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1. Brief History

Although the lattice-gas automata (LGA) or lattice-gas cellular automata
(LGCA) and the lattice Boltzmann equation (LBE) have a rather short
history extending only over a decade or so, they have attracted much
attention among physicists in various disciplines. The reason is that the
methods of LGA and LBE have demonstrated their great potentials to
study various complex systems such as the hydrodynamics of multi-phase
and multi-component 
uids (Luo, 1998), magneto-hydrodynamics (Chen &

Matthaeus, 1987; Chen et al., 1988; Chen et al., 1991), chemical reactive

ows (Chen et al., 1995; Boon et al., 1996), where the application of other
methods would be di�cult or impractical.

Before the methods of lattice-gas automata and lattice Boltzmann equa-
tion, there were similar models. In 1964 Broadwell proposed using the Boltz-
mann equation with only a few discrete velocities to study aerodynamics
(Broadwell, 1964). In 1973 Hardy, de Pazzis, and Pomeau (HPP) proposed
the �rst single speed lattice-gas cellular automaton model on a 2D square-
lattice space to study statistical mechanical properties of two-dimensional

uids, such as the divergence of 2D transport coe�cients (Hardy et al.,
1973). It should be stressed that both the Broadwell model and the HPP
model were more proposed as theoretical models than as computational
tools.

In 1986, Frisch, Hasslacher, and Pomeau (Frisch et al., 1986), and Wol-
fram (Wolfram, 1986) proposed the �rst 2D lattice-gas automaton model
for the speci�c purpose of computational 
uid dynamics. The 3D lattice-
gas automaton model was soon introduced (d'Humi�eres et al., 1986). In
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1988, the �rst proposal to use the lattice Boltzmann equation to simulate

uid dynamics was made (McNamara & Zanetti, 1988). The evidence that
simple models such as the lattice-gas automaton and its 
oating-number
counterpart, the lattice Boltzmann equation, can faithfully simulate hydro-
dynamics opens a new avenue in computational physics. Some of the key
ideas of the LGA and LBE methods may indeed be revolutionary.

Although only in their infancy, the methods of the lattice-gas automata
and lattice Boltzmann equation have demonstrated their capabilities in
many areas of computational 
uid dynamics, such as turbulent external

ow over structures with complicated geometries (Strumolo & Viswanathan,
1997), multi-phase and multi-component 
uids through porous media (Chen
& Doolen, 1998), chemical reactive 
ows (Boon et al., 1996), and other com-
plex systems (Doolen, 1990; Rothman & Zaleski, 1997; Chen et al., 1998).
The advantages of the LGA and LBE methods are:

1. Broad applicability to various complex systems;
2. Ability to handle complicated boundary geometries;
3. Preservation of the conservation laws exactly (LGA);
4. Unconditional stability (LGA);
5. Memory e�ciency (LGA);
6. Inherent parallelism | linear scalability on computers with massively

parallel processors (MPP) (Amati et al., 1997a);
7. Capability to include model interactions among particles;
8. Very simple to program.

However, one must be very careful in stating what precisely are the ad-
vantages of the LGA and LBE methods over conventional methods of solv-
ing the Navier-Stokes equations, i.e., one must carefully identify the areas
where the LGA and LBE methods are more suitable because of the physical
nature of the problems. I shall brie
y address this issue in this article.

Before we discuss any technical details, it would be appropriate for us to
gain a sense of history �rst, to review how much the LGA and LBE methods
have evolved since their inception. Here we show simulations of the 2D 
ow
past a cylinder, a classic example in 
uid dynamics, using the lattice gas
method (Wolfram, 1988) and the lattice Boltzmann method (He & Doolen,
1997a). Fig. 1 from (Wolfram, 1988) shows that LGA can indeed mimic hy-
drodynamics: it reproduces von K�arm�an vortex street behind a cylinder, al-
though the simulation was qualitative in nature. About one decade later, He
and Doolen demonstrated that the LBE method can faithfully simulate hy-
drodynamics. Figs. 2 shows the von K�arm�an vortex street behind a cylinder
with a Reynolds number of 100. Various quantities, such as drag coe�cient
and lift coe�cient, are accurately measured and compared with existing nu-
merical and experimental results (He & Doolen, 1997a). Furthermore, the
computational speed of the LBE method is comparable to that of conven-
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Figure 1. LGA simulation of 
ow past a cylinder in 2D space. Shown in the Figure
are velocity vectors. The Reynolds number of the system is approximately 100. [From
(Wolfram, 1988). Copyright 1988 by the Board of Trustees of the University of Illinois.
Used with the by permission of University of Illinois Press.]

Figure 2. LBE simulation of 
ow past a cylinder in 2D space. Shown in the Figure are
streak lines. (Courtesy of He and Doolen.)

tional methods of solving Navier-Stokes equations. The 2D 
ow past impul-
sively started cylinder with much higher Reynolds number (Re = 9500) has
also been simulated by using the LBE method and accurate results have
been obtained (He & Doolen, 1997b). There are other examples of direct nu-
merical simulation by using the lattice Boltzmann method (Hou et al., 1995;
Luo, 1997; Mei & Shyy, 1997), including turbulent 
ows (Benzi et al., 1996;
Amati et al., 1997b). It is fair to say that nowadays the LGA and LBE
methods have attained a state of maturity and can be very competitive in
many areas.

