
Theory of the lattice Boltzmann Equation

Li-Shi Luo

ICASE, MS 132C, NASA Langley Research Center

3 West Reid Street, Building 1152

Hampton, Virginia 23681-2199, USA

Email: luo@icase.edu

URL: http://www.icase.edu/~luo

October 9 { 13, 2000

China Center of Advanced Science and Technology, Beijing, China



Contents

1 From Lattice Gas Automata to Lattice Boltzmann Equation | A

Historic Review 1

1.1 Lattice Gas Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 evolution of lattice gas automata . . . . . . . . . . . . . . . . 1
1.1.2 collision operator . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Chapman-Enskog Analysis . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Lattice Gas Automata Hydrodynamics . . . . . . . . . . . . . . . . . 6
1.4 Lattice Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Lattice BGK Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 LBE Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A Priori Derivation of the Lattice Boltzmann Equation 10

2.1 Integral Solution of the Boltzmann Equation . . . . . . . . . . . . . 10
2.2 Passage to Lattice Boltzmann Equation . . . . . . . . . . . . . . . . 11

2.2.1 low Mach number expansion of the equilibrium distribution
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 discretization and conservation laws . . . . . . . . . . . . . . 11
2.2.3 nine-velocity LBE model on a square lattice in two dimensions 12

2.3 Some Recent Progress . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Derivation of the Lattice Boltzmann Model for Nonideal-Gases 15

3.1 Boltzmann's Theory for Rare�ed Gases (1890') . . . . . . . . . . . . 15
3.2 Enskog's Theory for Dense Gases (1917) . . . . . . . . . . . . . . . . 15
3.3 Enskog Closure of Two-Particle Distribution Function f2 . . . . . . . 16
3.4 Non-Local Collision Terms in the Enskog Equation . . . . . . . . . . 16
3.5 Normal Solutions of the Enskog Equation . . . . . . . . . . . . . . . 17
3.6 The Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Incompressible and Isothermal Fluids . . . . . . . . . . . . . . . . . . 18
3.8 Discretization of Continuous Boltzmann Equation . . . . . . . . . . 18
3.9 The External Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 The Lattice Boltzmann Model for Nonideal Gases . . . . . . . . . . . 19

1



4 A Critical Review of Existing Lattice Boltzmann Models for Non-

ideal Gases 20

4.1 Voodoo Magic of the Lattice Boltzmann Equation (1990') . . . . . . 20
4.2 Model with Interaction Potential . . . . . . . . . . . . . . . . . . . . 20
4.3 Modi�ed Model with Interaction Potential . . . . . . . . . . . . . . . 21
4.4 Model with Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Equivalence of Hamiltonian and Free Energy Approach . . . . . . . . 22
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 The Generalized Lattice Boltzmann Equation 24

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 The Lattice Boltzmann Equation in Moment Space . . . . . . . . . . 25
5.3 The Generalized BGK Approximation in Moment Space . . . . . . . 26
5.4 The Equilibria in Moment Space . . . . . . . . . . . . . . . . . . . . 27
5.5 The Generalized Lattice Boltzmann Equation . . . . . . . . . . . . . 28
5.6 The Linearized Lattice Boltzmann Equation . . . . . . . . . . . . . . 28
5.7 Eigenvalue Problem of the Linearized Lattice Boltzmann Equation . 29
5.8 Determination of the Adjustable Parameters . . . . . . . . . . . . . . 29
5.9 Behaviors of Eigenvalues of the Linearized Collision Operator L . . . 30
5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Epilogue 34

2



List of Figures

1.1 Collisions of FHP LGA model. Note that the �gure does not included
those collisions that can be obtained by applying rotations of multiple
�=3 to input and output states simultaneously. . . . . . . . . . . . . 2

1.2 Evolution of FHP LGA model. Solid and hollow arrows represent
particles with velocities corresponding to times t and t + 1, respec-
tively. That is, the hollow arrows are the �nal con�gurations of the
initial con�gurations of solid arrows after one cycle of collision and
advection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Discrete velocity set on a square lattice in two dimensions. . . . . . . 13

5.1 Logarithmic eigenvalues of the nine-velocity model. The values of the
parameters are �2 = �8, �3 = 4, c1 = �2, 
1 = 
3 = 2=3, 
2 = 18,
and 
4 = �18. The relaxation parameters are: s2 = 1:64, s3 = 1:54,
s5 = s7 = 1:9, and s8 = s9 = 1:99. The streaming velocity V is
parallel to k with V = 0:2, and k is along the x axis. (a) Re(ln z�)
and (b) Im(ln z�). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Stability of the generalized LBE model vs. the BGK LBE model in
the parameter space of V and s8 = 1=� . (left) max[Re(ln z�)] for
given V . (right) Stability region of GLBE vs. LBGK model. . . . . 31

5.3 k-dependence of viscosities and g-factor. The solid lines, dotted lines,
and dashed lines correspond to � = 0, �=8, and �=4, respectively.
Three LBE model tested: (a) with no interpolation, (a) with central
interpolation, and (c) with upwind interpolation. . . . . . . . . . . 31

5.4 Decay of discontinuous shear wave velocity pro�le uy(x; t). (left) The
lines and symbols (�) are theoretical and numerical results, respec-
tively. Only the positive half of each velocity pro�le is shown. LBE
model (a) with no interpolation, (b) with the central interpolation
and r = 0:5. (right) Decay of uy(x; t) at a location close to the dis-
continuity x = 3Nx=4. The solid lines and dashed lines are analytic
and numerical results, respectively. The time is rescaled as r�2�k2t. 32

3



5.5 Decay of discontinuous shear wave velocity pro�le uy(x; t) with a con-
stant streaming velocity Vx = 0:08 = U0. The solid lines and symbols
(�) are theoretical and numerical results, respectively. The dashed
lines in (b) and (c) are obtained by setting gn = 1. (a) no interpola-
tion, (b) central interpolation and r = 0:5, (c) upwind interpolation
and r = 0:5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4



List of Tables

1.1 Collision table for the FHP-I six-velocity model. . . . . . . . . . . . 4

5



Abstract

This report is the lectures notes for the �ve lectures on the theory of the lattice
Boltzmann equation delivered by the author at the Workshop (IV) on Soft Matters
(Complex Fluids) | Low Dimensional Liquids and Approaches of Numerical Sim-
ulation to Liquid Dynamics, organized by China Center of Advanced Science and
Technology (CCAST), in Beijing, China, October 9 { 13, 2000. The �ve lectures
cover the basic theory of the lattice Boltzmann equation. Lecture One brie
y re-
views the history of the lattice gas automata and the lattice Boltzmann equation
and their relationship. Lecture Two provides an a priori derivation of the lattice
Boltzmann equation, which connects the lattice Boltzmann equation to the contin-
uous Boltzmann equation and demonstrates that the lattice Boltzmann equation
is indeed a special �nite di�erence form of the Boltzmann equation. Lecture Three
derives the lattice Boltzmann model for nonideal gases from the Enskog equation for
dense gases. Lecture Four gives a critical review on the existing lattice Boltzmann
models for nonideal gases. Lecture Five discusses the generalized lattice Boltzmann
equation with multiple relaxation times. A summary is provided at the end of each
Lecture. An Epilogue on the rationale of the lattice Boltzmann method is given.
Some key references in the literature is also provided.



Lecture 1

From Lattice Gas Automata to Lattice Boltzmann Equation | A

Historic Review

1.1 Lattice Gas Automata

1.1.1 evolution of lattice gas automata

The lattice gas automaton (LGA) model proposed by Frisch, Hasslacher, and Pomeau
[8], and Wolfram [33] evolves on a two-dimensional triangular lattice space. The par-
ticles have momenta that allow them to move from one site on the lattice to another
in discrete time steps. A particular lattice site is occupied by either no particle
or one particle with a particular momentum pointing to a nearest neighboring site.
Therefore, at the most a lattice site can be simultaneously occupied by six particles,
hence this model is called the six-velocity model or FHP-I model. The evolution of
the LGA model consists of two steps: collision and advection. The collision process
is partially described in Fig. 1.1. For example, two particles colliding with opposite
momenta will rotate their momenta 60� clockwise or counter-clockwise with equal
probability. In Fig. 1.1, we do not list those con�gurations which can be obtained
by rotational transformation, and which are invariant under the collision process.
The particle number, the momentum, and the energy are conserved in the collision
process locally and exactly. (Because the FHP-I model has only one speed, the
energy is no longer an independent variable, it is equivalent to the particle number.
However, for multi-speed models, the energy is an independent variable.)

