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ABSTRACT. We study the asymptotic behavior, as the degree approach-
es infinity, of the Christoffel function at a fixed point =z corre-
sponding to a weight function of the type exp(-|z|x) on the set

|arg z| = % + «. The method generalizes that of Rakhmanov and also

Mhaskar and Saff.

1. Introduction

In Quantum Mechanics there is a class of problems for which the
required energy E(B) may formally be expressed in terms of a para-
meter f by means of a power series with zero radius of convergence.
Examples include the anharmonic oscillator and the hydrogen atom Stark
effect. We have shown [2] that these series may be summed with the
help of polynomials Qn(z) extremal with respect to the weight

p(z)exp(—|z|k), A2 1, on the set TI{a), where, with - % Ca ( % .

(1.1) T(a) = {z€C: |arg z| = 3 + a}.

We assume that p{z} 1is a real positive leocally integrable function

for z € I'(a), that log p(z) is alsc locally integrable, and that

(1.2) lim |z] ™log p(2z) = 0.
z |

We are here principally concerned with the quantity Kn(z).
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2
1.3 k() = U IP_(2)]

deg P <n IPn(y}lzp{y)eXP(~IYlk)deI ’
I'{a)

Qn(z) is the polynomial (unique up to a multiplicative constant
factor) for which the sup is attained. If Hn(z) is the ortho-

normal polynomial of degree n corresponding to the weight, i.e.

(1.4) Jr(a)ﬂn(z) H (2) p(z)exp(-1z|") ldz| = &
then

o 2
(1.5) K, (z) = jfo'Hi(z)‘ :

Thus Kn—l(z) is the reciprocal of the Christoffel function as de-

fined by Nevai [7] (see also Szega [91).

Here we analyze the asymptotics of Kn(z) as n =2 @ for fixed

z with methods that closely follow those of Rakhmanov [8] and to a
lesser extent Mhaskar and Saff [3,4]. We refer the reader to
Rakhmanov’s paper at many places where the argument is the same or is

but slightly modified.
Our result is presented in the form of Theorem 4.5.

2. Minimum problem in potential theory

Suppose Hn is the set of all positive measures ¢ such that

supp o C I'{a) and j do{t) = n, and define the logarithmic
'(a)

potential

(2.1) Va(z) = —J loglz-t] do(t).
. A :

With Vo(z) = |z|", zer(a), we define

(2.2) J(o) = J (V_(t) + V_(t)) do(t).
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Mhaskar and Saff [4] have discussed the problem of minimizing

J(o) for o € Hn in the case when T (a) 1is replaced by the real

line. As far as parts (a) to (f) of their Theorem 2.3 are concerned,
their proofs apply with trivial modifications to our case TI(a)}. In
terms of the notation used here, patterned after Rakhmanov [8], we may

therefore assert that there exists a unique measure v € Mn with com-~

pact support and of non-zero capacity such that

(2.3) J{v) = §j = inf J(o} > -=.
oenn

If we define

{(2.4) m= 23 - f Vo(z)dv(z)
then
(2.5) 2Vv(z) + Vo(z) 2 m, z € I'(a), except possibly for a set of

capacity zero,

and

(2.6) 2VD(Z) + Vo(z) < m, z € supp v.

From this information we have

Lemma 2.1

(2.7} (i) supp v = A(R) = {z€l(a) : |z| < R}, for some real

positive R.

(2.8) (ii) 2VD(2} + Vo{z) > m, z € T{a)\A(R}.

Proof (i). The measure v must be symmetric about the real axis for
otherwise reflection in the real axis would lead to another measure
with the same value of J, which would contradict uniqueness. The

function f(r) given by

(2.9) £(r) = 2v (re'®) + V_(re’®), 0 <1 <o,
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is convex downwards, which may be seen by checking that

{(2.10) - loglreia~seial - log1reia~se_ial, 0 r { »

1/~

is convex in r. The arguments of Rakhmanov [8] and Mhaskar and Saff
[4] then show that supp v must be connected so that (i) follows by
symmetry.

(ii) If there were ry > R for which f(ro) { m, then convexity

shows that f{r) <(m, R < r < L which contradicts (2.5).

3. Boundary value problem

We now outline the use of standard methods to find a real func-
tion V(z), harmonic for =z € C\A(R), and continuous for 2z € C,

which satisfies the conditions

(3.1) V(z) = 1/2(n-V_(2)), z € A(R)

(3.2) V(z) = -n loglz| + o(lz|™h).  |z| - =.

With 71 = 2a/m it may be shown that there is a unique ~,
0 v <w for which

1 _ _.1 _43M
(3.3) J S [Q] dt = 0.
-1 t

where the path of integration lies in the upper half-plane, and
iv

¢ = e . This can be seen by regarding (3.3) as an equation for
cos v. We set
C -1 n
t-c)(t-c t-1
(34) Zo = J 5 [tTl—] dt

where the path of integration is on the unit circle in the upper

half-plane, and define

t+1 -

W -1 kil
3.5 7 - [”1 {t-e)(t-c ) |t=1 dt, lw] > 1
(3.5) (w) = Iz, fl 5 [&4] "

with integration path in |t]| > 1.
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Lemma 3.1 The transformation w - z = Z{(w) conformally maps
[w| > 1 onto z € C\A(1).

