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Abstract. We briefly review the method of the lattice Boltzmann equation (LBE).
We show the three-dimensional LBE simulation results for a non-spherical particle
in Couette flow and 16 particles in sedimentation in fluid. We compare the LBE
simulation of the three-dimensional homogeneous isotropic turbulence flow in a
periodic cubic box of the size 1282 with the pseudo-spectral simulation, and find that
the two results agree well with each other but the LBE method is more dissipative
than the pseudo-spectral method in small scales, as expected.

1 Introduction

More than a decade ago, the lattice-gas automata (LGA) [5,22,6] and the lat-
tice Boltzmann equation (LBE) [16,12,2,20] were proposed as alternatives for
computational fluid dynamics (CFD). Since their inception, the lattice-gas
and lattice Boltzmann methods have attracted much interest in the physics
community. However, it was only very recently that the LGA and LBE meth-
ods started to gain the attention from CFD community. The lattice-gas and
lattice Boltzmann methods have been particularly successful in simulations of
fluid flow applications involving complicated boundaries or/and complex flu-
ids, such as turbulent external flow over complicated structures, the Rayleigh-
Taylor instability between two fluids, multi-component fluids through porous
media, viscoelastic fluids, free boundaries in flow systems, particulate sus-
pensions in fluid, chemical reactive flows and combustions, magnetohydrody-
namics, crystallization, and other complex systems (see recent reviews [3,15]
and references therein).

Historically, models of the lattice Boltzmann equation evolved from the
lattice-gas automata [5,22,6]. Recently, it has been shown that the LBE is a
special discretized form of the continuous Boltzmann equation [8,9]. For the
sake of simplicity without loss of generality, we shall demonstrate an a priori
derivation of the lattice Boltzmann equation from the continuous Boltzmann
equation with the single relaxation time (Bhatnagar-Gross-Krook) approxi-
mation [1]. The Boltzmann BGK equation can be written in the form of an
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ordinary differential equation:
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where Dy = 0,+&V, f = f(x, €, t) is the single particle distribution function,
)\ is the relaxation time, and f(© is the Boltzmann distribution function in
D-dimensions, in which p, w and 8 = kgT/m are the macroscopic density
of mass, the velocity, and the normalized temperature, respectively, T, kg
and m are temperature, the Boltzmann constant, and particle mass. The
macroscopic variables are the moments of the distribution function f with
respect to the molecular velocity &:
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Equation (1) can be formally integrated over a time interval d;:
f((L‘ +£6t) 5) t+ 6t) = eidt/)\ f(ma 5) t)
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Assuming that &; is small enough and f(© is smooth enough locally, and
neglecting the terms of the order O(67) or smaller in the Taylor expansion of
the right hand side of (3), we obtain
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where 7 = \/d; is the dimensionless relaxation time. The equilibrium O
can be expanded as a Taylor series in w up to u?
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To obtain the Navier-Stokes equations, the hydrodynamic moments (p,
pu, and pf) and their fluxes must be preserved in finite discretized momentum
space {€xla=1,2, ..., b}, i.e.,

p= fa= f&Y, (6a)

f(eq) _

pu=3 bafa=> & Y, (6b)
P =5 D€~ W fu = 5 Y (6 — ) £V, (60)

[e3 «



LBE Simulation for Complex and Turbulent Flows 125

where fo = fo(x, t) = W, f(x, €4, t) [8,9]. It turns out that these moments
can be evaluated ezactly in discretized momentum space by using Gaussian-
type quadrature [8,9,21].

We can derive the nine-velocity athermal LBE model on a square lattice
in two-dimensions

L fal@i, ) — £ (@i, 0], (7)

fa(mi +ea6t7 t+6t) - fa(mh t) = _;

where the equilibrium fC(YeQ), the discrete velocity set {e,}, and the weight
coefficients {w,} are given by
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we=241/9, a=1,2, 3,4, (8¢)
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and ¢ = §,/0;. Equation (7) involves only local calculations and uniform
communications to the nearest neighbors. Therefore it is easy to implement
and natural to massively parallel computers.
The (incompressible) Navier-Stokes equation derived from the above LBE
model is:
poyu + puNu = —VP + pvViu, (9)

with the isothermal ideal gas equation of state, the viscosity, and the sound
speed given by

1 1
P =¢c%p, V:<T—§> 26, cs:%c. (10)

It should be noted that the factor —1/2 in the above formula for v accounts
for the numerical viscosity due to the second order derivatives of f,. This
correction in v formally makes the LGA and LBE methods second order ac-
curate. Similarly, we can derive the six-velocity and seven-velocity models on
a triangular lattice in two-dimensions, and the twenty-seven-velocity models
on a cubic lattice in three-dimensions [9].

There have been some significant progress made recently to improve the
lattice Boltzmann method: (i) the generalized lattice Boltzmann equation
with multiple relaxation times which overcomes some shortcomings of the
lattice BGK equation [14]; (ii) use of grid refinement [4] and body-fitted
mesh [10,7] with interpolation/extrapolation techniques; (iii) adaptation of
unstructured grid by using the finite element method or the characteristic
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Galerkin method; (iv) application of implicit scheme for steady state calcula-
tion and multi-grid technique to accelerate convergence (see a recent review
[15] for further references).

In what follows we shall demonstrate the applications of the LBE method
to simulate the flow of non-spherical particulate suspensions in fluid and
homogeneous isotropic turbulence in a periodic box.