The evolution of the lattice gas automata is very simple. The collision step
only involves local information, and the advection step is uniform. Both collision
and advection processes at each lattice site can be executed synchronously. The
evolution equation of the lattice gas automata can be written as

n�(xi + e�; t+ 1) = n�(xi; t) + C�(fn�g) ; (1.1)

where n�(xi; t) is the (Boolean) particle number of particles with velocity e�, n� 2
f0; 1g; the subscript � and � denote discrete velocities, �; � 2 f1; 2; � � � ; bg as
illustrated in Fig. 1.1, where b is the total number of the discrete velocities in the
set fe�j� = 1; 2; : : : ; bg; and the discrete velocities in the FHP-I model are given
by

e� � (cos[(�� 1)�=3]; sin[(� � 1)�=3]) ; � = 1; 2; : : : ; 6; (1.2)
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Figure 1.1: Collisions of FHP LGA model. Note that the �gure does not included those

collisions that can be obtained by applying rotations of multiple �=3 to input and output states

simultaneously.

and C�(n) is the collision operator, and C� 2 f�1; 0; 1g for any Boolean LGA
models. The local hydrodynamic quantities, such as density � and momentum �u
are related to fn�g by

�(xi; t) = m
X
�

n�(xi; t) ; (1.3a)

�u(xi; t) = m
X
�

e�n�(xi; t) : (1.3b)

Fig. 1.2 illustrates the evolution of the system in one time step from t to t+�t. In
this �gure, solid and hollow arrows represent particles with corresponding velocity
at time t and t + �t, respectively. The system evolves by iteration of the collision
and advection processes. Evolution from t (solid arrows) to t+ 1 (hollow arrows):

1.1.2 collision operator

The collision operator is constructed such that the local conservation laws of mass,
momentum, and energy are exactly preserved, i.e.,X

�

C� = 0 ; (1.4a)

X
�

e�C� = 0 ; (1.4b)

X
�

e2�C� = 0 : (1.4c)
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Figure 1.2: Evolution of FHP LGA model. Solid and hollow arrows represent particles with

velocities corresponding to times t and t + 1, respectively. That is, the hollow arrows are the

�nal con�gurations of the initial con�gurations of solid arrows after one cycle of collision and

advection.

For the FHP model, the collision operator can be written in general as the following

C�(fn�(x; t)g) =
X
s;s0

(s0� � s�) �ss0

bY
�=1

ns�� (1� n�)
(1�s�)

=
X
s;s0

(s0� � s�) �ss0

bY
�=1

�n�s� (1.5)

where s � fs1; s2; : : : ; sbg and s0 � fs01; s02; : : : ; s0bg are possible pre-collision and
post-collision Boolean state, respectively. The Boolean random number �ss0 must
satisfy the following conditions (normalization, semi-detailed balance, and isotropy
under the discrete symmetry rotational group G):X

s
0

�ss0 = 1 ; 8 s ; (1.6a)

X
s

�ss0 = 1 ; 8 s0 ; (1.6b)

�g(s)g(s0) = �ss0 ; 8 g 2 G ; and 8 s; s0; (1.6c)

and the conservation laws of mass, momentum, and energy:X
�

(s� � s0�)h�ss0i = 0 ; (1.7a)

X
�

(s� � s0�)e�h�ss0i = 0 ; (1.7b)

X
�

(s� � s0�)e
2
�h�ss0i = 0 : (1.7c)
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Input State Output State
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010101 101010

001011 100110

110110
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101101

Table 1.1: Collision table for the FHP-I six-velocity model.

For example, the two-body collision term in the six-velocity FHP model is given by

C(2)
� = +�(2)R n�+1n�+4�n��n�+2�n�+3�n�+5

+�(2)L n�+2n�+5�n��n�+1�n�+3�n�+4 (1.8)

�[�(2)R + �(2)L ]n�n�+3�n�+1�n�+2�n�+4�n�+5 ;

where �n� � (1�n�) is the Boolean complement of n� �
(2)

R and �(2)L the Boolean ran-
dom numbers which determine a head-on two-body collision to rotate 60� clockwise
(L) or counter-clockwise (R), as illustrated in Fig. 1.1, and they must satisfy the
isotropic condition: h�(2)R i = h�(2)L i, and

In practice, the collision can be implemented with various algorithms. One can
either use logical operations, or by table-lookup. The collision rules shown in Fig. 1.1
can also be represented by a collision table, as shown by Table 1.1. In Table 1.1,
each bit in a binary number represents a particle number n�, � = 1; 2; : : : ; 6; from
right to left. The limitation of table lookup is the size of the table, which is 2b, where
b is the number of discrete velocities in the model. Both logic operations and table
lookup can be extremely fast on digital computers, and especially so on dedicated
computers [31].

1.2 Chapman-Enskog Analysis

The Chapman-Enskog analysis is a procedure to solve the Boltzmann equation by
means of (asymptotic) perturbation technique [3]. Through the solution of the
Boltzmann equation, the hydrodynamic equations and transport coe�cients can be
derived from macroscopic dynamics. Based on dimensional analysis, a dimensionless
parameter " can be introduced in the collision term in the Boltzmann equation:

@tf + � �rf =
1

"
C(f; f); " � Kn =

l

L
; (1.9)
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where the perturbation parameter " is the Knudsen number, which is the ratio
between microscopic and macroscopic characteristic lengths, l and L. The normal
solution of the Boltzmann equation satis�es the following ansatz:

f(x; �; t) = f(x; �; �; u; T ) : (1.10)

That is, the time dependence of the normal solution is through its dependence on
the local hydrodynamic (conserved) moments �, u, and T . The distribution function
f(x; �; t) can be expanded in terms of "

f =
1X
n=0

"nf (n); (1.11)

with the constraints

Z
d�f (0)

2
4 1

�

(� � u)2

3
5 = �

2
4 1

u

D�

3
5 ; (1.12)

Z
d�f (n)

2
4 1

�

(� � u)2

3
5 = 0 ; n � 1 ; (1.13)

i.e., the higher order, non-equilibrium parts of f do not contribute to the hydro-
dynamic (conserved) moments. However they do contribute to the gradients of the
hydrodynamic moments. The collision term can also be expanded in terms of "

C(f; f) =

1X
n=0

"nC(n) ; C(n) =
X

k+l=n

C(f (k); f (l)) : (1.14)

The normal solution can be obtained by solving the equations successively in the
order of ":

O("�1) : C(f (0); f (0)) = 0; (1.15a)

O("0) : @tf
(0) + � �rf (0) = 2C(f (0); f (1)): (1.15b)

The O("�1) equation yields the Maxwellian equilibrium distribution function:

f (0) =
�

(2��)D=2
exp

�
�(� � u)2

2�

�
: (1.16)

In general it is laborious to obtain the �rst order solution f (1) [3]. However, for the
Boltzmann equation with Bhatnagar-Gross-Krook approximation [1],

@tf + � �rf = � 1

�
[f � f (0)] ; (1.17)
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the �rst order solution is easy to obtain:

f (1) = ��(@tf (0) + � �rf (0)) ; (1.18)

The hydrodynamic equations are obtained by evaluating the moments of the
Boltzmann equation with the normal solutions:

Z
d� (@tf + � �rf)

2
4 1

�
1
2(� � u)2

3
5 = 0 : (1.19)

The above equation leads to the Euler equations for f = f (0), and to the Navier-
Stokes equations for f = f (0) + f (1).

1.3 Lattice Gas Automata Hydrodynamics

The ensemble average of the LGA evolution equation 1.1 with the assumption of
random phase leads to the following equation [9]:

f�(xi + e�; t+ 1) = f�(xi; t) + 
�(f) ; (1.20)

where f�(xi; t) is the single particle distribution function with discrete velocity e�,
f� = hn�i 2 [0; 1]. The lattice Boltzmann collision operator 
�(f) = hC�(n)i 2
[�1; 1] is given by:


�(f) =
X
s;s0

(s0� � s�) h�ss0i
bY

�=1

f s�� (1� f�)
(1�s�) ; (1.21)

where C�(n) is the LGA collision operator, and the random phase (molecular chaos)
assumption is used to obtain 
�(f):

hf�f� � � � f
i = hf�ihf�i � � � hf
i (1.22)

The local hydrodynamic moments are computed from ff�g as the following:

�(xi; t) =
X
�

f�(xi; t) ; (1.23a)

�u(xi; t) =
X
�

e�f�(xi; t) : (1.23b)

Due to the Boolean nature of the lattice-gas automata, the equilibrium distribu-
tion, which is the solution of 
�(f) = 0, is a Fermi-Dirac distribution:

f (0)� =
1

1 + exp(a+ b � e�) ; (1.24)

6



where a and b are functions of the conserved moments and cannot be obtained
analytically in general. Usually, a and b are obtained perturbatively as Taylor series
of � and u in the limit of low Mach number (small u).

