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Summary

This thesis contains seven chapters. The discussion in Chapter 1 motivates the study
of lattice-gas automata and lattice Boltzmann equations. Chapter 2 briefly reviews
the essentials of hydrodynamics and kinetic theory. The hydrodynamic equations,
i.e., the Euler equations and the Navier-Stokes equations, are derived from both the
continuum and the kinetic point of view. A useful technique to solve the Boltzmann
equation, the Chapman-Enskog procedure, is discussed and summarized. Chapter 3
studies the statistical mechanics of the two-dimensional lattice-gas automata due to
Frisch, Hasslacher and Pomeau (FHP) in detail. The Chapman-Enskog technique
is applied to obtain the Euler equations and the Navier-Stokes equations with the
corresponding transport coefficients, i.e., the kinematic and the bulk viscosity and
the sound speed, for the FHP lattice-gas automata. Chapter 4 analytically solves the
linearized lattice Boltzmann equation. Generalized hydrodynamics of the lattice-gas
automata is studied. Also, analytic results of some simple flows such as the Poiseuille
flow and the plane Couette flow are obtained. Chapter 5 studies the linear lattice
Boltzmann equations. H-theorems for the system are proved. Chapter 6 studies
and simulates nonlinear flow phenomena in a 2-D symmetric sudden-expansion chan-
nel by the method of the linear lattice Boltzmann equation. A symmetry-breaking
bifurcation is observed, and the critical Reynolds number is obtained wvia the simula-
tions. The results are compared with experimental observations and results by other

numerical simulation techniques. Chapter 7 summarizes and concludes the thesis.
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CHAPTER ONE

INTRODUCTION

This thesis deals with the theoretical basis, and several specific numerical applications
to hydrodynamic systems, of two emerging methodologies in studies of complex sys-

tems: those of the lattice-gas automata (LLGA) and the lattice Boltzmann equations

(LBE).

Traditionally, in dealing with physical systems, one would first derive the par-
tial differential equation(s) for the systems when it is possible, then one solves the
equation(s) either analytically or numerically. Hydrodynamics is such an example. In
the description of partial differential equations, the underlying physical systems are
viewed as based on a continuum, despite the fact that the real physical systems could
be genuinely discrete. For instance, matter consists of individual molecules. Thus,
the density, velocity and other fields in fluids should also be discrete. Therefore,

the concept of continuum is an idealization, an approximation of physical reality for

fluids.

For many interesting physical systems, the partial differential equations are non-
linear ones. For most nonlinear partial differential equations (with appropriate bound-
ary conditions), analytic solutions are rarely available. Hence, numerical solutions
become necessary. However, for certain nonlinear partial differential equations, even
numerical solutions are difficult to obtain. The difficulty is inherently associated with
the nonlinearity of the equations. One cannot completely face this difficulty without

giving up the approach of partial differential equations and the view point of the
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continuum.

The approach of using lattice-gas automata and lattice Boltzmann equations is
a serious attempt to provide effective alternatives to study complex systems. These
alternatives are drastically different from traditional numerical methods for solving
partial differential equations, because the concept of the continuum is completely
abandoned in this approach. Physical systems are treated at the kinetic level compu-
tationally, rather than at the macroscopic level. As we shall see, lattice-gas automata
can be viewed as extremely simplified versions of molecular dynamics (MD). Moreover,
the phase-space and time are completely discretized. For the sake of computational
efficiency, there are usually only a small number of velocities allowed. These methods
begin by formulating the mathematical laws of physical systems as simple evolution-
ary rules for discrete automata. These rules consist of the minimum symmetry criteria
for the correct macroscopic dynamics, and neglect a great deal of fine details of the
true microscopic physics. However, by having such a drastic simplification, one can
still mimic the correct generic macroscopic behavior of some physical systems. But,
one would not be able to capture some specific fine details of a particular physical
system. This conceptual step has been fruitful in practical applications, because it is
the basis for constructing very efficient algorithms to simulate complex systems using

modern, massively parallel computers.