Proof. This is similar to a Schwarz transformation. [5, p.363]. n]

Now write

I

(3.6) g(w) = ~172]z(n) [N w] = 1

and define

PPRES | S
(3.7) Q(w) = ~(iw) fiti:lg(t)(t W) dt + Qo
where
(3.8) Q, = (2r1)”! jl g(t)e ! de.

t]=1

Then Q(w) 1is analytic in |w| > 1 and satisfies [6, p.107]
(3.9) Re Q(w) = g(w). lwl =1

where Q(w) means the limit from |w| > 1.

Lemma 3.2 The solution of (3.1), (3.2) is

(3.10) V(z) = Re(R™Q(w)-n log w+1/2 m), z = R Z(w). |w| > 1.

if and only if

(3.11)  m = 2[n tog(lz |/R) - RM_].

Proof. The function given is harmonic and satisfies (3.1}. Since

Z{w) ~ lzol_lw as |w| » ®, (3.2) will hold if (3.11) is true [1].

It must be possible to represent V(z) as Vp(z) for some

signed measure p with supp p C A. On A(R), V“(z) VD(Z) except

possibly for a set of capacity zero, and since A{R) has no irregular

points, the uniqueness theorem shows that p = v [1, p.245], i.e.
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V. (2) = V(z). o

Now in the vicinity of the point ¢, for fwf = 1,

arg Z{w) = % + @, so that we may write |Z{w)]| = Z(w)exp(—i(% + a)).

which shows that g(w) has an analytic continuation in a neighborhood
~21i¥

of w = ¢, as does Q(w). VWe also have, with B = be ., b real
and positive,

1(z+a) 2 3
(3.12) Z(w) = e (1 + B(w-¢c)®) + O{]w-c|”), w - c,

so that

V(z) - V(RZ(¢)) = Re[(RMQ (c)-nsc)(w-c) + O(|w-c|2)]. w = c

™ a

NEEN |
(3.13) = Re[e1(4 27(BR) 2R (c)-nse) (z-RZ(c)) 2]
+ o(lz-RZ(c) |12,
z = RZ{c).

As in [8], we argue that the convexity of VD(Z} outside A{(R) and

the need to satisfy (2.8) mean that

(3.14) RN = n/A. A=cQ (c).

Of course, this quantity must be real and positive, and we have found
R.

Lemma 3.3 It is possible to write dwv(z) = v (z)|dz|, =z€A(R),
with
(3.15) v (z) = % a[%], z € A{R).
i1}
i-n
The function |z} a{z} 1is continuous, =z € A(1l}.
Proof. The function v (z)} 1is proportional [6] to the discontinuity

of (t—z)_ldv(t) across A{R}. With (3.10) this may be related
A(R)
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to Q (w), which is analytic everywhere on |w| 1 except at

w = %1. s}

4. Bounds on Kn(z)

Following Rakhmanov [8], we first obtain in Lemma 4.3 bounds in
the case p = 1. The lower bound is constructed by evaluating (1.3)
for a particular polynomial P{z) of degree n, related to the

»*
measure v defined below.

For x.,y with arg x = arg y = % + a, {x{ < fy{, define
1(2
(4.1) S(x.y) = {z€C: z = re L lxl<egly .
Suppose that n 1is odd; the argument is similar for n even. Choose
points Zj’ j=1..., {(n + 1}/2 such that arg zj = % + a,

|z1|>|z2|> .o )]z(n+1)/2| = 0, and

j dv(t) = 1/2,
6(21,RZ(C))

(4.2)

do(t) = 1, k=1.... (n-1)/2.
8(2zy4q-2y)

{Note that the symmetry of v ensures that Z(n+1)/2 = 0.} Ve define

Z, = Zn—k+1,k = (n+1)/2,....,n.
»*
Define the measure v as

n
(4.3) v = 3 5(z.)

j=1
and

* n
(4.4) Vi(z) =V _{(z) = - 3 loglz-z. |.
v j=1 J
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Lemma 4.1

(4.5) (1) V,(z) - Vi(2) ¢ [%5%;} log Cn. 1z € C,

for some positive constant C.

(4.6)  (ii) V.{z) - V¥(z) 2 -log|1+R/D(z,.A(R})|. z € T\A(R),
v

for fixed 2z and sufficiently large R. (The quantity D(z,A(R))

means the distance from 2z to A(R).

Proof. (i} Suppose x € A{R) lies in the interior of the interval
E(zk+1 Zk)' k £ (n-1)/2. Then just as [8, p.171] we deduce that
(4.7) V{x)—V*(x}£10g2R - J loglx~t] du(t).

80201, %)

We obtain the upper bound taking k = (n-1)/2, x = 0, and using
Lemma 3.3.
(ii) The proof is as in [8, p.171]. o

One more piece of information is required before we can compute
the lower bound. Define W(z)} by

(4.8) W(z) = exp(m - 2Vv(z)).