By applying the Chapman-Enskog analysis in the hydrodynamic limit (long
wave-length and low frequency) to the lattice Boltzmann equation (1.20), the follow-
ing macroscopic equation can be derived from the Frisch-Hasslacher-Pomeau (FHP)
lattice-gas automaton model [8, 33, 9] in the low March number limit:

@t(�u) +r�[g(�)�uu] = �rP + �r2(�u) + �rr�(�u): (1.25)

The FHP-I (six-velocity) lattice-gas model have some obvious shortcomings:

� The LGA simulations are intrinsically noisy due to large 
uctuation of parti-
cle number n�. A spatial or temporal average is required to obtain smooth
measurements;

� The LGA models are lack of Galilean invariance because the velocity space
is discrete and �nite. This is re
ected by the fact that g(�) 6= 1 in the LGA
hydrodynamic equation;

� The viscosity � of the LGA models are determined by their collision mech-
anisms. It is di�cult to increase the Reynolds number Re due to the lower
bound of �;

� The equation of state (for the FHP-I six-velocity model)

P = c2s�

�
1� g(�)

u2

c2

�
(1.26)

is unphysical because its dependence on u2.

� There exist (unphysical) spurious conserved quantities due to the simplicity of
spatial-temporal dynamics of the LGA systems.

Much of research e�ort has been to overcome the artifacts of the lattice gas
automata. There are two approaches to remedy the shortcomings of the FHP-I
lattice-gas automata. One is to construct more complicate lattice gas model with
more discrete velocities. The other is to use the lattice Boltzmann equation.

1.4 Lattice Boltzmann Equation

Historically, the lattice Boltzmann equation is directly obtained from the lattice
gas automata by taking ensemble average of Eq. (1.1) [24]. However, such lattice
Boltzmann scheme is di�cult to be generalized in three-dimensions, and it is com-
putationally ine�cient due to the cumbersome collision operator.
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To improve the computational e�ciency, one can use linearized collision operator
[18]. The collision operator linearized about the equilibrium is given by

L�� =
@
�

@f�

����
f=f(0)

[f� � f (0)� ] : (1.27)

With the linearized collision operator, the LBE computation is greatly simpli�ed.
The collision operator becomes a b� b matrix of constant matrix elements.

1.5 Lattice BGK Model

The linearized lattice Boltzmann equation can be further simpli�ed by using the
Bhatnagar-Gross-Krook approximation of single relaxation time [1]. Thus the colli-
sion process in the lattice BGK model [4, 25] is characterized by a relaxation time
� :


�(f) = �1

�
[f� � f (eq)

� ] : (1.28)

The equilibrium distribution function is generally in the form of

f (eq)
� = w��

�
1 +A (e� � u) +B (e� � u)2 + C u2

�
; (1.29)

where w�, A, B, and C are determined by conservation laws. The lattice BGK
model [25, 4] is described by the following equation

f�(xi + e�; t+ 1) = f�(xi; t)� 1

�

�
f�(xi; t)� f (eq)

� (xi; t)
�
: (1.30)

1.6 LBE Hydrodynamics

In the limits of Kn; �x; �t ! 0, the Navier-Stokes equation can be derived from the
lattice BGK equation:

� @tu+ �ur�u = �rP + � �r2u ; (1.31)

with the isothermal equation of state and the viscosity given by

P = c2s � ; (1.32a)

� = c2s

�
� � 1

2

�
; (1.32b)

where cs �
p
kBT=m =

p
� is the sound speed, depending on the discrete velocity

set. For the FHP six-velocity model on a triangular lattice in two dimensions,
cs = 1=

p
2, and for the nine-velocity model on a square lattice n two dimensions,

cs = 1=
p
3.
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Obviously, the lattice Boltzmann equation overcomes some the shortcomings of
the lattice gas automata. First, the severe 
uctuation is eliminated. Secondly, the
viscosity is easy to adjust. Thirdly, Galilean invariance is restored up to a certain
order in wave number k. And the equation of state has no unphysical dependence
on u2. However, the lattice Boltzmann equation cannot completely eliminate the
spurious invariant quantities. In addition, the roundo� error causes instability in
the lattice Boltzmann equation.

1.7 Summary

The lattice-gas automata have the following features:

� Mimicking (simpli�ed) molecular dynamics of structureless particles;

� Exactly preserving conservation laws;

� Processing basic symmetries to simulate hydrodynamics;

� Including spurious conserved quantities due to simplicity of spatial-temporal
dynamics;

� Large 
uctuations is intrinsic to the system;

� LGA computation is Boolean in nature (integer or logic or table-lookup algo-
rithms).

In contrast, the lattice Boltzmann equation has the following features:

� Simulate hydrodynamics based on a drastically simpli�ed Boltzmann equation
with a small set of discrete velocities;

� Overcoming some defects of the lattice-gas automata, such as large 
uctua-
tions, in
exibility to adjust the viscosity, non-Galilean invariant, and unphys-
ical equation of state.

� Better numerical e�ciency in compared with the lattice gas automata under
certain conditions.

In conclusion, the LGA and LBE methods can simulate hydrodynamics.
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Lecture 2

A Priori Derivation of the Lattice Boltzmann Equation

2.1 Integral Solution of the Boltzmann Equation

For the sake of simplicity without losing generality, we study the continuous Boltz-
mann equation with Bhatnagar-Gross-Krook (BGK) approximation [1]:

@tf + � �rf = � 1

�
[f � f (0)] ; f � f(x; �; t) ; (2.1)

where f (0) is the Boltzmann-Maxwellian equilibrium distribution function:

f (0) = � (2��)�D=2 exp

�
�(� � u)2

2�

�
; (2.2)

where � = kBT=m, kB , T , andm are the Boltzmann constant, temperature, and par-
ticle mass, respectively. The macroscopic quantities are the hydrodynamic moments
of f or f (0):

� =

Z
fd� =

Z
f (0)d� ; (2.3a)

�u =

Z
�fd� =

Z
�f (0)d� ; (2.3b)

D

2
�� =

1

2

Z
(� � u)2fd� =

1

2

Z
(� � u)2f (0)d� : (2.3c)

Rewrite the Boltzmann BGK Equation in the form of ODE:

Dtf +
1

�
f =

1

�
f (0) ; Dt � @t + � �r ; (2.4)

and integrate Eq. (2.4) over a time step �t along characteristics, we have:

f(x+ ��t; �; t+ �t) = e��t=� f(x; �; t) (2.5)

+
1

�
e��t=�

Z �t

0
et

0=� f (0)(x+ �t0; �; t+ t0) dt0 :

By Taylor expansion, and with � � �=�t, we obtain:

f(x+ ��t; �; t+ �t)� f(x; �; t) = �1

�
[f(x; �; t)� f (0)(x; �; t)] +O(�2t ) : (2.6)

Note that a �nite-volume scheme or higher-order schemes can also be formulated
based upon the integral solution.

10



2.2 Passage to Lattice Boltzmann Equation

There are three necessary steps to obtain the lattice Boltzmann equation from
Eq. (eqn:bgk-integral):

1. Low Mach number expansion of the equilibrium distribution function;

2. Discretization of velocity space � to obtain necessary and minimum number
of discrete velocities f��g;

3. Discretization of x space according to f��g and �t.

2.2.1 low Mach number expansion of the equilibrium distribution func-

tion

Low Mach number (u � 0) expansion of the equilibrium distribution function f (0)

up to O(u2) is su�cient to derive the Navier-Stokes equations:

f (eq) =
�

(2��)D=2
exp

�
��

2

2�

��
1 +

� � u
�

+
(� � u)2
2�2

� u2

2�

�
+O(u3) : (2.7)

It should be noted that many defects of the lattice Boltzmann method are related
to the above low Mach number expansion of the equilibrium function. However, this
expansion is necessary to make the lattice Boltzmann method a simple and explicit

scheme.

