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We evaluated lattice Boltzmann equation (LBE) methods for modeling flow through
porous media. We compared a three-dimensional, 19-velocity, multiple-relaxation-time
(MRT) LBE model with a popular single-relaxation-time, Bhatnagar-Gross-Krook (BGK)
LBE model. It can be shown that the latter (BGK-LBE) model is a spacial case of the
former (MRT-LBE) model for a certain set of parameter constraints used in the collision
operator. We compared the accuracy of the two models for two test cases: (1) Poiseuille
flow between parallel plates, and (2) flow past a periodic simple cubic (SC) array of
spheres. We also compared two solid-phase, boundary condition approximations: (1) a
linearly interpolated bounce-back (LIBB) method, and (2) a standard bounce-back (SBB)
method without interpolation. Our results clearly demonstrate advantages of the MRT-
LBE model over its BGK counterpart, and the benefits of the LIBB method over the SBB
method in terms of numerical accuracy.

1. INTRODUCTION

The lattice Boltzmann equation (LBE) method for modeling hydrodynamics [20] origi-
nated as an extension based upon the lattice-gas cellular automata method [7]. However,
the LBE method can also be derived directly from the Boltzmann equation [11, 12]. This
not only sets the LBE method on the solid foundation of classical kinetic theory, but
also makes the LBE method amenable to numerical analysis. The LBE method has been
proven to be equivalent to an explicit, first-order in time, second-order in space finite
difference approximation of the incompressible Navier-Stokes equations [14, 16]. Thus,
the LBE method can be viewed as a discrete approximation to the incompressible Navier
Stokes equations, which is strongly based in a reduced kinetic theory applicable for mod-
eling hydrodynamics [15].

The LBE method is gaining popularity in recent years because of its numerical accu-
racy, computational efficiency, intrinsic parallelism, and programming simplicity [4, 24].
Due to its kinetic origin, the LBE method has some features significantly different from
conventional computational fluid dynamics methods based on a direct discretization of
the Navier-Stokes equations. The LBE method evolves single-mass particle distribution
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functions in phase space, instead of the macroscopic variables, such as fluid density ρ,
flow velocity u, and temperature T . Consequently the boundary conditions in the LBE
method are also expressed for the distribution functions rather than the flow variables
commonly observed and controlled experimentally. While this aspect of the LBE method
is often a source of confusion and criticism, boundary conditions in the LBE method can
be equated to macroscopic hydrodynamic variables and rigorously analyzed [8–10, 13].

The LBE method has proven especially useful for simulating flow in porous media,
which has been well documented in recent reviews by Chen and Doolen [4] and Yu et al.
[24]. The most popular LBE model is the so-called lattice BGK model, which has a
single relaxation time [1, 3, 22]. However, it is well known that the lattice BGK model
suffers from numerical instability and viscosity dependent boundary conditions for the
velocity field, especially in under-relaxed situations [13]. It has been shown that these
difficulties are a result of the BGK approximation used in the collision process and are not
intrinsic to the LBE method [8, 10]. Furthermore, the multiple-relaxation-time (MRT)
LBE method, or the generalized LBE method [5, 6, 8–10, 17, 19], can mitigate or overcome
these difficulties.

The overall goal of this work is to compare the accuracy of LBE model9s for the
solution of model problems applicable to porous medium systems in general. The specific
objectives of this work are: (1) to implement a standard BGK-LBE and a MRT-LBE
model; (2) to examine boundary conditions to approximate solid-fluid phase boundaries;
and (3) to compare quantitatively the set of LBE models for model problems.

The remaining part of this paper is organized as follows: §2 briefly discusses the three
dimensional MRT-LBE model with 19 velocities (D3Q19 model) and fluid-solid bound-
ary condition approximations; §3 presents the numerical results for three-dimensional
Poiseuille flow, and flow through a periodic simple cubic (SC) array of spheres of equal
radius; and §4 concludes the paper.