Then we have

Lemma 4.2

]

R

(4.9) lim iz I W(z)exp(—lex)[dz] = 1.
n-w I'(a)

Proof. Since W(z)exp[-lzik] = 1, =z € A{(R), we have

(4.10) jA(R)W(Z)exp(-IZIA)|d2| = 2R.

For z € I'{a)\A{R), we write

W(z)exp(—|z|h) = exp[2n{Re(log w~-Q(w)/A) - 1/2|Z(w)|x/A}].
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z = RZ(w).

{(4.11) = exp{2nh{w)})} say.

On account of Lemma 2.1 (ii) we know that h{(w) < 0 for

z € T'{a)\A(R). Thus W(z}exp(—]z[k)idzi can be approxi-
I'(a}\A(R)
mated for large n by the contribution from those 2z mnear A(R}.
For 2z mnear RZ(c}, i.e. w near c¢, we have
2 3
(4.12) h(w) = Re[C (w-c)"] + o(jw-c|™)
for some constant Cl' We conclude that

(4.13) J W(z)exp(—|z|k)|dz| = R(const.nm1 + 0(n~2))
I'(a)\A(R)

and the Lemma follows. [u}

Lemma 4.3 In the case p = 1, for large n, and =z in a fixed

compact subset of C\A{R},

(4.14) [w]W(z)/{wD(z,A(R)}] > K _(z)
5 Cn—(3/h+(2—2n)/(1~20))w(z),
z = RZ(w).
Proof. For the lower bound as [8, p.172] we use the polynomial
P(z) = ™2 (z-z;), so that
i=1
(4.15) [P(z)]| = exp[1/2m - V™(z)]
and
(4.16)  [P(2)1% = W(z)exp[2(V,(2) - Vi(z))].

We use Lemmas 4.1 and 4.2 to estimate
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2
(4.17) [P(z) |

2 A :
| 1p) Pexp(-121M) laz]
I'{a)
The proof of the upper bound is as in [8, p.160]. o
Lemma 4.4 As n - ® for =z fixed, J|arg z| ¢ % .

fz] > 0, we have

1 i
1- .
(4.18) log W(z) = Cyn A1 [ge, 1] (124710 (1)) (1+0(1))
where
1 -l
— -1 +
(4.19)  C, = 2A K[Izol 2 M (m+1) I (1-c)(1-c"1y]

Proof. We have from (3.10), (4.8)
(4.20) log W(z) = 2nRe[log w - A"lQ(w)]. 2/R = Z(w).

Near w =1, ({3.5) gives

(4.21) Z(w) = C,(w-1)™ (1 + o(lw-11])).
where

R -1 -1
(4.22) C, = lz, | 2 Tm+1) " (1-c)(1-¢" 1),
so that, since R = ®,

1
n+1

(4.23) w-1 = (z/(RCy)) (1+0({ Jz/R}|}}.
Writing
(4.24)  log w - ATNQ(w) = (1-A"1Q (1)) (w-1) + o(lw-1])

leads to the result. u]
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Theorem 4.5 Suppose p{z}, z € I'{(a), 1is real, positive and
integrable and log p{z} 1is locally integrable, and

{(4.25) lim {zl_Alog p{z) =0, =z € I'(a}.
|z |0

With Kn(z) defined by (1.3),

1

log K _(z) 1
(4.26) Lim ——— = c (1-A o (1)) Re[zn+1]
-0 —
n1w A{n+l)
for fixed z, |arg z| < «, iz] > 0, and - % < a < % , A > 1. For
A =1, the result holds for 0 < a < % .

»
i

Proof. For p(z) = 1 we use (4.18) in (4.14). The case p(z) ¥ 1
follows as in [8, Sec. 4].

We note that the above result in the case a = 0, A > 1, agrees with
that of Rakhmanov [8].

REFERENCES

1. Landkof, N.S., (1972): Foundations of Modern Potential Theory.

Berlin: Springer-Verlag.

2. Luo, L.S. and J. Nuttall, (1986): Approximation theory and
calculation of energies from divergent perturbation series.
Phys. Rev. Lett., 57, 2241-2243.

3. Mhaskar, H.N., E.B. Saff, (1984): Extremal problems for polyno-
mials with exponential weights. Trans. Amer. Math. Soc. 285,
203-234.

4. Mhaskar, H.N., E.B. Saff, (1985): Where does the sup norm of a
weighted polynomial live? Constr. Approx. 1: 71-91.



116

Moretti, G., (1964): Functions of a Complex Variable. Englewood
Cliffs, N.J.: Prentice~Hall.

Muskhelishvili, N.I., (1953}): Singular Integral Equations.

Groningen: Noordhoff.

Nevai, P.: Geza Freud: Christoffel functions and orthogonal

polynomials, J. Approx. Theory, 48, 3-167.

Rakhmanov, E.A., (1984): Asymptotic properties of polynomials
orthogonal on the real axis. Math. U.S.S.R Sbormnik, 47,
155-193.

Szego, G., (1975): Orthogonal Polynomials, Amer. Math. Soc.
Colloq. Pub, Vol. 23, Providence: American Mathematical

Society.