2.2.2 discretization and conservation laws

The conservation laws are preserved exactly, if the hydrodynamic moments (�, �u,
and ��) are evaluated exactly:

I =

Z
�mf (eq)d� =

Z
exp(��2=2�) (�)d�; (2.8)

where 0 � m � 3, and  (�) is a polynomial in �. The above integral can be evaluated
by quadrature:

I =

Z
exp(��2=2�) (�)d�=

X
j

Wj exp(��2j=2�) (�j) (2.9)

where �j and Wj are the abscissas and the weights. Then

� =
X
�

f (eq)
� =

X
�

f�; �u =
X
�

��f
(eq)
� =

X
�

��f�; (2.10)

where f� � f�(x; t) � W�f(x; ��; t), and f (eq)
� � W�f

(eq)(x; ��; t). The key
message is that the quadrature must preserve the conservation laws exactly .
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2.2.3 nine-velocity LBE model on a square lattice in two dimensions

In two-dimensional Cartesian (velocity) space, set

 (�) = �mx �
n
y ;

the integral of the moments can be given by

I = (
p
2�)(m+n+2)ImIn; Im =

Z +1

�1

e��
2
�md�; (2.11)

where � = �x=
p
2� or �y=

p
2�. The second-order Hermite formula (k = 2) is the

optimal choice to evaluate Im for the purpose of deriving the nine-velocity model on
a two-dimensional square lattice, i.e.,

Im =
3X

j=1

!j�
m
j :

Note that the above quadrature is exact up to m = 5 = (2k+1). The three abscissas
in momentum space (�j) and the corresponding weights (!j) are:

�1 = �
p
3=2 ; �2 = 0 ; �3 =

p
3=2 ;

!1 =
p
�=6 ; !2 = 2

p
�=3 ; !3 =

p
�=6 :

(2.12)

Then, the integral of moments becomes:

I = 2�

"
!22 (0) +

4X
�=1

!1!2 (��) +

8X
�=5

!21 (��)

#
; (2.13)

where

�� =

8<
:

(0; 0) � = 0;

(�1; 0)p3�; (0; �1)p3�; � = 1 { 4;

(�1; �1)
p
3�; � = 5 { 8:

(2.14)

Identifying c � �x=�t =
p
3�, or c2s = � = c2=3,

W� = (2� �) exp(�2�=2�)w� ; (2.15)

where �x is the lattice constant, then we have

f (eq)
� (x; t) = W� f

(eq)(x; ��; t)

= w� �

�
1 +

3(e� � u)
c2

+
9(e� � u)2

2c4
� 3u2

2c2

�
; (2.16)
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Figure 2.1: Discrete velocity set on a square lattice in two dimensions.

where weight coe�cient w� and discrete velocity e� are:

w� =

8<
:

4=9;
1=9;
1=36;

e� = �� =

8<
:

(0; 0); � = 0 ;
(�1; 0) c; (0; �1) c; � = 1 { 4;
(�1; �1) c; � = 5 { 8:

(2.17)

With fe�j� = 0; 1; : : : ; 8g, a square lattice structure is constructed in the physical
space, as shown in Fig. 2.1. (This model is also denoted as D2Q9 model.) Similarly,
other LBE models in either two-dimensions (D2Q6 and D2Q7) or three-dimensions
(D3Q27) can be derived [13].

2.3 Some Recent Progress

Once it is realized that the lattice Boltzmann equation is related to a partial di�er-
ential equation, the Boltzmann equation, many numerical techniques used to solve
PDEs can be immediately applied to solve the lattice Boltzmann equation.

First, one can abandon the regular lattice of the LBE method by decoupling
the discretizations between space, time and momentum space, and using inter-
polation/extrapolation techniques [15, 16]. With the freedom of using interpola-
tion/extrapolation techniques, both body-�tted mesh [11, 12] and grid re�nement
[7] can be implemented in the LBE method.

Secondly, one can devise implicit method [32] or multi-grid technique to solve
the lattice Boltzmann equation for steady state calculations. These techniques can
accelerate the computational speed by two orders of magnitude.

2.4 Summary

The conclusions which we can draw are:

� The lattice Boltzmann equation can be directly derived from partial di�erential
equation without being referenced to its historic predecessor | the lattice gas
automata.

13



� The lattice Boltzmann equation is a special �nite di�erence form of the Boltz-
mann equation. Phase space and time are discretized in a coherent manner
such that physical space becomes a lattice space.

� In the lattice Boltzmann equation, the conservation laws are preserved rigor-
ously with discrete momentum space.

� Many numerical techniques for solving PDEs can be used to improve the lattice
Boltzmann method.

14



Lecture 3

Derivation of the Lattice Boltzmann Model for Nonideal-Gases

3.1 Boltzmann's Theory for Rare�ed Gases (1890')

The Boltzmann equation

@tf + � �rf + a �r�f =

Z
d�1 [f

0f 01 � ff1] (3.1)

is valid in the Boltzmann Gas Limit (BGL):

Particle Number N !1 ; (3.2a)

Interaction Range r0 ! 0 ; (3.2b)

Mean-Free-Path l � (Nr20 )
�1 ! Constant ; (3.2c)

Interaction Volume Nr30 ! 0 : (3.2d)

Because of Nr30 ! 0, the Boltzmann equation can only retain the thermodynamics
of ideal gases.

3.2 Enskog's Theory for Dense Gases (1917)

For hard spheres of radius r0, the Boltzmann equation is modi�ed for dense gases
as follows (by Enskog):

@tf + � �rf + a�r�f = J ; (3.3)

where a is the acceleration due to external �eld, and J is the Enskog collision term

J =

Z
d�1 [g(x + r0r̂)f

0f 01(x+ 2r0r̂)� g(x� r0r̂)ff1(x� 2r0r̂)] ; (3.4)

g is the radial distribution function, r̂ is the unit vector in the direction from the
center of the second particle of f(x; �1) to the center of the �rst particle of f(x; �)
at the instant of contact during a collision, and �1 is the collisional space of the
second particle of f(x; �1). The Enskog collision term J can be expanded as a
Taylor series in space:

J = J (0) + J (1) + J (2) + � � � ; (3.5a)
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J (0) = g

Z
d�1[f

0f 01 � ff1] ; (3.5b)

J (1) = r0

Z
d�1r̂ �rg[f 0f 01 + ff1] ; (3.5c)

J (2) = 2r0g

Z
d�1r̂ � [f 0rf 01 + frf1] : (3.5d)

It is only necessary to retain terms up to the �rst order gradient.
The essence of Enskog's theory is to explicitly consider the volume exclusion

e�ect in real gases consisting particles of �nite sizes. The collision is non-local
for particles of �nite sizes. One rami�cation of the non-local collision is that the
conservation laws only hold globally, but not locally. It should be noted that, similar
to the Boltzmann equation, the Enskog equation has anH-Theorem and a consistent
thermodynamics.

3.3 Enskog Closure of Two-Particle Distribution Function f2

The essential assumption in Enskog's theory is the factorization of the two particle
distribution function | the Enskog closure:

f2(x1; �1; x2; �2; t) = g(jx1 � x2j)f1(x1; �1; t)f1(x2; �2; t) ; (3.6)

where g is the radial distribution function (pairwise correlation). In contrast, the
Boltzmann closure is

f2(x1; �1; x2; �2; t) = f1(x1; �1; t)f1(x2; �2; t) :

3.4 Non-Local Collision Terms in the Enskog Equation

With the approximation f � f (0), which is consistent with the Chapman-Enskog
analysis, we have

J (1) = �f (0) b � �0 �rg ; (3.7a)

J (2) = �f (0) b � g

�
2�0 �r ln�+

2

(D + 2)

�0i �0j @iuj
�

+

�
1

(D + 2)

�20
�
� 1

�
r�u

+
1

2

�
D

(D + 2)

�20
�
� 1

�
�0 �r ln �

�
; (3.7b)

where f (0) is the Maxwellian equilibrium distribution function given by

f (0)(�; u; �) = �(2��)�D=2 exp

�
�(� � u)2

2�

�
; (3.8)
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and �0 = (��u) is the peculiar velocity, � = kBT=m is the normalized temperature,
and b = V0=m = 4�r30=3m is the second virial coe�cient.

3.5 Normal Solutions of the Enskog Equation

The �rst and second order normal solution of the Enskog equation, obtained via

Chapman-Enskog analysis, are:

f (0) = � (2��)�D=2 exp

�
�(� � u)2

2�

�
; (3.9)

f (1) = �f (0) 1
g

��
1 +

2

(D + 2)
b�g

�
A �r ln �

+

�
1 +

4

D(D + 2)
b�g

�
Bij@iuj

�
: (3.10)

With b = 0 and g = 1, the solutions reduce to that of the Boltzmann equation.
Note that r� does not appear in f (1), it appears in f (2) | the Burnett solution

(1935). This is consistent with the dimensional analysis of the Navier-Stokes equa-
tion, r� is in the order of O(K2

n), where Kn is the Knudsen number, which is also
the small expansion parameter in the Chapman-Enskog analysis.