This article is organized as follows. Sec. 2 provides an introduction of
the lattice-gas and lattice Boltzmann methods. The philosophy behind the
LGA and LBE methods is discussed. The details of the LGA and LBE
hydrodynamics are also given. Sec. 3 addresses the issues concerning the
future development of the methods, including hardware, modeling, and ap-
plications. Sec. 4 concludes this the article.
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2. Introduction to LGA and LBE

2.1. PHILOSOPHY OF LGA AND LBE METHODS

It is a well known fact that a 
uid is really a discrete system with a large
number (� 1023) of particles (molecules). A system of many particles can be
described by either molecular dynamics (MD) or a hierarchy of kinetic equa-
tions (the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy), and these
two descriptions are equivalent. With the molecular chaos assumption due
to Boltzmann, the BBGKY hierarchy can be closed with a single equation:
the Boltzmann equation for the single particle distribution function. On the
other hand, a 
uid can also be treated as a continuum described by a set
of partial di�erential equations for 
uid density, velocity, and temperature:
the Navier-Stokes equations.

It is usually convenient to use the Navier-Stokes equations to some 
uid
problems. Unfortunately these equations can be very di�cult or even im-
possible to solve under some circumstances including inhomogeneous multi-
phase or multi-component 
ow, and granular 
ow. In the case of multi-
component or multi-phase 
ow, interfaces between di�erent 
uid compo-
nents (e.g. oil and water) or phases (e.g. vapor and water) are what cause
trouble. Computationally, one might be able to track a few, but hardly very
many interfaces in a system. Realistic simulations of 
uid systems with
density or composition inhomogeneities by direct solution of the Navier-
Stokes equations is therefore impractical. We can also look at the problem
from a di�erent perspective: interfaces between di�erent components or
phases of a 
uid system are thermodynamic e�ects which result from inter-
actions among molecules. To solve the Navier-Stokes equations, one needs
to know the equation of state, which is usually unknown at an interface. It
is therefore di�cult to incorporate thermodynamics into the Navier-Stokes
equations in a consistent or a priori fashion. Hence we encounter some
fundamental di�culties. In the case of granular 
ow, the situation is even
worse: it is not even clear that there exists a set partial di�erential equa-
tions analogous to the Navier-Stokes equations which correctly model such
systems. Instead, granular 
ow is usually modeled by equations completely
lacking the fundamental validity of the Navier-Stokes equations.

Although the Navier-Stokes equations are inadequate in some circum-
stances, either molecular dynamics nor the Boltzmann equation are prac-
tical alternatives because solutions of molecular dynamics or the Boltz-
mann equation pose formidable tasks which demand much more computa-
tional e�ort than the Navier-Stokes equations. Thus, we face the following
predicament: although the Navier-Stokes equations are inadequate, molec-
ular dynamics or the Boltzmann equation are much too di�cult to solve
and are even unnecessarily complicated if only hydrodynamic moments are
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required. It is within this context that the lattice-gas automata (simpli-
�ed molecular dynamics) and the lattice Boltzmann equation (simpli�ed
Boltzmann equation) become alternatives. It has been realized that hydro-
dynamics is insensitive to the details of the underlying microscopic or meso-
scopic dynamics | the Navier-Stokes equations are merely statements of
conservation laws, which re
ect the same conservation laws in microscopic
dynamics, and constitutive relations, which re
ect the irreversible nature
of the macroscopic dynamics. Di�erent inter-molecular interactions would
only result in di�erent numerical values of the transport coe�cients. Since
the details of the microscopic dynamics are not important if only the hy-
drodynamic behavior of system is of interest, one may ask the following
question: What constitutes a minimal microscopic or mesoscopic dynamic
system which can provide desirable physics at the macroscopic level (hydro-
dynamics, thermodynamics, etc.). It turns out that the essential elements
in such a microscopic or mesoscopic dynamic system are the conservation
laws and associated symmetries. In what follows, we will demonstrate how
the models of the lattice gas automata and the lattice Boltzmann equations
are realized.

2.2. LATTICE GAS AUTOMATA

In a series of articles published in 1980's (Wolfram, 1994), Wolfram showed
that cellular automata, despite their simple construction, have su�cient
complexity to accomplish universal computing: that is, beginning with a
particular initial state, the evolution of some automaton could implement
any chosen �nite algorithm. Based upon kinetic theory and the previous
experience of HPP model (Hardy et al., 1973) that a 2D square lattice
does not possesses the su�cient symmetry for hydrodynamics, Frisch et al.

(Frisch et al., 1986) andWolfram (Wolfram, 1986) independently discovered
that a simple cellular automaton on a two-dimensional triangular lattice can
simulate the Navier-Stokes equations.