2 LBE Simulation of Flows of Non-Spherical
Particulate Suspensions

The flow of particulate suspensions in fluid is difficult to quantify experimen-
tally and to simulate numerically in some cases. Yet the flow of particulate
suspensions is important to industrial applications such as fluidized beds.
There have been some successful simulations of the flow of spherical suspen-
sions by using conventional CEFD methods, such as the finite element method.
However, the simulation of the flow of non-spherical suspensions still remains
as a challenge to the conventional CFD methods. Recently the LBE method
has been successfully applied to simulate the flow of non-spherical suspensions
in three-dimensions [17,18]. The success of the LBE method to this problem
relies on the fact that the LBE method can easily handle the particle-fluid
interfaces.

We first simulate a single non-spherical particle in the Couette flow. The
equilibrium states in a non-spherical particulate suspension in a 3D Couette
flow are simulated for a particle Reynolds number up to 320. Particle ge-
ometries include prolate and oblate spheroids, cylinders and discs. We show
that the inertial effect at any finite Reynolds number qualitatively changes
the rotational motion of the suspension, contrary to Jeffery’s theory at zero
Reynolds number [13]. At a non-zero Reynolds number, a non-spherical par-
ticle reaches an equilibrium state in which its longest and shortest axes are
aligned perpendicular and parallel to the vorticity vector of the flow, respec-
tively. This equilibrium state is unique, dynamically stable, fully determined
by the inertial effect, the maximum energy dissipation state. Systems of either
fifty cylinders or fifty discs in Couette flow are also simulated. Multi-particle
interactions significantly change the equilibrium orientation of solid particle.
The effect is stronger for cylinders than for discs. The details of this work
will be reported elsewhere [19].

Figure 1 shows a 3D LBE simulation of sixteen cylindrical particles falling
under the influence of gravity. The left figure illustrates the time evolution of
the entire system of sixteen particles, while the right figure demonstrates the
formation of inverted T configurations in the sedimentation, which has been
observed experimentally. To the best of our knowledge, this phenomenon was
first reproduced numerically by the LBE direct numerical simulation [18].
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Fig. 1. 3D LBE simulation of particles sedimentation in fluid. Particle size is D = 12
and L = 24. System size is N, x Ny x N, = 140 x 150 x 35. The averaged single-
particle Re ~ 16.9. (left) Evolution of 16 particles (from left to right and top to
bottom). (right) Formation of inverted T configurations which are also observed in
experiment.

3 LBE Simulation of 3D Homogeneous Isotropic
Turbulence

Homogeneous isotropic turbulence in a three-dimensional periodic cubic box
remains as a stand problem in the field of direct numerical simulation of
turbulence. Due to the simplicity of the boundary conditions, the pseudo-
spectral method can be easily used to simulate the flow. Because of its ac-
curacy, the pseudo-spectral result is often used as a benchmark standard.
Here the LBE simulation of the flow is compared with the pseudo-spectral
simulation.

The parameters of the simulation are given in Table 1. The initial condi-
tion is a random velocity field with a Gaussian distribution and a compact
energy spectrum. The boundary conditions are periodic in three dimensions.
The Taylor microscale Reynolds number is defined as

Rey — 2K(t=0) A _ uRMS)\’
v

v
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Table 1. Parameters in lattice Boltzmann and pseudo-spectral simulations: L is
the length of box side; N3 is the system size; v is the viscosity; »' is the RMS
fluctuation of the initial velocity field; dt is the time step size; T is total integration
time, Rey is the Taylor microscale Reynolds number; and M is the Mach number.

[ Method | 2 [~ ] v | w | @& | T |Ra| M |

Spectral || 2 | 128 | 0.01189 | 0.993311 | 0.002 2 35.0 0
LBE 128 | 128% | 0.009869 | 0.040471 1 1000 | 35.0 | 0.0687

where K (t = 0) = (u3/2)v = (3u2,,s/2)v is the volume averaged kinetic en-
ergy (of the initial zero-mean Gaussian velocity field uo with RMS component
Urus ), and A is the transverse Taylor microscopic scale:

15vu, /€,

where € is the dissipation rate.

Figure 2 shows the energy spectrum E(k) as function of time, and the time
evolution of the mean kinetic energy K and dissipation rate e. The lattice
Boltzmann results (symbols) are compared with the pseudo-spectral results
(lines). The LBE results agree well with the pseudo-spectral results. Obvi-
ously the LBE method is more dissipative, especially at high wave numbers
k > Lkmax, where kmax = N, and N is the number of mesh nodes in each
direction. This is because the LBE method is only second order accurate in
space and time and thus more dissipative than the pseudo-spectral method.

4 Conclusions and Discussion

The above simulations were performed on a Beowulf cluster of Pentium CPUs.
For the simulation of the particulate suspension, the code consists two part:
the lattice Boltzmann method for the fluid and molecular dynamics (MD)
for the solid particles [17]. Even though the MD part of the code is not yet
parallelized, the speed of the code still scales well with the number of CPUs
up to 32 CPUs when the system size is 64 and with fifty particles. Presently
we can easily simulate a system of a few hundred particles on our Beowulf
system.

As for the simulation of the 3D homogeneous isotropic turbulence, the
LBE code without optimization has the same speed as the spectral code with
a Beowulf cluster of eight CPUs (about 1s per time step). However, we do
expect the LBE code will scale linearly with the number of CPUs, but not
the spectral code.

Our current research includes particulate suspension in fluid with high
volume fraction of particles, viscoelastic and non-Newtonian fluids, and forced
or free-decay homogeneous isotropic turbulence in a periodic cube by using
the lattice Boltzmann method on massively parallel computers.
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Fig. 2. LBE vs. Pseudo-spectral DNS of 3D homogeneous isotropic turbulence.
System size is 128%. Rex = 35. (a) The energy spectrum E(k) as a function of
time. (b) The decay of the mean kinetic energy K and dissipation rate e. The
results from the LBE simulation are scaled according to the dimensions used in the
spectral simulation.
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