3.6 The Navier-Stokes Equations

The Navier-Stokes equations derived from the Enskog equation are

@t�+r� (�u) = 0 ; (3.11a)

@tu+ u �ru = �1

�
rP+ a ; (3.11b)

@t� + u �r� = �1

�
r� q � 1

�
Pij@iuj + a � u ; (3.11c)

where

Pij =

Z
d� �0i�0jf = [��(1 + b�g)� �2r� u] �ij

�
"
2

g

�
1 +

4

D(D + 2)
b�g

�2

�1 +
2D

(D + 2)
�2

#
Sij ; (3.12a)

Sij =
1

2
[@iuj + @jui]� 1

D
r� u �ij ; (3.12b)

q =

Z
d�

1

2
�20�0f = �

�
1

g
(1 + b�g)2�+

D

2
�2

�
r� : (3.12c)
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3.7 Incompressible and Isothermal Fluids

Because for incompressible and isothermal 
uids, r�u = 0 and r� = 0, therefore,

J (1) + J (2) � �f (0) b� (� � u)�[rg + gr ln�2]

= �f (0) b� g (� � u)�r ln(�2g) = J 0 : (3.13)

The modi�ed Boltzmann equation, with BGK approximation, is

@tf + � �rf + a �r�f = � g
�
[f � f (0)]� f (0) b� g (� � u)�r ln(�2g) : (3.14)

The equation of state derived from the above modi�ed Boltzmann equation (obtained
by computing the �rst moment of the non-local collision term) is

P = � � [1 + b� g] ; g = g(b�) : (3.15)

It should be noted that the non-ideal gas e�ects come from the non-local collision
term, which is the manifestation of the volume exclusion e�ect, or other inter-particle
interactions. It cannot be a result due to a body force.

3.8 Discretization of Continuous Boltzmann Equation

Similar to the previous Lecture, we can rewrite the Enskog BGK Equation in the
form of ODE:

df

dt
+
g

�
f =

g

�
f (0) + J 0 ;

d

dt
� @

@t
+ � �r+ a�r� : (3.16)

Integration of Eq. (3.16) over a time step �t along characteristic line leads to

f(x+ ��t +
1

2
a�2t ; � + a�t; t+ �t) = e��tg=� f(x; �; t) (3.17)

+e��tg=�
Z �t

0
dt0 et

0g=�
h g
�
f (0) + J 0

i
(x+�t0+ 1

2
at02;�+at0; t+t0)

:

By Taylor expansion, and with � � �=�t, we obtain:

f(x+ ��t; �; t+ �t)� f(x; �; t) = �g
�
[f(x; �; t)� f (0)(x; �; t)]

+
�
J 0 � a�r�f

�
�t +O(�2t ) : (3.18)

This completes the temporal discretization. The discretization of phase space (x; �)
can be accomplished in the same manner as discussed in the previous Lecture. How-
ever, there are two extra terms needed to be dealt with here: the forcing term and
the Enskog collision term.
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3.9 The External Forcing

The forcing term must satisfy the following moment constraints:Z
d� a�r�f = 0 ; (3.19a)Z
d� � a�r�f = ��a ; (3.19b)Z
d� �i�j a�r�f = �� (aiuj + ajui) : (3.19c)

Similar to the equilibrium, the forcing term is expanded in term of u as the following

a �r�f = �� exp(��2=2�)
�
1

�
(� � u) +

(� �u)
�2

�

�
� a : (3.20)

Note that in the above expansion, only the terms up to the �rst order in u have
been retained, because there is an overall factor of �t in the forcing term. If the
second-order moment constraint Eq. (3.19) is ignored:

a �r�f = �� exp(��2=2�) 1
�
� � a : (3.21)

3.10 The Lattice Boltzmann Model for Nonideal Gases

The LBE model for non-ideal gases derived from the Enskog equation for dense gases
is given as the following:

f�(x+ e��t; t+ �t)� f�(x; t) = �g
�
[f� � f (eq)

� ] + (J 0� + F�) �t (3.22)

where

J 0� = �f (eq)
� b�g (e� � u) �r ln(�2g) ; (3.23a)

F� = w��

�
3

c2
(e� � u) +

9

c4
(e� � u)e�

�
� a : (3.23b)

The equation of state and the viscosity of the model are given by

P = ��[1 + b�g] ; (3.24a)

� =
1

3

�
�

g
� 1

2

�
c �x =

�
�

g
� 1

3

�
� �t : (3.24b)

Note that the viscosity depends on the radial distribution function g. This depen-
dence of � on g can be eliminated by setting the relaxation parameter to 1=� . For
hard-spheres, the radial distribution function is [3]

g = 1 +
5

8
b�+ 0:2869(b�)2 + : : : :
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Lecture 4

A Critical Review of Existing Lattice Boltzmann Models for

Nonideal Gases

4.1 Voodoo Magic of the Lattice Boltzmann Equation (1990')

The usual practice to achieve nonideal gas e�ect by using a lattice Boltzmann model
consists the following two tricks:

� Use of interaction potential, or \brute force";

� Creation of \new" and \nonideal" equilibrium distribution function.

That is, given a hydrodynamic equation with an (almost) arbitrary stress tensor �:

�@tu+ �u�ru =r�

Then, employ the following tricks:P
� e�;ie�;jf

(eq)
�

P
� e�;ie�;jF�

9=
;)r�

4.2 Model with Interaction Potential

Given a potential U [27, 28], �a = �r�U , then consider

�u =
X
�

e�f� + �a�t =
X
�

e�f� + ��u (4.1)

In the Navier-Stokes equation, rewrite [27, 28]

�rP + �a = �r(�� + �U) ; �t = 1 : (4.2)

Therefore, e�ectively:
P = ��[1 + U=�] (4.3)

Equivalent to [up to O(�t)]:
f (0)
� = f (0)

� (u+ �u) (4.4)

Defects of this model are:

� Lack of equilibrium thermodynamics;

� Incorrect heat transfer (�a � u does not a�ect heat 
ux q).
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4.3 Modi�ed Model with Interaction Potential

With a few crude approximations, such as f = f (0) [17], make

a �r�f � �1

�
f (0)(� � u) � a (4.5)

and assume the forcing:

a = �rV � b��gr ln(�2g) (4.6)

where potential V accounts for the attractive component of the intermolecular pair-
wise potential. The \equation of state" for this model is:

P = �� (1 + b�g) + V (4.7)

This model shares the same defects of the previous one conceptually. In addition,
V is redundant | its e�ect can be included in g.

4.4 Model with Free Energy

Use the free energy inspired by Cahn-Hilliard's model

	 =

Z
dx
h�
2
kr�k2 +  (�)

i
; (4.8)

the the pressure tensor is given by [30, 29]:

P = �
�	

��
�	 = p� ��r2�� �

2
kr�k2 ; (4.9a)

Pij = P �ij + � @i� @j� : (4.9b)

The equation of state is
p = � 0 �  : (4.10)

The equilibrium distribution function is obtained by imposing the following con-
straint: X

�

e�;ie�;jf
(eq)
� = Pij (4.11)

The equilibrium distribution function satis�ed the above constraint is

f (eq)� =
1

3
�

�
1 + (e� � u) + 2(e� � u)2 � 1

2
u2

�
(4.12)

+
�

3

�
(e2�;x � e2�;y)

�
(@x�)

2 � (@y�)
2
�
+ 2e�;xe�;y@x� @y�

	
��
3
�r2�+

1

3
[� 0(�)�  (�)� �] :
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There are three parts in the above equilibrium distribution. The �rst term in brack-
ets [ ] is nothing but the usual equilibrium distribution function of the seven-velocity
Frisch-Hasslacher-Pomeau model [9, 14]. The second term in bracket f g is an ex-
pression of the tensor Eij � (e�;i@i�)(e�;j@j�) written in terms of a traceless and an
o�-diagonal part with correct symmetry such that all the terms proportional to �
reduce to the term �[�r2�+ kr�k2=2] in the diagonal part of the pressure tensor,
given by Eq. (4.9a). This term is directly taken from Cahn-Hilliard's model and it
induces surface tension due to density gradient in addition to the part due to the
(nonideal gas) equation of state, but it does not contribute to the hydrodynamic
pressure (or the equation of state). The nonideal gas part in the equation of state
is contained in the last part of the above equation, [� 0(�)� (�)� �]=3, which can
be written in a density expansion in general [21, 23]. This term can be viewed as an
equivalent forcing term as the following:

F� = �[� 0(�)�  (�)] = e� �rU : (4.13)

The connection between the free-energy model and the interaction model becomes
explicit and obvious now. The di�erence among the two lies in their numerical
implementations.

Defects of the free-energy model are:

� Non-Navier-Stokes: lost of Galilean invariance;

� Inconsistent with the Chapman-Enskog analysis;

� Inconsistent thermodynamics: temperature depends on r�, etc.;

� Incorrect heat transfer.