The LGA model Frisch et al. and Wolfram proposed evolves on a 2D
triangular lattice space. The particles have momenta which allow them to
move from one site on the lattice to another in discrete time steps. On
a particular lattice site, there is either no particle or one particle with a
particular momentum pointing to a nearest neighbor site. Therefore, there
are at most six particles at one site simultaneously, hence this model is
called the 6-bit model or FHP model. The evolution of the LGA model
consists of two steps: collision and advection. The collision process is par-
tially described in Fig. 3. For example, two particles colliding with opposite
momenta will rotate their momenta 60� clockwise or counter-clockwise with
equal probability. In Fig. 3, we do not list those con�gurations which can
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Figure 3. Collisions of FHP LGA model.

be easily obtained by rotational transformation, and which are invariant
under the collision process. It should be noticed that the particle number,
the momentum, and the energy are conserved in the collision process lo-
cally and exactly. (Because the FHP model has only one speed, the energy
is no longer an independent variable: it is equivalent to the particle number.
However, for multi-speed models, the energy is an independent variable.)

The evolution equation of the LGA can be written as:

n�(x+ e��t; t+ �t) = n�(x; t) + C� ; (1)

where n� is the Boolean particle number with the velocity e�, C� is the
collision operator, x is a vector in the lattice space with lattice constant �x,
t denotes discrete time with step size �t. We usually set both �x and �t to
unity. The subscript � is an index for velocity; as illustrated in Fig. 3, for
the FHP model, � runs from 1 to 6. After colliding, particles advect to the
next site according to their velocities. Fig. 4 illustrates the evolution of the
system in one time step from t to t + �t. In this Figure, solid and hollow
arrows represent particles with corresponding velocity at time t and t+ �t,
respectively. The system evolves by iteration of the collision and advection
processes.

According to the collision rules prescribed in Fig. 3, the collision oper-
ator, C�, can be written as follows:

C�(fn�(x; t)g) =
X
s;s0

(s0� � s�) �ss0

Y
�

ns�� (1� n�)
(1�s�) ; (2)

where s � fs1; s2; : : : ; s6g and s0 � fs01; s02; : : : ; s06g are possible incom-
ing and outgoing con�gurations at a given site x and time t, respectively;
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Figure 4. Evolution of FHP LGA model. Solid and hollow arrows represent particles
with corresponding velocity at time t and t+ 1, respectively. That is, the hollow arrows
are the �nal con�gurations of the initial con�gurations of solid arrows after one cycle of
collision and advection.

�ss0 is a Boolean random number in space and time which determines the
transition between state s and s0 satisfying the following normalization
condition: X

s0

�ss0 = 1 ; 8 s : (3)

The Boolean random number �ss0 must also have rotational symmetry, i.e.,
for any states s and s0, �ss0 is invariant if states s and s0 are both subjected
to simultaneous proper or improper rotations. It is obvious that for Boolean
number n� and s�, the following equation holds:

ns�� (1� n�)
(1�s�) = �n�s� ; (4)

where �n�s� is the Kronecker delta symbol with two indices. Therefore,
Eq. (2) can be written as

C�(fn�(x; t)g) =
X
s;s0

(s0� � s�) �ss0�ns ; (5)

where �ns � �n1s1�n2s2 � � � �nbsb . Eq. (2), or (5), is rather abstract, and the
following is a speci�c example of the collision operator for the two-body
collision:

C(2)
� = �(2)R n�+1n�+4�n��n�+2�n�+3�n�+5 + (6)

�(2)L n�+2n�+5�n��n�+1�n�+3�n�+4 �
(�(2)R + �(2)L )n�n�+3�n�+1�n�+2�n�+4�n�+5 ;

where �n� � 1� n� is the complement of n�, �
(2)

R and �(2)L are Boolean ran-
dom numbers which determine the outcome of head-on two-body collisions.
The Boolean random numbers re
ect the randomness of the outcomes of
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101101

TABLE 1. Collision table for 6-Bit
FHP model.

the two-body collision. Obviously, for the collision operator to satisfy the
complete lattice symmetry group statistically (on average), they must sat-
isfy

h�(2)R i = h�(2)L i ; (7)

where h�i denotes the ensemble average. The conservation laws of the par-
ticle number, momentum, and energy of the LGA micro-dynamics can be
written as follows:

X
�

(s0� � s�) = 0 ; (8a)

X
�

(s0� � s�)e� = 0 ; (8b)

X
�

(s0� � s�)
1

2
(e� � u)2 = 0 : (8c)

In practice, the collision can implemented with various algorithms. One
can either use logical operation [as indicated by Eq. (6)], or by table-lookup.
The collision rules shown in Fig. 3 can also be represented by the a colli-
sion table, as shown by Table 1. In Table 1, each bit in a binary number
represents a particle number n�, � = 1; 2; : : : ; 6; from right to left. The
limitation of table lookup is the size of the table, which is 2b, where b is
the number of bits of the model. Both logic operation and table lookup
can be extremely fast on digital computers, and especially so on dedicated
computers (To�oli & Margolus, 1987; Adler et al., 1995).
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2.3. HYDRODYNAMICS OF LATTICE GAS AUTOMATA

The ensemble average of Eq. (1) leads to a lattice Boltzmann equation:

f�(x+ e��t; t+ �t) = f�(x; t) + 
� ; (9)

where f� � mhn�i and 
� � hC�i, where m is the particle mass. In ad-
ditional, it is assumed that the correlations among colliding particles are
negligible, i.e.,

hn�n� � � � n
i = hn�ihn�i � � � hn
i : (10)

Above approximation is equivalent to the celebrated molecular chaos as-
sumption of Boltzmann (Stosszahlansatz ). With the molecular chaos ap-
proximation, the lattice Boltzmann collision operator is given by


�(ff�(x; t)g) =
X
s;s0

(s0� � s�)Ass0

Y
�

f s�� (1� f�)
(1�s�) ; (11)

where Ass0 � h�ss0i is the transition probability from state s and s0. The
hydrodynamic moments are given by:

� =
X
�

f� ; �u =
X
�

e�f� ; �" =
X
�

1

2
(e� � u)2f� ; (12)

where u, and " are the mass density, the velocity, and the internal energy
density, respectively.