2. MULTIPLE-RELAXATION-TIME LBE MODEL

2.1. D3Q19 MRT-LBE Model
There are three components in any LBE model. The first component is a discrete

phase space consisting of a regular lattice space δxZ
d with a lattice constant δx in d di-

mensions and a finite set of highly symmetric discrete velocities {ei|i = 0, 1, . . . , N}
connecting each lattice node xk ∈ δxZ

d to its neighbors, and the corresponding set of ve-
locity distribution functions {fi|i = 0, 1, . . . , N} defined on each node of the lattice. The
second component is a collision matrix S and (N + 1) equilibrium distribution functions

{f (eq)
i |i = 0, 1, . . . , N}. The equilibrium distribution functions are functions of the local

conserved quantities. This is the most crucial component of the LBE method and it is re-
lated to the kinetic theory. The third component is an evolution equation in discrete time
tn ∈ δtN, where time step δt is set equal to unity, as is the lattice spacing (δx = δt = 1):

f(xk + eiδx, tn + δt) − f(xk, tn) = M−1Ŝ
[
m(eq)(xk, tn) − m(xk, tn)

]
+ F, (1)
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where f, m(eq), m, and F are B-dimensional vectors (B = N + 1 or N for models with or
without zero velocity particles, respectively),

f(xk, tn) := (f0(xk, tn), f1(xk, tn), . . . , fN (xk, tn))T,

m(eq)(xk, tn) := (m
(eq)
0 (xk, tn), m

(eq)
1 (xk, tn), . . . , m

(eq)
N (xk, tn))T,

m(xk, tn) := (m0(xk, tn), m1(xk, tn), . . . , mN(xk, tn))T,

F(xk, tn) := (F0(xk, tn), F1(xk, tn), . . . , FN (xk, tn))T,

where T denotes the transpose operator (we always assume that e0 ≡ 0), F represents

the external forcing in the system, and the relaxation matrix Ŝ is a diagonal matrix in
this setting. The transformation matrix M relates the distribution functions represented
by f ∈ V = R

B to their moments represented by m ∈ M = R
B as

m = M · f , f = M−1 ·m. (2)

The transformation matrix M, of which the matrix elements are chosen to be integers, is
constructed so that M · MT is a diagonal matrix.

We use the 19-velocity model in three dimensions, i.e., the D3Q19 model (here DdQq
denotes the model with q velocities in d dimensions). The discrete velocities are

ei =


(0, 0, 0), i = 0,
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), i = 1 – 6,
(±1, ±1, 0), (0, ±1, ±1), (±1, 0, ±1), i = 7 – 18.

(3)

The corresponding 19 moments are

m := (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz, mx, my, mz)
T

= (m0, m1, . . . , m18)
T,

among which, only the density ρ and momentum j := (jx, jy, jz) are conserved quantities
for athermal fluids, and the rest are non-conserved ones. The equilibria for the non-
conserved moments are [6]

e(eq) = −11ρ +
19

ρ0

j · j = −11ρ +
19

ρ0

(j2
x + j2

y + j2
z ), (4a)

ε(eq) = 3 ρ − 11

2ρ0
j · j, (4b)

q(eq)
x = −2

3
jx, q(eq)

y = −2

3
jy, q(eq)

z = −2

3
jz, (4c)

p(eq)
xx =

1

3ρ0

[
2j2

x − (j2
y + j2

z )
]
, p(eq)

ww =
1

ρ0

[
j2
y − j2

z

]
, (4d)

p(eq)
xy =

1

ρ0
jxjy, p(eq)

yz =
1

ρ0
jyjz, p(eq)

xz =
1

ρ0
jxjz, (4e)

π(eq)
xx = −1

2
p(eq)

xx , π(eq)
ww = −1

2
p(eq)

ww , (4f)

m(eq)
x = m(eq)

y = m(eq)
z = 0, (4g)