4.5 Equivalence of Hamiltonian and Free Energy Approach

Given a Hamiltonian

H =

NX
i=1

�
1

2
m�2i + U(ri)

�
+
X
i<j

Vij(jri � rj j) (4.14)

the partition function can be constructed

Z =

Z
drNd�N exp(�H=kBT ) (4.15)

then the free energy can be obtained

F = �kBT lnZ : (4.16)

Therefore the formalisms of H and F are equivalent | there is gain or lost of
information by using one formalism or the other. The di�erence is that the Hamil-
tonian H is local whereas the free energy functional F is global. Furthermore, the
free-energy density (e.g.,  (�)) is local.
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4.6 Summary

We have discussed three existing LBE models for nonideal gases. We concluded
that:

� Lattice Boltzmann for nonideal gases can be derived from the Enskog equation;

� Most existing LBE models are ad hoc, and conceptually incorrect;

� Numerics is very important in the interface dynamics.
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Lecture 5

The Generalized Lattice Boltzmann Equation

5.1 Motivation

As it is shown, the lattice Boltzmann equation is a special �nite di�erence form of
the Boltzmann equation. The most drastic approximation made in the derivation
of the lattice Boltzmann equation is the discretization of momentum space � into a
very small set of discrete velocities f��j� = 1; : : : ; bg. The discretization of phase
space and time inevitably introduces truncation error and numerical artifacts. It
is highly desirable to reduce the e�ect of the artifacts. In the lattice Boltzmann
method, the artifacts due to the following factors are to be analyzed:

� Dissipation due to hyperviscosity. The higher order truncation error would
result to hyperviscosty in the LBE hydrodynamics. The hyperviscosity has
the following form in general

�(k) = �0 � �1k
2 + �2k

4 + � � �+ (�1)n�nk2n + � � � : (5.1)

� Galilean Invariance. For any �nite di�erence scheme, Galilean invariance can
only be satis�ed up to a certain extend. In a reference frame with velocity V ,
the phase of a plain wave is adjusted accordingly:

exp[i(k�r � !t)] =) exp[i(k�r � !t)� ig(k)k�V t] (5.2)

where g is the Galilean coe�cient, which can be expressed as the following:

g(k) = g0 � g1k
2 + g2k

4 + � � � + (�1)ngnk2n + � � � : (5.3)

If the system is Galilean invariant, then we must have g = 1.

� Isotropy. Discretization causes anisotropic e�ect, that is, the transport coe�-
cients, the shear viscosity �(k), the bulk viscosity �(k), the sound speed cs(k),
and the Galilean coe�cient g(k), all depend on the direction of wave vector k.

We propose to studies the generalized hydrodynamics [20, 10] of the lattice Boltz-
mann equation by a systematic analysis of the linearized dispersion equation of the
lattice Boltzmann equation [19]. The analysis would help us to optimize the lattice
Boltzmann method in terms of reducing its a�ects.
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5.2 The Lattice Boltzmann Equation in Moment Space

The lattice Boltzmann equation in particle velocity space is

f�(xi + e�; t+ 1) = f�(xi; t) + 
�(f) : (5.4)

The hydrodynamic moments are computed from ff�g as follows:

�(xi; t) =
X
�

f�(xi; t) ; (5.5a)

�u(xi; t) =
X
�

e�f�(xi; t) : (5.5b)

The lattice Boltzmann equation (5.4) can be rewritten in a concise vector form:

jf(xi + e�; t+ 1)i = jf(xi; t)i+ j
(f)i (5.6)

where the Dirac notations of bra h�j for row vector and ket j�i for column vector are
used,

jf(rj)i � (f0; f1; : : : ; f8)
T ; (5.7a)

jf(rj + e�; t+ 1)i � (f0(rj + e0; t+ 1); : : : ; f8(rj + e8; t+ 1))T ; (5.7b)

j
(f)i � (
0(f); 
1(f); : : : ; 
8(f))
T ; (5.7c)

and T is the transpose operator.
Given a set of b discrete velocities, fe�j� = 0; 1; : : : ; (b�1)g, with corresponding

distribution functions, ff�j� = 0; 1; : : : ; (b�1)g, one can construct a b-dimensional
vector space V = R

b based upon the discrete velocity set. One can also construct a
space M = R

b based upon the (velocity) moments of ff�g. Obviously, there are b
independent moments for the discrete velocity set. The reason in favor of using the
moment representation over the distribution function representation is somewhat
obvious. It is well understood in the context of kinetic theory that various physical
processes in 
uids, such as viscous transport, can be approximately described by
coupling or interaction among `modes' (of the collision operator), and these modes
are directly related to the moments (e.g., the hydrodynamic modes are linear combi-
nations of mass, and momenta moments). Thus the moment representation provides
a convenient and e�ective means by which to incorporate the physics into the LBE
models. Because the physical signi�cance of the moments is obvious (hydrodynamic
quantities and their 
uxes, etc.), the relaxation parameters of the moments are di-
rectly related to the various transport coe�cients. This mechanism allows us to
control each mode independently. This also overcomes some obvious de�ciencies of
the usual BGK LBE model, such as a �xed Prandtl number, which is due to a single
relaxation parameter of the model.
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For the nine-velocity LBE model on a square lattice in two-dimensions, the
following mapping

M �

0
BBBBBBBBBBBB@

h�j
hej
h"j
hjxj
hqxj
hjy j
hqyj
hpxxj
hpxyj

1
CCCCCCCCCCCCA
�

0
BBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1
�4 �1 �1 �1 �1 2 2 2 2
4 �2 �2 �2 �2 1 1 1 1
0 1 0 �1 0 1 �1 �1 1
0 �2 0 2 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1
0 0 �2 0 2 1 1 �1 �1
0 1 �1 1 �1 0 0 0 0
0 0 0 0 0 1 �1 1 �1

1
CCCCCCCCCCCCA

(5.8)

� (j�i; jei; j"i; jjxi; jqxi; jjyi; jqyi; jpxxi; jpxyi)T

uniquely maps a vector jfi in discrete velocity space V = R
b to a vector j%i in

moment space M = R
b , and vice versa, that is

j%i = Mjfi ; jfi = M�1j%i : (5.9)

Note that the row vectors in M have explicit physical signi�cances related to the
moments of ff�g in discrete velocity space: j�i is the density mode; jei is the
energy mode; j"i is related to energy square; jjxi and jjyi correspond to the x and
y components of momentum (mass 
ux); jqxi and jqyi correspond to the x and
y components of energy 
ux; and jpxxi and jpxyi correspond to the diagonal and
o�-diagonal components of the stress tensor.

The moments for the nine-velocity model are:

Order Quantity Moment

0 Density: � = h�jfi = hf j�i ;
2 Energy: e = hejfi = hf jei
4 Energy Square: " = h"jfi = hf j"i ;
1 x-Momentum: jx = hjxjfi = hf jjxi ;
3 x-Heat Flux: qx = hqxjfi = hf jqxi ;
1 y-Momentum: jy = hjyjfi = hf jjyi ;
3 y-Heat Flux: qy = hqyjfi = hf jqyi ;
2 Diagonal stress: pxx = hpxxjfi = hf jpxxi ;
2 O�-diagonal stress: pxy = hpxyjfi = hf jpxyi :

5.3 The Generalized BGK Approximation in Moment Space

Instead of the single relaxation time approximation, one can use multiple relaxation
times approximation, which corresponds to one kinetic mode. This is a general-
ization of the BGK approximation [6]. For the nine-velocity LBE model, at most
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there can be six independent relaxation parameters because there are only six ki-
netic (non-conservative) modes in the model. Therefore, the relaxation process can
be cast as the following0
BBBBBBBBBBBB@

��
�e
�"
�jx
�qx
�jy
�qy
�pxx
�pxy

1
CCCCCCCCCCCCA

=

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 �s2 0 0 0 0 0 0 0
0 0 �s3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 �s5 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 �s7 0 0
0 0 0 0 0 0 0 �s8 0
0 0 0 0 0 0 0 0 �s9

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

��
�e
�"
�jx
�qx
�jy
�qy
�pxx
�pxy

1
CCCCCCCCCCCCA

(5.10)

where �%� denotes the change of the moment %� due to collision (or relaxation),
while �%� denotes the deviation from the equilibrium. In vector notation, we have

j�%i � j%i � j%(eq)i ; (5.11a)

j�%i = S j�%i : (5.11b)

5.4 The Equilibria in Moment Space

The equilibrium distribution functions depend only upon conserved moments:

e(eq) =
1

hejei
�
�2 h�j�i �+ 
2 (hjxjjxij2x + hjyjjyij2y)

�
(5.12a)

=
1

4
�2 �+

1

6

2 (j

2
x + j2y) ;

"(eq) =
1

h"j"i
�
�3 h�j�i �+ 
4 (hjxjjxij2x + hjyjjyij2y )

�
(5.12b)

=
1

4
�3 �+

1

6

4 (j

2
x + j2y) ;

q(eq)x =
hjxjjxi
hqxjqxic1jx =

1

2
c1jx ; (5.12c)

q(eq)y =
hjyjjyi
hqyjqyic1jy =

1

2
c1jy ; (5.12d)

p(eq)xx = 
1
1

hpxxjpxxi (hjxjjxij
2
x � hjyjjyij2y) =

3

2

1(j

2
x � j2y ) ; (5.12e)

p(eq)xy = 
3

phjxjjxihjy jjyi
hpxxjpxxi (jxjy) =

3

2

3(jxjy) : (5.12f)

There are seven adjustable parameters in the model: �2, �3, c1, 
1, 
2, 
3, 
4. These
parameters will be determined by the analysis of the linearized dispersion equation
[19].