Eq. (9) can be expanded in a Taylor series of �t up to the second order:

(@t + e��r)f� + (@t + e��r)2f� = 
� : (13)

The equilibrium distribution, f
(0)
� , which is the solution of 
�(ff�g) = 0,

must be a Fermi-Dirac distribution because the system is a binary one
(Wolfram, 1986), that is,

f (0)� =
1

1 + exp(a+ bu � e�) ; (14)

where coe�cients a and b are functions of � and u2 in general. Because

the coe�cients a and b in f
(0)
� cannot be determined exactly (Wolfram,

1986), f
(0)
� must be expanded in a Taylor series of u | the small velocity

(low Mach number) expansion. With the small velocity expansion of the

equilibrium f
(0)
� and through Chapman-Enskog analysis, one can obtain

the following hydrodynamic equations from the FHP LGA model (Frisch
et al., 1986; Wolfram, 1986):

@t�+r��u = 0 ; (15a)

@t�u+r(g �uu) = �rP + �r2�u ; (15b)
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where g is a function of �,

P = c2s �

"
1� g

u2

c2

#
; cs = c=

p
2 ; (16a)

� = �1

8
(2��1 + 1)c �x ; (16b)

cs is the sound speed, c = �x=�t, and � is an eigenvalue of the linearized
collision operator (Rothman & Zaleski, 1997):

J�� � @
�

@f�

�����
f�=f

(0)
�

:

The defects of the LGA hydrodynamics are obvious from the above
equations:

1. Simulations are intrinsically noisy because of the large 
uctuation in
n�;

2. The factor g(�) is not unity, thus Galilean invariance is destroyed;
3. It is di�cult to increase the Reynolds number Re;
4. The equation of state depends on u2 (unphysical);
5. There exist (unphysical) spurious conserved quantities due to the sim-

ple symmetry of the lattice-gas automata.

However, all these defects can be �xed by using more sophisticated LGA
models (Chen et al., 1997), or the other alternative | the lattice Boltzmann
equation.

2.4. LATTICE BOLTZMANN EQUATION

Historically, models of the lattice Boltzmann equation evolved from their
Boolean counterparts: the lattice-gas automaton. Eq. (9) is the original
lattice Boltzmann model to replace the corresponding LGA model for hy-
drodynamics (McNamara & Zanetti, 1988). Later it was realized that the
collision operator can be linearized and be replaced with a simple relaxation
model (Chen et al., 1992; Qian et al., 1992). Recently, it has been shown
that the LBE is a special discretized form of the continuous Boltzmann
equation (He & Luo, 1997a; He & Luo, 1997b).

For the sake of simplicity, and without lose of generality, the Boltzmann
equation with the Bhatnagar-Gross-Krook (BGK) approximation is used in
the following analysis. The Boltzmann BGK equation can be written in the
form of an ordinary di�erential equation:

Dtf +
1

�
f =

1

�
f (0) ; (17)
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where Dt � @t + � � r is the Lagrangian derivative along the microscopic
velocity �, f � f(x; �; t) is the single particle distribution function, � is
the relaxation time due to collision, and f (0) is the Maxwell-Boltzmann
distribution function:

f (0) � �

(2�RT )D=2
exp

"
�(� � u)2

2�

#
; (18)

in which D is the dimension of the space; �, u and � = kBT=m are the
macroscopic density of mass, the velocity, and the normalized temperature,
respectively, T , kB and m are temperature, the Boltzmann constant, and
particle mass. The macroscopic variables are the moments of the distribu-
tion function f with respect to velocity �:

� =

Z
f d� ; �u =

Z
� f d� ; �� =

1

2

Z
(� � u)2 f d� : (19)

Equation (17) can be formally integrated over a time interval �t:

f(x+ ��t; �; t+ �t) = e��t=� f(x; �; t)

+
1

�
e��t=�

Z �t

0
et

0=� f (0)(x+ �t0; �; t+ t0) dt0 : (20)

Assuming that �t is small enough and f (0) is smooth enough locally, and
neglecting the terms of the order O(�2t ) or smaller in the Taylor expansion
of the right hand side of Eq. (20), we obtain

f(x+ ��t; �; t+ �t)� f(x; �; t) = �1

�
[f(x; �; t)� f (0)(x; �; t)] ; (21)

where � � �=�t is the dimensionless relaxation time.
The equilibrium distribution function f (0) can be expanded as a Taylor

series in u. By retaining the Taylor expansion up to u2, we obtain:

f (eq) =
�

(2��)D=2
exp

 
��

2

2�

! "
1 +

(� � u)
�

+
(� � u)2
2�2

� u2

2�

#
: (22)

For the purpose of deriving the Navier-Stokes equations, the above second-
order expansion is su�cient.