98

where ρ0 is the (constant) mean density in the system (usually set to 1), the relaxation
matrix is diagonal and is given by

Ŝ = diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16)

= diag(0, se, sε, 0, sq, 0, sq, 0, sq, sν , sπ, sν, sπ, sν , sν , sν , sm, sm, sm), (5)

and the transformation matrix M is chosen following d’Humières et al. [6]:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The speed of sound of the model is cs = 1/
√

3 and the viscosity is

ν =
1

3

(
1

sν
− 1

2

)
. (6)

With the above equilibria of Eqs. (4), if all the relaxation rates, {si|i = 0, · · · , 18},
are set to be a single value ω = 1/τ , i.e., S = ωI, where I is the identity matrix, then
the model reduces to the corresponding BGK-LBE model with the following equilibrium
distribution functions [13]:

f
(eq)
i = wi

{
ρ + ρ0

(
ei · u +

3

2
(ei · u)2 − 1

2
u · u

)}
, (7)

where w0 = 1/3, wi = 1/18 for i = 1 – 6, and wi = 1/36 for i = 7 – 18.
In the LBE simulations, the body force F is implemented such that j ′ = j + F /2

(or u′ = u + F /2) is used instead of j (or u) in the nonlinear terms of the equilibria
[10, 19]. More detailed discussions of the MRT-LBE method are available in the literature
[5, 6, 8–10, 17].
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2.2. Boundary Conditions
In the LBE method, no-slip velocity boundary conditions are usually approximated

using the standard bounce-back (SBB) method, which mimic the phenomenon that a
particle reflects its momentum in some way when colliding with a solid surface. The SBB
boundary conditions work well for boundaries consisting of flat surfaces aligned with the
underlying lattice structure. For curved surfaces, a zig-zag approximation is used, and
it is inaccurate especially if the resolution is coarse. For the lattice BGK model, the
actual position of a boundary is viscosity dependent when the SBB boundary conditions
are applied. This problem is particularly severe in under-relaxed situations, i.e., when
τ > 1. This problem can be easily solved by using the MRT-LBE model. In the D3Q15
MRT-LBE model, the relaxation rate for the “energy flux” mode, sq, is chosen as the
following [8, 10]:

sq = 8
(2 − sν)

(8 − sν)
. (8)

For Poiseuille flow, when the boundaries are parallel to the lattice lines, the position at
which u = 0 is fixed at one half lattice spacing beyond the last fluid node [2, 8–10].

To accurately represent curved boundaries, interpolations can be used. In the MRT-
LBE method, bounce-back boundary conditions with interpolations can ensure accurate
representation of curved boundaries in general [2, 18]. A drawback due to interpolations
is that the local mass is no long conserved at locations where interpolations are applied.
However, an accurate and efficient implementation of the fluid-solid boundary conditions
is crucial in porous medium flow simulations with limited spatial resolution, because
applying fine enough discretization of pore geometries to adequately resolve the flow
with a zig-zag approximation is often computationally impractical. We will investigate a
linearly interpolated bounce-back (LIBB) boundary conditions with the D3Q19 model.

3. NUMERICAL RESULTS

3.1. Poiseuille flow
We first study the case of Poiseuille flow between two parallel plates, for which the

analytic solution exists. Poiseuille flow is a common test problem used in the study of
LBE methods [8–10, 13] and is applicable directly to certain porous medium systems,
such as fractured media. A uniform force was applied along the x-direction, by setting

Fi = 3wiρ (ei · x̂) g, (9)

where x̂ is the unit vector along x-axis, and g is the forcing magnitude. In the simulations,
we fixed g = 1.0 × 10−5 in lattice units. We applied no-slip boundary conditions at the
two plates located at the first and the eighth layers in the y-direction. Periodic boundary
conditions were applied in both the stream-wise (x) and the span-wise (z) directions. The
analytic solution for the velocity with a half channel height h is

ux =
g

2ν
(h2 − y2), |y| ≤ h. (10)

The system size is Nx × Ny × Nz = 8 × 8 × 8. With six fluid nodes between the two
plates, the channel width 2h should be equal to six lattice spacings, if the no-slip boundary
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conditions are satisfied exactly at one half lattice node beyond the last fluid node. For
the D3Q15 MRT-LBE model, this can be accomplished by using the relaxation rate for
the energy flux mode sq, given by Eqn. (8) [8, 10]. However, for the D3Q19 model, there
is an additional relaxation rate sm that affects the position of the boundary.