27



5.5 The Generalized Lattice Boltzmann Equation

The generalized lattice Boltzmann equation with multiple relaxation parameters is
written as [6, 19]

jf(xi + e�; t+ 1)i = jf(xi; t)i+M�1S [j%(xi; t)i � j%(eq)(xi; t)i] : (5.13)

The computation of the generalized lattice Boltzmann equation involves the follow-
ing steps (after the initialization of jfi):

� Project jfi to moments by j%i = Mjfi, and compute the equilibrium j%(eq)i;
� Collision in moment space (multiple-parameter relaxation)

j�%i � S [j%i � j%(eq)i] ;

� Project j%i back to jfi = M�1j%i to perform advection step in velocity space:

jf(xi + e�; t+ 1)i = jf(xi; t)i+M�1j�%i :

The computational overhead due to the projections between V and M is not heavy.
It is generally about 10 { 20% of the of the LBGK algorithm.

5.6 The Linearized Lattice Boltzmann Equation

Suppose the system in uniform state of � and V = (Vx; Vy), and

jfi = jf (0)i+ j�fi : (5.14)

The lattice Boltzmann equation can be linearized:

j�f(rj + e�; t+ 1)i = j�f(rj; t)i+M�1CMj�f(rj; t)i : (5.15)

In Fourier space, the above linearized LBE becomes

Aj�f(k; t+ 1)i = j�f(k; t)i+M�1CMj�f(k; t)i ; (5.16)

where the linearized collision operator C and the advection operator A are given by:

C�� =
h%�j%�i
h%� j%�i

@

@%�
[%� � %

(eq)
� ] ; (5.17a)

A�� = exp(ie� � k) ��� : (5.17b)

The linearized lattice Boltzmann equation can be written as the following:

j�f(k; t+ 1)i = Lj�f(k; t)i ; (5.18)

where L is the linearized evolution operator:

L = A�1[I+M�1CM] : (5.19)
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5.7 Eigenvalue Problem of the Linearized Lattice Boltzmann Equation

The solution of the linearized lattice Boltzmann equation is equivalent to an eigen-
value problem of the linearized evolution operator:

det[L� zI] = 0 : (5.20)

Hydrodynamic modes (corresponding to z� = 1) of L at k = (k cos �; k sin �) ! 0

are one transverse (shear) mode and two longitudinal (sound) modes:

j%T i = cos �jjxi � sin �jjyi � jjT i ; (5.21a)

j%�i = j�i � (cos �jjxi+ sin �jjyi) � j�i � jjLi : (5.21b)

When k 6= 0, we have

j%T (t)i = zT
t j%T (0)i = exp[�ik(gV cos�)t] exp(��k2t)j%T (0)i ; (5.22a)

j%�(t)i = z�
t j%�(0)i

= exp[�ik(cs � gV cos�)t] exp[�(�=2 + �)k2t]j%�(0)i : (5.22b)

Transport coe�cients �, �, cs, and g are functions of wavevector k, and the ad-
justable parameters in the model [see Eqs. (5.12)]. By optimizing the isotropy of
the transport coe�cients and minimizing the non-Galilean e�ect of the model, the
values of the adjustable parameters can be determined.

5.8 Determination of the Adjustable Parameters

The Galilean invariance of the phases in the transverse mode (zT ) and the sound
modes (z�) up to k leads to:


1 = 
3 =
2

3
; (5.23a)


2 = 18 : (5.23b)

Isotropy of the attenuation of the transverse mode (zT ) and the Galilean invariance
of the attenuation of the sound modes (z�) lead to

c1 = �2 ; (equivalent to cs = 1=
p
3) ; (5.24a)

�2 = �8 : (5.24b)

The remaining adjustable parameters are: �3 and 
4 (in �
(eq)). If we chose

�3 = 4 ; (5.25a)


4 = �18 ; (5.25b)

and s� = 1=� , the generalized lattice Boltzmann equation reduces to a lattice BGK
model.
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5.9 Behaviors of Eigenvalues of the Linearized Collision Operator L

The behaviors of eigenvalues of the linearized collision operator L determine the
local stability of the LBE model: If Re(ln z�) > 0, then the corresponding mode
j%�i is unstable. Figure 5.1 shows the real and imaginary parts of the nine roots
of L with a given set of parameters. It shows that when k = �, one kinetic mode
becomes \quasi-conservative," because the corresponding eigenvalue is equal to 1
when k = �. This is the mode which generates the checker-board pattern and
instigates instability at short wave length.

Figure 5.1: Logarithmic eigenvalues of the nine-velocity model. The values of the parameters

are �2 = �8, �3 = 4, c1 = �2, 
1 = 
3 = 2=3, 
2 = 18, and 
4 = �18. The relaxation

parameters are: s2 = 1:64, s3 = 1:54, s5 = s7 = 1:9, and s8 = s9 = 1:99. The streaming

velocity V is parallel to k with V = 0:2, and k is along the x axis. (a) Re(ln z�) and (b)

Im(ln z�).

The adjustable parameters in our model can be used to alter the properties of the
model. The stability of the BGK LBE model and our model is compared in Fig. 5.2.
In this case we choose the adjustable parameters in our model to be the same as
the BGK LBE model, but maintain the freedom of di�erent modes to relax with
di�erent relaxation parameters s�. Figure 5.2 shows that for each given value of V ,
there exists a maximum value of s8 = 1=� (which determines the shear viscosity)
below which there is no unstable mode. The values of other relaxation parameters
used in our model are s2 = 1:63, s3 = 1:14, s5 = s7 = 1:92, and s9 = s8 = 1=� .
Figure 5.2 clearly shows that our model is more stable than the BGK LBE model
in the interval 1:9 � s8 = 1=� � 1:99. Therefore, we can conclude that by carefully
separating the kinetic modes with di�erent relaxation rates, we can indeed improve
the stability of the LBE model signi�cantly.

The behaviors of transport coe�cients are also determined by the eigenvalues of
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Figure 5.2: Stability of the generalized LBE model vs. the BGK LBE model in the parameter

space of V and s8 = 1=� . (left) max[Re(ln z�)] for given V . (right) Stability region of GLBE

vs. LBGK model.

L. Figure 5.3 shows the k-dependence of the viscosity and the Galilean coe�cient g.
It shows that in small scales (large k), the LBE model becomes more anisotropic and
non-Galilean invariant. In addition, the use of interpolation signi�cantly increases
the hyperviscosity and the e�ect of non-Galilean invariance.

Figure 5.3: k-dependence of viscosities and g-factor. The solid lines, dotted lines, and dashed

lines correspond to � = 0, �=8, and �=4, respectively. Three LBE model tested: (a) with no

interpolation, (a) with central interpolation, and (c) with upwind interpolation.

The artifacts of the LBE method can also be analyzed. We study an interesting
and revealing case in which the initial velocity �eld contains shocks. Consider a
periodic domain of size Nx � Ny = 84 � 4. At time t = 0, we take a shear wave
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Figure 5.4: Decay of discontinuous shear wave velocity pro�le uy(x; t). (left) The lines and

symbols (�) are theoretical and numerical results, respectively. Only the positive half of each

velocity pro�le is shown. LBE model (a) with no interpolation, (b) with the central interpolation

and r = 0:5. (right) Decay of uy(x; t) at a location close to the discontinuity x = 3Nx=4. The

solid lines and dashed lines are analytic and numerical results, respectively. The time is rescaled

as r�2�k2t.

uy(x; 0) of rectangular shape (discontinuities in uy at x = Nx=4 and x = 3Nx=4):

uy(x; 0) = U0; 1 < x � Nx=4; 3Nx=4 < x � Nx;

uy(x; 0) = �U0; Nx=4 < x � 3Nx=4:

The initial condition ux(x; 0) is set to zero everywhere. We consider two separate
cases with and without a constant streaming velocity V .

Figures 5.4(a) and 5.4(b) show the decay of the rectangular shear wave simulated
by the normal LBE scheme and the LBE scheme with second-order central interpo-
lation (with r = 0:5, where r is the ratio between advection length �x and grid size
�x), respectively. The lines are theoretical results with �(kn) obtained numerically.
The times at which the pro�le of uy(x; t) (normalized by U0) shown in Fig. 5.4 are
t = 100, 200, . . . , 500. The numerical and theoretical results agree closely with each
other. The close agreement shows the accuracy of the theory. In Fig. 5.4(b), the
overshoots at early times due to the discontinuous initial condition are well captured
by the analysis. This overshoot is entirely due to the strong k-dependence of �(k)
caused by the interpolation. This phenomena is an artifact due to discretization,
and is not connected to any physical e�ect. This artifact is also commonly observed
in other CFD methods involving interpolations.