To derive the Navier-Stokes equations, the following moment integral
must be evaluated exactly: Z

�m f (eq) d� ; (23)
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where 0 � m � 3 for isothermal models. The above integral contains the
following integral which can be evaluated by Gaussian-type quadrature:

I =

Z
exp(��2=2�) (�) d� =

X
�

W� exp(��2�=2�) (��) ; (24)

where  (�) is a polynomial in �, andW� and �� are the weights and the ab-
scissas (or discrete velocities) of the quadrature, respectively. Accordingly,
the hydrodynamic moments of Eqs. (19) can be computed by quadrature
as well:

� =
X
�

f� ; �u =
X
�

�� f� ; �� =
1

2

X
�

(�� � u)2 f� ; (25)

where f� � f�(x; t) � W� f(x; ��; t): We shall use the 9-bit isothermal
LBE model on square lattice space as a concrete example to illustrate the
derivation of LBE models: the evolution equation (21) on a discretized
phase space and time with a proper equilibrium distribution function leads
to the Navier-Stokes equations.

To derive the 9-bit LBE model, a Cartesian coordinate system is used,
and accordingly, we set  (�) = �mx �

n
y . The integral of Eq. (24) becomes:

I = (
p
2�)(m+n+2) Im In ; (26)

where

Im =

Z +1

�1

e��
2
�m d� ; (27)

and � = �x=
p
2� or �y=

p
2�. Naturally, the third-order Hermite formula

is the optimal choice to evaluate Im for the purpose of deriving the 9-
bit LBE model, i.e., Im =

P3
j=1 !j�

m
j : The three abscissas (�j) and the

corresponding weights (!j) of the quadrature are:

�1 = �p3=2 ; �2 = 0 ; �3 =
p
3=2 ;

!1 =
p
�=6 ; !2 = 2

p
�=3 ; !3 =

p
�=6 :

(28)

Then, the integral of Eq. (26) becomes:

I = 2� [!22 (0) +
4X

�=1

!1!2 (��) +
8X

�=5

!21 (��)] ; (29)

where �� is the zero velocity vector for � = 0, the vectors of
p
3� (�1; 0)

and
p
3� (0; �1) for � = 1{4, and the vectors of

p
3� (�1; �1) for � = 5{8.

Note that the above quadrature is exact for (m+ n) � 5.
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Figure 5. Discrete velocities of the 9-bit model on a square lattice.

Now momentum space is discretized with nine discrete velocities f��j� =
0; 1; � � � ; 8g. To obtain the 9-bit model, con�guration space is discretized
accordingly, i.e., it is discretized into a square lattice with lattice constant
�x =

p
3� �t. It should be stressed that the temperature � has no physical

signi�cance here because we are only dealing with an isothermal model.
We can therefore choose �x to be a fundamental quantity instead, thusp
3� = c � �x=�t, or � = c2s = c2=3, where cs is the sound speed of the

model.
By comparing Eqs. (24) and (29), we can identify the weights de�ned

in Eq. (24):

W� = 2� � exp(�2�=2�)w� ; (30)

where

w� =

8<
:

4=9; � = 0;
1=9; � = 1; 2; 3; 4;
1=36; � = 5; 6; 7; 8:

(31)

Then, the equilibrium distribution function of the 9-bit model is:

f (eq)� = W� f
(eq)(x; ��; t)

= w� �

(
1 +

3(e� � u)
c2

+
9(e� � u)2

2c4
� 3u2

2c2

)
; (32)

where

e� =

8<
:

(0; 0); � = 0 ;
(cos ��; sin ��) c; � = 1; 2; 3; 4;

(cos ��; sin ��)
p
2c; � = 5; 6; 7; 8;

(33)

and �� = (� � 1)�=2 for � = 1{4, and (� � 5)�=2 + �=4 for � = 5{8, as
shown in Fig. 5. The Navier-Stokes equation derived from the above LBE
model is:

�@tu+ �u�ru = �rP + ��r2u ; (34)

where the equation of state is the ideal gas one, P = c2s�, the sound speed
cs = c=

p
3, and the viscosity � = 1

6 (2� � 1)c �x for the 9-bit model.
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Similarly, we can also derive two-dimensional 6-bit, 7-bit, and three-
dimensional 27-bit LBE models (He & Luo, 1997b).

In the above derivation, the discretization of phase space is accomplished
by discretizing momentum space in such a way that a lattice structure in
con�guration space is simultaneously obtained. That is, the discretization
of con�guration space is determined by that of momentum space. Of course,
the discretization of momentum space and con�guration space can be done
independently. This consideration has two immediate consequences: arbi-
trary mesh grids and signi�cant enhancement of the Reynolds number in
LBE hydrodynamic simulations.

