the explanation/discussion and illustrated

example shown on page 17-26 (Pre-marshalling, or Reshuffling

algorithm):

 Write a “General” step-by-step computer program (any computer language) for

the reshuffling operations.

 Solve for the initial storage layout:

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

 Solve for the initial storage layout:

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

NS = Number of Stacks

MNCPS = Maximum Number of Containers Per Stack

HW Set #1 – Problem 6 (h) - Solution

 Solve for the initial storage layout:

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

 Iteration # 1

 Moved Container 6 to Stack 2

 Iteration # 2

 Moved Container 3 to Stack 2

HW Set #1 – Problem 6 (h) - Solution

* = Denotes empty space

 Iteration # 3

 Moved Container 8 to Stack 4

 Iteration # 4

 Moved Container 4 to Stack 4

 Iteration # 5

 Removed Container 1

 Iteration # 6

 Removed Container 2

HW Set #1 – Problem 6 (h) - Solution

* = Denotes empty space

 Iteration # 7

 Removed Container 3

 Iteration # 8

 Removed Container 4

 Iteration # 9

 Removed Container 5

 Iteration # 10

 Removed Container 6

HW Set #1 – Problem 6 (h) - Solution

* = Denotes empty space

 Iteration # 11

 Removed Container 7

 Iteration # 12

 Removed Container 8

HW Set #1 – Problem 6 (h) - Solution

 Solve for the initial storage layout:

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

 Iteration # 1

 Moved Container 4 to Stack 2

 Iteration # 2

 Moved Container 8 to Stack 3

HW Set #1 – Problem 6 (h) - Solution

* = Denotes empty space

 Iteration # 3

 Moved Container 1 to Stack 2

 Iteration # 4

 Moved Container 8 to Stack 1

 Iteration # 5

 Moved Container 1 to Stack 1

 Iteration # 6

 Moved Container 9 to Stack 1

HW Set #1 – Problem 6 (h) - Solution

* = Denotes empty space

 Iteration # 7

 Moved Container 6 to Stack 2

 Iteration # 8

 Moved Container 3 to Stack 3

 Iteration # 9

 Moved Container 9 to Stack 4

 Iteration # 10

 Moved Container 6 to Stack 4

HW Set #1 – Problem 6 (h) - Solution

* = Denotes empty space

 Iteration # 11

 Moved Container 3 to Stack 4

 Iteration # 12

 Removed Container 1

 Iteration # 13

 Removed Container 2

 Iteration # 14

 Removed Container 3

HW Set #1 – Problem 6 (h) - Solution

* = Denotes empty space

 Iteration # 15

 Removed Container 4

 Iteration # 16

 Removed Container 5

 Iteration # 17

 Removed Container 6

 Iteration # 18

 Removed Container 7

HW Set #1 – Problem 6 (h) - Solution

* = Denotes empty space

 Iteration # 19

 Removed Container 8

 Iteration # 20

 Removed Container 9

Results

 Solve for the initial storage layout

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

 Solve for the initial storage layout

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

 Results:

 Number of Moves: 4

 Number of Removes: 8

 Remove [Order]: 1, 2, 3, 4, 5, 6, 7, 8

 Start Time: 2015.04.18.17.022.14

 End Time: 2015.04.18.17.022.14

 Results:

 Number of Moves: 11

 Number of Removes: 9

 Remove [Order]: 1, 2, 3, 4, 5, 6, 7, 8, 9

 Start Time: 2015.04.18.17.023.12

 End Time: 2015.04.18.17.023.12

Unloading Algorithm

Unloading

(Examples)

HW Set #1 – Problem 5 Special Team’s Project

 Referring to the instructor’s (26 page) notes on “Port Container

Terminals”, and based on the explanation/discussion and illustrated

example shown on page 13 (see Figure 11: Unloading Operations, and

based on your results in Problem 4a,b,c):

 Write a “General” step-by-step computer program (any computer language) for

the unloading operations.

 Solve for the initial storage layout

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

 Solve for the initial storage layout

 NS = 3

 MNCPS = b_max = 4

 NS < MNCPS

NS = Number of Stacks

MNCPS = Maximum Number of Containers Per Stack

 Iteration # 1

 GOAL: Remove Container 1

 Moved Container 8 to Stack 4

 Iteration # 2

 Removed Container 1

HW Set #1 – Problem 6 (e) - Solution

 Solve for the initial storage layout

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

* = Denotes empty space

HW Set #1 – Problem 6 (e) - Solution

* = Denotes empty space

 Iteration # 3

 Removed Container 2

 Iteration # 4

 GOAL: Remove Container 3

 Moved Container 4 to Stack 1

 Iteration # 5

 Removed Container 3

 Iteration # 6

 Removed Container 4

HW Set #1 – Problem 6 (e) - Solution

* = Denotes empty space

 Iteration # 7

 GOAL: Remove Container 5

 Moved Container 7 to Stack 1

 Iteration # 8

 Removed Container 5

 Iteration # 9

 GOAL: Remove Container 6

 Moved Container 8 to Stack 2

 Iteration # 10

 Removed Container 6

HW Set #1 – Problem 6 (e) - Solution

* = Denotes empty space

 Iteration # 11

 Removed Container 7

 Iteration # 12

 Removed Container 8

HW Set #1 – Problem 6 (f) - Solution

 Solve for the initial storage layout

 NS = 3

 MNCPS = b_max = 4

 NS < MNCPS

 Iteration # 1

 GOAL: Remove Container 1

 Moved Container 6 to Stack 4

 Iteration # 2

 Removed Container 1

* = Denotes empty space

HW Set #1 – Problem 6 (f) - Solution

 Iteration # 3

 Removed Container 2

 Iteration # 4

 GOAL: Remove Container 3

 Moved Container 6 to Stack 1

 Iteration # 5

 GOAL: Remove Container 3

 Moved Container 4 to Stack 2

 Iteration # 6

 Removed Container 3

HW Set #1 – Problem 6 (f) - Solution

 Iteration # 7

 Removed Container 4

 Iteration # 8

 GOAL: Remove Container 5

 Moved Container 7 to Stack 3

 Iteration # 9

 Removed Container 5

 Iteration # 10

 Removed Container 6

HW Set #1 – Problem 6 (f) - Solution

 Iteration # 11

 Removed Container 7

Results

 Solve for the initial storage layout

 NS = 4

 MNCPS = b_max = 3

 NS > MNCPS

 Solve for the initial storage layout

 NS = 3

 MNCPS = b_max = 4

 NS < MNCPS

 Results:

 Number of Moves: 4

 Number of Removes: 8

 Remove [Order]: 1, 2, 3, 4, 5, 6, 7, 8

 Start Time: 2015.04.18.15.022.43

 End Time: 2015.04.18.15.022.43

 Results:

 Number of Moves: 4

 Number of Removes: 7

 Remove [Order]: 1, 2, 3, 4, 5, 6, 7

 Start Time: 2015.04.18.15.027.13

 End Time: 2015.04.18.15.027.13