Because the nonlinear advection term u ·∇u vanishes for Poiseuille flow, we can use
the linear LBE scheme to simulate this flow by eliminating all the nonlinear terms (in
terms of j or u) in the equilibria of Eqs. (4) for the moments, or equivalently in the the
equilibria of Eqn. (7) for the distribution functions. Effectively, the linear LBE scheme
simulates Stoke flow.

For Poiseuille flow, the normalized flow rate is a constant:

Q =
3

4hUmax

∫ +h

−h

ux(y)dy = 1, (11)

where ux(y) is given by Eqn. (10) and Umax = gh2/2ν. In order to obtain a constant Q
in the simulations with a given channel width 2h, it is crucial to have precise knowledge
and control of the position at which the no-slip boundary conditions are satisfied. Thus
Poiseuille flow was used to test the boundary conditions in the D3Q19 LBE models.

In addition to the relaxation rate sν , which determines the viscosity, there are five other
relaxation rates that are adjustable parameters: se, sε, sq, sπ and sm. With a fixed value
of the viscosity, we chose three sets of relaxation rates shown in Table 1, and compared
the results with the BGK-LBE results.

Table 1
Relaxation rates for Poiseuille flow simulations. sq(sν) is given by Eqn. (8).

se sε sq sπ sm

MRT-1 sq(sν) sq(sν) sq(sν) sq(sν) sq(sν)
MRT-2 1.98 1.98 sq(sν) 1.98 sq(sν)
MRT-3 sq(sν) sq(sν) sq(sν) sq(sν) 1.98

We applied linear regression to fit the parabolic profile of ux(y) obtained by the sim-
ulations to obtain the values of h∗ and ν∗, which in turn determines the values of s∗ν in
the MRT-LBE scheme and τ ∗ = 1/s∗ν in the BGK-LBE scheme. With the values of s∗ν (or
τ ∗) and h∗ obtained with linear regression, we computed the error of the velocity profile
using the L2-norm

E2(u) =

√∑
y |ux(y) − u∗

x(y)|2∑
y |u∗

x|2
, (12)

where ux(y) and u∗
x(y) are the numerical and analytical solutions, respectively. The results

are tabulated in Table 2.
The results for the value of s∗ν (or τ ∗ = 1/s∗ν) obtained by linear regression agree very

well with the input values (at least 5 figures), despite the fact that there may be corrections
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Table 2
Comparison of the relative error E2(u) in the flow velocity profile and the half-channel
width h∗, using the MRT model with various parameters given in Table 1 and the BGK
model. The half-channel width h is supposed to be 3 lattice units.