To implement arbitrary mesh grids with the LBE method, one �rst
discretizes the con�guration space by generating a mesh adapted to the
physics of the particular problem. Then at each grid point, one can dis-
cretize momentum space as before. Now, a local LBE is built on each mesh
grid point. The evolution of this discretized Boltzmann equation (DBE)
consists of the following three steps. The �rst two steps are the usual colli-
sion and advection process as in the previous LBE models. After collision
and advection, interpolation follows. The interpolation process is what dis-
tinguishes the DBE from the LBE method. Because the mesh grids can
be arbitrary, the distribution function f� at one mesh grid point, say X ,
cannot go to another grid point in general through the advection process as
it can in previous LBE models. Therefore, the interpolation step becomes
necessary to construct f�(X; t) on each and every mesh grid point from
f�(X+e��t; t) after the advection process. Of course, interpolation brings
in additional numerical error, but it can be justi�ed so long as the error
induced by interpolation does not a�ect the DBE algorithm as a whole (He
et al., 1996). In addition, the separate discretization of momentum and con-
�guration space allows us to increase the Reynolds number signi�cantly in
numerical simulations without enlarging mesh sizes or decreasing the vis-
cosity by adjusting � (He et al., 1996). In other words, the limitation posed
by the lattice Reynolds number is completely overcome (He et al., 1997)
and the stability of the LBE method is greatly improved (He et al., 1996;
He et al., 1997).

2.5. BOUNDARY CONDITIONS

In lattice-gas automata, non-slip boundary conditions can be realized by
the bounce-back scheme: a particle colliding with the wall simply reverses
its momentum. Also, slip boundary condition can be realized by the re-

ection scheme: a particle colliding with the wall reverses its momentum
normal to the wall and maintains its tangential momentum unchanged.
Both the bounce-back scheme and re
ection scheme are easy to implement
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and are very e�cient computationally. Combination of the two can produce
partial slip boundary condition. Both bounce-back or re
ection schemes
can be implemented in the lattice Boltzmann equation with some varia-
tions (Ginzbourg & d'Humi�eres, 1996; Chen et al., 1996; He et al., 1997;
Zou & He, 1997; Fang et al., 1998). The ease of handling boundary condi-
tions and complicated geometries is a very important feature of the lattice-
gas and lattice Boltzmann methods.

3. The Future

In order to address the issues concerning the future development of the
lattice-gas and lattice Boltzmann methods, a comparison between the con-
ventional CFD methods and the LGA and LBE methods will be helpful.

1. The arithmetic operations in the conventional CFD solvers are 
oating
number operations (FLOPs), while the LGA method and integer LBE
method involve only logical (or integer) operations or table-lookups.
Logical operations are certainly more natural and hence faster on dig-
ital computers.

2. Navier-Stokes solvers inevitably need to treat the nonlinear convective
term, u �ru; the LGA and LBE methods totally avoid the nonlin-
ear convective term, because the convection becomes simple advection
(uniform data shift) in the lattice-gas and lattice Boltzmann methods.

3. CFD solvers for the incompressible Navier-Stokes equations need to
solve the Poisson equation for the pressure. This involves global data
communication, in the LGA and LBE methods, data communication
is always local.

4. Due to unstructured grids and domains, data communication in some
conventional CFD solvers is nonuniform; the LGA and LBE methods
usually employ the Cartesian grids and thus the data communication
is always uniform.

5. The Courant-Fredrick-Levy (CFL) number is close to unity in most
Navier-Stoke solvers with respect to the system size; in the LGA and
LBE methods the CFL number is proportional to ��1x , where �x is the
grid size, i.e., the grid CFL number is equal to 1 in the LGA and LBE
methods. Consequently, the LGA and LBE methods are very ine�cient
for solving steady state problems, because their speed of convergence
is dictated by acoustic propagation, which is very slow.

6. Boundary conditions, such as complicated geometries, sometimes are
very hard to implement in conventional Navier-Stokes solvers; such
boundary conditions can be trivially implemented in the LGA and
LBE methods without a�ecting the computational speed;

7. Turbulence modeling is essential to the some conventional CFD meth-
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ods, such modeling is implicit in the LGA and LBE methods. In addi-
tion, the LGA and LBE methods are intrinsically compressible;

8. The accuracy of the conventional Navier-Stokes solvers is well estab-
lished. It has been shown that the accuracy of the LGA and LBE
methods is of �rst order in time and second order in space. In contrast
to the Navier-Stokes solvers, the LGA and LBE methods usually need
comparable, or �ner resolutions, depending on speci�c problems.

It is obvious that the problems the LGA and LBE methods encounter
in their future development will be signi�cantly di�erent from what the
conventional CFD methods will. In what follows, we brie
y discuss the
issues concerning hardware, modeling, and applications of the LGA and
LBE methods.

3.1. HARDWARE

Because the LGA and LBE algorithms can be implemented with logical (bi-
nary) operations or table-lookups, these algorithms can be extremely fast
on dedicated computers (Clouqueur & d'Humi�eres, 1987; To�oli & Margo-
lus, 1987; Despain et al., 1988). A recent study showed that a Cellular-
Automata-Machine-8 (CAM-8) (To�oli & Margolus, 1987) with 8 nodes
achieved a speed of 7 million site updates per second for a 3D LGA al-
gorithm (Adler et al., 1995). An 8-node CAM-8 machine is similar to a
low end workstation; it consists of 2 MB of SRAM, 64 MB of DRAM, and
about two million gates CMOS logic, with a clock frequency of 25 MHz
(To�oli & Margolus, 1987; Adler et al., 1995). However, the speed of the
CAM-8 can be increased by four orders of magnitude (104) with technology
available today by putting logic directly into a DRAM memory chip and by
exploiting the enormous memory bandwidth that can be made available on-
chip (Margolus, 1998). This increased speed exceeds that of a Connection
Machine 2, a SIMD supercomputer with 65,536 (= 216) bit processors.