Similarly to Fig. 5.4, Fig. 5.5 shows the evolution of uy(x; t) for the same times as
in Fig. 5.4. The solid lines and the symbols (�) represent theoretical and numerical
results, respectively. Shocks move from left to right with a constant velocity Vx =
0:08. Figures 5.5(a), 5.5(b), and 5.5(c) show the results for the normal LBE scheme
without interpolation, the scheme with second-order central interpolation, and the
scheme with second-order upwind interpolation, respectively. In Figs. 5.5(b) and
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Figure 5.5: Decay of discontinuous shear wave velocity pro�le uy(x; t) with a constant stream-

ing velocity Vx = 0:08 = U0. The solid lines and symbols (�) are theoretical and numerical

results, respectively. The dashed lines in (b) and (c) are obtained by setting gn = 1. (a) no

interpolation, (b) central interpolation and r = 0:5, (c) upwind interpolation and r = 0:5.

5.5(c), the dotted lines are the results obtained by setting gn = 1. Clearly, the
e�ect of g(k) is signi�cant. For the LBE scheme with central interpolation, the
results in Fig. 5.5(b) with g(k) = 1 underpredict the overshooting at the leading
edge of the shock and overpredict the overshooting at the trailing edge, whereas the
results in Fig. 5.5(c) for the LBE scheme with upwind interpolation overpredict the
overshooting at the leading edge of the shock and underpredict the overshooting at
the trailing edge.

5.10 Summary

We have constructed a generalized LBE model with multiple relaxation times. The
hydrodynamic behavior of the model is obtained by analyzing the linearized disper-
sion equation. Based on our analysis, we can draw the following conclusions:

� The generalized LBE is superior than the Lattice BGK model in terms of
stability, isotropy, and Galilean invariance. The Prandtl number of the gener-
alized LBE can be arbitrary;

� Analysis of the linearized dispersion equation is equivalent to the Chapman-
Enskog analysis, while Chapman-Enskog analysis is not valid for situation of
�nite wavevector k;

� Analysis of the linearized dispersion equation is also applicable to complex

uids (e.g., viscoelastic 
uids).

We also realize the limitations of the dispersion equation analysis. It cannot deal
with nonlocal e�ects (gradients) and the boundary conditions. A detailed treatment
of the generalized lattice Boltzmann equation is provided in Ref. [19].
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Epilogue

In �ve lectures I tried to give an overview on the theory of the lattice Boltzmann
equation. The emphasis of these lectures is on the mathematical justi�cation of the
lattice Boltzmann method. Unfortunately I did not have the time to discuss the
applications of the method, which I shall refer the readers to a recent review on the
lattice gas and lattice Boltzmann method [23]. Here I would like to a few words on
the rationale, or philosophy of the lattice gas and lattice Boltzmann methods.

It is a well known fact that a 
uid is a discrete system with a large number
(� 1023) of particles (molecules). A system of many particles can be described by
either molecular dynamics (MD) or a hierarchy of kinetic equations (the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy), and these two descriptions are equivalent.
With the molecular chaos assumption due to Boltzmann, the BBGKY hierarchy
can be closed with a single equation: the Boltzmann equation for the single particle
distribution function. On the other hand, a 
uid can also be treated as a continuum
described by a set of partial di�erential equations for 
uid density, velocity, and
temperature: the Navier-Stokes equations. It should be stressed that the continuum
treatment of 
uid is an approximation. This approximation works extremely well
under many circumstances.

It is usually convenient to use the Navier-Stokes equations to some 
uid prob-
lems. Unfortunately these equations can be very di�cult or even impossible to solve
under some circumstances such as inhomogeneous multiphase or multicomponent

ows, or granular 
ows. In the case of multiphase or multicomponent 
ows, inter-
faces between di�erent 
uid components (e.g. oil and water) or phases (e.g. vapor
and water) cause the numerical di�culties. Computationally, one might be able
to track a few, but hardly very many interfaces in a system. Realistic simulations
of 
uid systems with density or composition inhomogeneities by direct solution of
the Navier-Stokes equations is therefore impractical. We can also look at the prob-
lem from a di�erent perspective: interfaces between di�erent components or phases
of a 
uid system are thermodynamic e�ects which result from interactions among
molecules. To solve the Navier-Stokes equations, one needs to know the equation of
state, which is usually unknown at an interface. It is therefore di�cult to incorporate
thermodynamics into the Navier-Stokes equations in a consistent or a priori fashion.
Hence we encounter some fundamental di�culties. In the case of granular 
ow, the
situation is even worse: it is not even clear that there exists a set partial di�eren-
tial equations analogous to the Navier-Stokes equations which correctly model such
systems. Instead, granular 
ow is usually modeled by equations completely lacking
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the fundamental validity of the Navier-Stokes equations.
Although the Navier-Stokes equations are inadequate in some circumstances,

neither molecular dynamics nor the Boltzmann equation are practical alternatives
because solutions of molecular dynamics or the Boltzmann equation pose formidable
tasks which demand much more computational e�ort than the solution of the Navier-
Stokes equations. Thus, we face the following predicament: although the Navier-
Stokes equations are inadequate, molecular dynamics or the Boltzmann equation
are much too di�cult to solve and are even unnecessarily complicated if we are only
interested in the macroscopic behaviors of a system. It is within this context that
the lattice-gas automata (simpli�ed molecular dynamics) and the lattice Boltzmann
equation (simpli�ed Boltzmann equation) become alternatives. It has been realized
that hydrodynamics is insensitive to the details of the underlying microscopic or
mesoscopic dynamics | the Navier-Stokes equations are merely statements of con-
servation laws, which re
ect the same conservation laws in microscopic dynamics,
and constitutive relations, which re
ect the irreversible nature of the macroscopic
dynamics. Di�erent inter-molecular interactions would only result in di�erent nu-
merical values of the transport coe�cients. Since the details of the microscopic
dynamics are not important if only the hydrodynamic behavior of system is of in-
terest, one may ask the following question: What constitutes a minimal microscopic
or mesoscopic dynamic system which can provide desirable physics at the macro-
scopic level (hydrodynamics, thermodynamics, etc.). It turns out that the essential
elements in such a microscopic or mesoscopic dynamic system are the conservation
laws and associated symmetries. It is based upon this rationale that the lattice gas
and the lattice Boltzmann models were constructed as reduced models to numerically
simulate various complex systems.

It should also be pointed out that kinetic theory is valid for a wide range of
densities covering gases, liquids, and even solids. It is within the framework and
upon the foundation of kinetic theory that the lattice gas and lattice Boltzmann
methods are formulated as consistent and e�ective simulation tools.

Since kinetic theory plays such an important role in the lattice gas and the lattice
Boltzmann methods, it would be perhaps appropriate to end this series of lectures
by quoting Professor E.G.D. Cohen [5] and Boltzmann [2] on their views on kinetic
theory.

\. . . I note that the objection is often raised that kinetic theory is restricted in its

applications, is very complicated and that more general results can be much easier

obtained by using hydrodynamic-like theories. All this is certainly true. However,

if one is not just interested in obtaining new results, but also wants to understand

their foundation in the molecular structure of matter and see the connection between

various, at �rst sight, very di�erent phenomena from a uni�ed point of view, kinetic

theory has proved to be an indispensable means to achieve this goal. In addition, it

has led to new results, in spite of its complicated structure.
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\It seems to me then that kinetic theory �nds itself at the end of the twentieth

century again in an impasse and in a situation not too di�erent from that in which it

found itself at the end of the nineteenth century. It might therefore be appropriate

to justify this survey by quoting some words Boltzmann used in 1898 . . . "
E.G.D. Cohen (1993)

\It was just at this time that attacks on the theory of gases began to increase. I am

convinced that these attacks are merely based on a misunderstanding, and that the

role of gas theory in science has not yet been played out. . . .

\In my opinion it would be a great tragedy for science if the theory of gases were

temporarily thrown into oblivion because of a momentary hostile attitude toward

it, as was for example the wave theory because of Newton's authority.

\I am conscious of being only an individual struggling weakly against the stream

of time. But it still remains in my power to contribute in such a way that, when

the theory of gases is again revived, not too much will have to be rediscovered.

. . .When consequently parts of the argument become somewhat complicated, I must

of course plead that a precise presentation of these theories is not possible without

a corresponding formal apparatus. . . . "
L. Boltzmann (1898)
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