τ = 1/sν model E2(u) h∗

MRT-1 5.6364×10−9 3.0000
MRT-2 5.6363×10−9 3.00000.6
MRT-3 5.3915×10−9 2.9687
BGK 4.8627×10−9 2.9630

MRT-1 3.1775×10−10 3.0000
MRT-2 3.1777×10−10 3.00000.8
MRT-3 7.3602×10−10 2.9688
BGK 8.3723×10−10 2.9783

MRT-1 9.0771×10−11 3.0000
MRT-2 9.0854×10−11 3.00001.0
MRT-3 8.3499×10−11 2.9690
BGK 1.7455×10−12 3.0139

MRT-1 1.9050×10−12 3.0000
MRT-2 1.9173×10−12 3.00001.5
MRT-3 8.4391×10−14 2.9694
BGK 2.6370×10−13 3.1754

MRT-1 1.9578×10−12 3.0000
MRT-2 1.9365×10−12 3.00002.0
MRT-3 2.0564×10−12 2.9699
BGK 2.4058×10−13 3.4278

for such a small channel size [17]. Thus the values of s∗ν (or τ ∗) are not given in Table 2.
The results in Table 2 show that the velocity profile ux(y) is a parabola independent of the
models used, as indicated by E2(u). The only difference is the effect of the viscosity ν on
the numerical half channel width h∗. For the MRT model, it is clear that the “effective”
channel width 2h∗ does not depend on the viscosity ν, while for the BGK model, h∗

strongly depends on ν, particularly when it is under-relaxed: the maximum deviation of
h∗ is about 15.0% when τ = 2.0, which corresponds to more than a 40% error in the
velocity field compared to the analytic solution for the expected values of sν and h. We
also observe that the relaxation rate sm affects the value of h∗, while se, sq, and sπ do
not, as indicated by the results correspondence of MRT-2 and MRT-3. Nevertheless, this
effect is of high order and controllable (the variation of h∗ is about 1.0%).

3.2. Flow through a simple cubic array of spheres
We next considered the case of flow through an idealized porous medium, i.e., a periodic

simple cubic (SC) array of spheres of equal radius a, as depicted in Fig. 1. The theoretical
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fluid permeability κ∗ for a viscous flow past an array of spheres is [23]

κ∗ =
1

6πad∗ , d∗ =
6πaρνud

FD
, (13)

where ud is the Darcy velocity along the flow direction, and FD is the drag force. The
inverse of the dimensionless drag, d∗, is purely determined by the geometric characteristics
of the sphere array, and it can be represented by a function of the solid volume fraction
c as a series expansion [23]:

d∗ =

30∑
n=0

qnχn, χ =

(
c

cmax

)1/3

, c =
4πa3

3L3
, cmax =

π

6
, (14)

where L is the length of the cube, and the coefficient qn can be obtained analytically [23].
We measure the fluid permeability κ according to Darcy’s law at low Reynolds number:

ud = − κ

ρν
(∇p − ρg) , (15)

where Darcy velocity ud is obtained as the volume averaged velocity over the system [21].

Figure 1. A typical pore geometry of a SC array of spheres (χ = 0.8). Gray and white
area depict fluid and solid regions, respectively.

In the simulations, we use the linear lattice Boltzmann equation as in the previous
case, for both the MRT and BGK schemes [2, 18]. Hereinafter notations MRT-LIBB,
MRT-SBB, and BGK-SBB are used to denote the MRT scheme with linearly interpolated
bounce-back boundary conditions (BC), the MRT scheme with the standard bounce-
back BCs, and the lattice BGK scheme with the standard bounce-back BCs, respectively.
Various system sizes N3 are used in our simulations. Obviously, the radius is a = χN/2.

Table 3 shows the relative errors of κ between linear LB simulations and theoretical
predictions of Stokes flow through the SC sphere arrays, given in Eqs. (13) and (14), with
χ = 0.7 and 0.95, and with system sizes N3 = 323 and 643. In the MRT scheme, we
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Table 3
The relative errors of κ for flow through a periodic SC array of spheres, using the MRT-
LIBB, MRT-SBB and BGK-SBB schemes.

MRT-LIBB MRT-SBB BGK-SBB
χ 1/sν 323 643 323 643 323 643

0.6 0.39% 0.16% −3.59% −1.99% −6.96% −3.57%
0.8 1.10% 0.32% −2.78% −1.38% −3.88% −1.79%

0.7 1.0 1.59% 0.45% −2.36% −1.19% −1.69% 0.93%
1.5 2.53% 0.70% −1.90% −0.96% 4.37% 1.15%
2.0 3.32% 0.93% −1.72% −0.34% 11.9% 3.59%
0.6 −0.78% 0.09% −7.72% −1.92% −12.9% −4.08%
0.8 0.85% 0.50% −6.33% −1.34% −8.35% −2.11%