In recent years, we have seen a number of new ideas regarding models
of computation in the future: the DNA model, the quantum model and the
reversible model (Calude & Casti, 1998). In additional, there is an e�ort
to use the quantum-dot as a computing device (Lent et al., 1993; Tougaw
& Lent, 1996; Lent & Tougaw, 1997). (There is a collections of papers on
quantum engineering published by Nature (Nature, 1998).) The size of a
quantum-dot can be a few (�A) to a few tens of (nm). A quantum-dot has a
few electronic bound states, and these states can be manipulated like a bit
processor, which is a perfect model for cellular automata computing (Lent et
al., 1993; Tougaw & Lent, 1996; Lent & Tougaw, 1997). The progress made
in these new areas will perhaps revolutionize the concept of computation,
and thus enhance computing speeds by many orders of magnitude beyond
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what we can now imagine.

3.2. MODELING

The LGA and LBE methods need solutions to the following modeling issues
in the near future:

1. Thermo-hydrodynamics with large temperature gradient, rT . Due to the
limit of small number of discrete velocities, the existing LGA and LBE
models are not very successful in problems of thermo-hydrodynamics
with large temperature gradient. However, improvement can be achieved
by increasing the number of discrete velocities (Pavlo et al., 1998) or
by other means (He et al., 1997);

2. Compressibility, transonic and supersonic 
ows. Due to the low Mach
number expansion of the equilibrium distribution function in the LBE
method, the method is limited to incompressible or near incompress-
ible 
ows. To overcome this limitation of the LBE method, one can
decrease the sound speed in the existing models and reformulate the
equilibrium. It should be pointed out that there exists other kinetic
schemes which can e�ectively simulate compressible 
ows and shocks
(Xu & Prendergast, 1993).

3. Plastic-elastic collisions, and consideration of internal degrees of freedom.
In the existing LGA and LBE models the collisions are hard-sphere-
like elastic ones because the particles are structureless. It is inevitable
that particles with internal degrees of freedom and hence plastic-elastic
collisions among them have to be taken into consideration if phase
transition and compressibility are to be studied.

4. Correlations, long-range interactions, and dissipation. In the existing LGA
and LBE models, the correlations among colliding particles are ne-
glected due to the assumption of molecular chaos. The assumption
may need some corrections if one is interested in something beyond
the hydrodynamics of simple 
uids. For instance, one must include
non-local interactions in liquid-vapor phase transition. Also, dissipa-
tion mechanism is essential in systems such as granular 
ows.

5. Liquid-solid phase transition. Although the LGA and LBE methods are
successful in modeling liquid-vapor phase transition, nothing has been
done regarding the liquid-solid phase transition. The modeling of the
liquid-solid phase transition is a di�cult problem and one should ex-
pect some progress to be made in the near future when the full potential
of kinetic theory is realized.

6. Turbulence modeling. Turbulence modeling is a mature subject and it
has not been utilized in anyway in the LGA and LBE methods. Theory
on the connection between the turbulence modeling and the LGA and
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LBE methods will be of interest to many in the future.
7. Quantum systems. It has been shown that quantum lattice gas models

can be e�ective algorithms to simulate quantum systems on quantum
computer (Benzi & Succi, 1993; Succi, 1996; Meyer, 1997; Boghosian &

Taylor, 1998). However, it is not clear yet whether the quantum lattice
gas models can be used as e�ective algorithms on digital computers.
This possibility needs to be further explored.

3.3. APPLICATIONS

The physical nature of the LGA and LBE methods makes them particu-
larly well suited for certain problems but not others. One should expect
signi�cant progress made in the near future by using the LBE method in
the area of interfacial dynamics related to the instability of either Rayleigh-
Taylor or Richtmyer-Meshkov (Kotelnikov & Montgomery, 1997). The lat-
tice Boltzmann method has been successfully applied to multicomponent

uids in complex three-dimensional geometries (Martys & Chen, 1996; Chen
& Doolen, 1998) and interfacial gravity waves (Buick & Greated, 1998). In
additional to interfacial dynamics, there are two types of problems on which
the LGA and LBE methods may have a major impact: problems which are
numerically sti� due to drastically di�erent time scales in the system, and
systems for which there exists no adequate macroscopic equation.

Sti� problems are ubiquitous in nature, and a few examples of them to
which the LGA and LBE methods are well-suited are:

1. Flow-structure interaction (structural response time vs. hydrodynamic time).
Aero-acoustics is a typical example of such a problem. This problem is
not only sti�, but also involves moving boundaries. The LBE method is
particularly suitable for solving this problem because: (a) CFL number
of the LBE algorithm is very small and comparable to the structural
response, yet the computation in each (small) time step is rather trivial
so that the overall computation remains e�cient and the structural re-
sponse can be physically modeled; (b) The simplicity of implementing
boundary conditions such as bounce-back boundary condition enables
the LBE algorithms to deal with moving boundaries between structure-

ow interfaces e�ciently.