0.95 1.0 1.94% 0.76% −5.67% −1.06% −4.60% 0.67%
1.5 4.05% 1.29% −4.95% −0.70% 5.37% 2.73%
2.0 5.83% 1.74% −4.67% −0.56% 17.17% 6.77%

use the parameters given by the set MRT-1 in Table 1. The results clearly show that the
values of κ obtained by the MRT schemes are much less dependent on viscosity than those
obtained by the BGK-SBB counterparts, and in all cases the results obtained with the
MRT schemes are consistently better than those obtained with the BGK-SBB scheme.
We also note that in general linear interpolation improves the simulation accuracy. The
improvement is particularly significant (by an order of magnitude) for over-relaxation
(τ = 1/sν < 1), where more iteration time is required to reach a steady state than in
under-relaxations (τ > 1).

Table 4
The relative errors of the permeability κ for a periodic SC array of spheres with a grid
resolution of 323 using the MRT-LIBB and MRT-SBB schemes, where φ is the porosity.

χ φ MRT-LIBB MRT-SBB
0.5 0.93 −0.36% −4.31%
0.6 0.89 0.39% −3.59%
0.7 0.82 0.69% −1.59%
0.8 0.73 −0.01% −3.79%
0.9 0.62 −0.12% −6.35%
0.95 0.55 −0.65% −7.72%

To further demonstrate the effect of interpolation schemes, we performed the full (non-
linear) MRT-LBE simulations, which recovers the Navier-Stokes equations (as opposed
to the Stokes equation), for the periodic SC arrays of spheres with various radii and a
fixed system size 323. All the simulations were performed at Reynolds numbers Re < 0.01
to ensure that the flow was in the Stokes regime. We fixed the value of τ at 0.6. Table 4



104

shows the relative error of the permeability κ with respect to the theoretical predictions,
using both the MRT-LIBB and MRT-SBB schemes. Clearly, interpolations significantly
improved the accuracy for wide range of χ.

We also investigated discretization effects for both the MRT-LIBB and MRT-SBB meth-
ods. The results shown in Figure 2 confirm the improvement due to the linear interpolation
method. Furthermore, we find that the interpolation scheme converges faster to the theo-
retical solution for the MRT-LIBB scheme than for the MRT-SBB scheme. This is crucial
in porous medium flow simulations, because computational limitations are commonplace
for standard problems of concern.

16 24 32 64
0.9

1

1.1

Grid size (3)

κ 
/ κ

*

MRT−LIBB
MRT−SBB

Figure 2. The normalized permeability κ/κ∗ (κ∗ is given by Eqn. (13)) as a function of
grid resolution for the SC array of spheres with χ = 0.95, simulated by the MRT-SBB
and MRT-LIBB schemes.

4. CONCLUSION

In this work we observed that the MRT models significantly reduce the viscosity depen-
dence of permeability in LBE porous medium simulations compared to their BGK-LBE
counterparts. The reason is that in the MRT model the location where the flow boundary
conditions are satisfied can be essentially viscosity independent, which is impossible for
the BGK-LBE model. Our results for both Poiseuille flow and flow through a SC array
of spheres clearly demonstrate the advantages of the MRT models over their lattice BGK
counterparts.
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We also show that LIBB scheme can significantly improve the accuracy of simulations,
provided that sufficient resolution is given to apply the interpolations. The improvement
due to interpolations is particularly significant with over-relaxation (τ < 1), and it is more
significant for Navier-Stokes flows than for Stokes flows. In addition, we show that the
LIBB scheme converges more rapidly than the SBB scheme and provides more accurate
results for a given grid resolution. We find that the effect due to interpolations on mass
conservation is negligible in our simulations.

We also observed the effect of the relaxation rate sm on the boundary location. This
effect is relatively small, and analysis is left for future work.
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