2. Combustion (chemical reaction time vs. hydrodynamic time). The LGA
and LBE methods have been successful in dealing with reactive and
hydrodynamic systems separately. It should not be too di�cult to cou-
ple the two together since the models for reactive systems have already
the underlying hydrodynamics in them.

3. Solidi�cation (heat conduction time vs. hydrodynamic time). Solidi�ca-
tion remains a challenging problem to model in general for any method.
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Di�culties arise when the hydrodynamics is taken into consideration
of the problem. In principle, kinetic theory is applicable to both 
uid
and solid phases, but much still remains to be done in this area.

The following are some problems of which there are no adequate or even
commonly accepted macroscopic equations. Kinetic models such the lattice-
gas automata or the lattice Boltzmann equation may be particularly useful
to these problems:

1. Granular 
ows (no adequate macroscopic equation). Granular 
ows have
attracted much interest recently. Currently, molecular dynamics re-
mains the primary method to accurately simulate such systems. Al-
though some preliminary theoretical results have been obtained by
kinetic theory (Brey et al., 1996), a realistic kinetic model has yet to
be developed.

2. Rheology. The term \rheology" covers any 
uid which is not described
by the Navier-Stokes equations for Newtonian 
uids. Examples include
non-Newtonian, and polymeric 
ows. In many complex 
uids, consti-
tutive relations are di�cult to obtain from �rst principles. Therefore,
the LGA or LBE models which directly use model interactions among
particles can be applicable and e�ective to study such systems.

3. Microscopic 
ows and heat-transfer. The Navier-Stokes equations break
down in microscopic scales where kinetic e�ects are no longer negligible
and may even be dominant, as in Micro-Electro-Mechanical-Systems
(MEMS) (Ho & Tai, 1998). Because of kinetic nature of the LGA and
LBE methods, they are particularly useful in studying microscopic or
mesoscopic systems (Nie et al., 1998).

4. Electronic transport in semiconductors. This is challenging problem in
physics and important one in the semiconductor industry. Currently
there are quantum molecular dynamic (microscopic) or hydrodynamic
(macroscopic) simulations of the system, while mesoscopic theory is
yet to be developed. Although there were previous successful attempts
in this area by using the LGA method (Ancona, 1990; Kometer et al.,
1992), a systematic pursuit of the application of the LGA and LBE
methods to this particular area is still lacking.

4. Conclusion

In this article, I have provided a brief review of some key aspects the lattice-
gas automata and lattice Boltzmann methods, and some speculations on
their future. There are two important lessons which should be learned from
the lattice-gas automata and lattice Boltzmann equation. First of all, ex-
tremely simple microscopic dynamics may lead to extremely complicated
macroscopic dynamics, the so-called emergent phenomena. Second, cellular
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automata can accomplish very complex tasks of computation such as solv-
ing partial di�erential equations, and they are naturally suited to digital
computers. I have also pointed out a few areas in which the new methods
may be very e�ective and e�cient. Hopefully more e�ort will be devoted
to development of the methods for those interesting and important appli-
cations in the future.

Although this article mainly addresses the applications of the LGA and
LBE methods to various problems, one should not be misled to the im-
pression that these methods only amount to nothing more than practical
numerical methods of not much theoretical value. To the contrary, the the-
oretical signi�cance of these methods may well exceed their applied impor-
tance. We know that the Boltzmann equation, or kinetic theory in general,
is a powerful theoretical means for us to understand transport phenom-
ena associated with the systems near or far from equilibrium. However, the
Boltzmann equation is di�cult to solve analytically or numerically, thus
its application is limited, especially in term of computing. In contrast, the
lattice-gas automata and lattice Boltzmann equation are e�ective and e�-
cient alternatives of the Boltzmann equation when it comes to computing.
The derivation of the lattice Boltzmann equation shows that drastic ap-
proximations can be applied when hydrodynamic behavior of a system is
of the interest. The fact that the entire velocity space can be replaced by
a small number of discrete velocities while hydrodynamics of the system
remains intact is an exemplary illustration of how a simple kinetic model
can be constructed. It is well known that the Ising model is a paradigm
of equilibrium statistical mechanics: it has almost everything one wishes
to know about phase transition. Much like the Ising model, the lattice
gas automata and lattice Boltzmann equation can serve as new paradigms
of nonequilibrium statistical mechanics. Furthermore, the LGA and LBE
methods can o�er more than the Navier-Stokes equations can. Examples
are multi-phase and multi-component 
uids which are di�cult to simulate
by using the Navier-Stokes equations as discussed previously. Therefore,
these methods are not only powerful computational tools to simulate, but
also important theoretical means to understand various complex systems
and novel paradigms of computation.

The author is grateful to Prof. N. Margolus for his insightful conversa-
tions on cellular automata computation and the information of several key
references on the subject, and to Dr. S. Girimaji and Dr. R. Rubinstein for
their editorial assistance and stimulating discussions on many subjects.
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