Although kinetic theory also treats gases and liquids as systems consisting of
individual molecules, the primary goal of kinetic theory is to build a bridge between
the microscopic and macroscopic dynamics, rather than to deal with macroscopic
dynamics directly. In other words, the goal is to derive macroscopic equations from
microscopic dynamics by means of statistics, rather than to solve macroscopic equa-
tions. Much of modern research in statistical mechanics is based on attempts to
solve either the Boltzmann equation or similar equations for the particle distribution

functions. Once the distribution functions are obtained, the hydrodynamic equations
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can be derived. One should keep in mind that the Boltzmann equation is a nonlin-
ear integro-differential equation, which is very difficult to solve either analytically or
numerically. Therefore, one is not better off dealing with complex systems at the ki-
netic level by directly solving the Boltzmann equation. On the other hand, molecular
dynamics simulates physical systems from the first principles. It directly computes
trajectories or wave functions for systems with a large number of particles and with
realistic inter-particle interactions (such as the Leonard-Jones potential). Molecular
dynamics is computationally very intensive even with some approximations made,
and the computational intensity limits the number of particles in, and the length of
evolution time scale for a system. Thus, the applicability of molecular dynamics is
also limited. In contrast with kinetic theory and molecular dynamics, the methods
of the lattice-gas automata and the lattice Boltzmann equations not only provide a
simple framework to study complex physical systems in theory, but also offer effective

and efficient algorithms for realistic simulations in practice.

In order to motivate the consideration of these parallel methods, this chapter
provides a quick look at the objectives and demands of computational fluid dynam-
ics (CFD). This is followed by a discussion of modern parallel computing, and of the
somewhat longer history of the lattice-gas automata and their antecedents. The chap-
ter closes with an overview of the balance of the thesis, including a brief description

of the original results presented here.

Although the applications of these methods to hydrodynamical systems have
been emphasized through out this thesis, these methods are certainly not limited to
hydrodynamic systems, and indeed, these methods have been successfully applied to
study complex physical systems other than hydrodynamics. These applications shall

be mentioned, and the relevant references shall be cited later in this chapter.
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1.1 The Motivation of Computational Fluid Dynamics

Hydrodynamics is one of the oldest subjects in the realm of physical science. Hy-
drostatics was studied by Archimedes in the time of the Greek antiquity (circa 200
B.C.). Euler’s equation for inviscid fluids was obtained by Euler in the eighteenth
century. The governing equation of viscous fluids, the Navier-Stokes equation, has
been studied for over a century. The most challenging problem of the subject is
the theory of turbulence. Despite great advances in the physical sciences, there has
only been small progress towards a better understanding of turbulence. No complete
quantitative theory of turbulence has yet evolved; rather, what is known are some
qualitative results [1]. The theory of turbulence could be the last frontier in the field

of classical physics.

The theory of turbulence deserves serious attention, because turbulence occurs
in almost every situation involving the motion of fluids. It affects the resistance of
bodies such as automobiles, aircraft, boats, etc. to motion in fluids. A quantitative
theory of turbulence would advance our ability to effectively control turbulence in

engineering applications.

One obstacle to the development of a theory of turbulence is the fact that the
Navier-Stokes equations are a set of nonlinear partial differential equations. These
equations are merely a statement of (mass, momentum and energy) conservation
laws and cannot be solved analytically in general. The nonlinearity of the equations
leads to a rich complexity of the system. Indeed, hydrodynamic flows can exhibit
an extremely rich variety of complex phenomena, such as bifurcations and period-
doubling phenomena [1]. These phenomena are so rich that, in many respects, fluid

flows can be considered as an excellent paradigm of complexity in natural systems.

Analytic solutions of the Navier-Stokes equations are very difficult to obtain,

except for a few simple cases. Thus, it is inevitable to use either experimental or
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computational means to study hydrodynamic systems. Only within the last decade
or so have computers become powerful enough to begin solving the Navier-Stokes
equations, albeit for highly simplified flow situations. Now, numerically generated
turbulence information is being accepted by discriminating scientists with the same
degree of confidence as afforded to empirical observations. In fact, numerical work
is providing new insights into the interrelationships of the many flow variables. One
of these is the relationship between pressure and strain in a fluid, for which no mea-
surement is yet possible [2]. Despite this computational progress, current computers
are not yet powerful enough, in either memory or speed, to simulate flows over entire
aircraft. An estimate based upon traditional algorithms and a Reynolds number of
10® suggests that one needs exa-bytes (10'®) of memory and exa-FLOPs of speed for
such a simulation [2]. Current computers can only offer giga-bytes of memory and
giga-FLOPs of speed, although a tera-FLOP (10'?) machine may be realized in the
near future. The computational needs of the scientific and engineering communities
demand drastic improvement in both computer hardware and software. Some impor-
tant issues in computational physics, especially in computational fluid dynamics [3],
have been addressed in March 1993 issue of Physics Today, a special issue dedicated

to high-performance computing and physics.

1.2 Parallel Computing

In the past decade, the advance in computer technology has been enormous. A desk-
top workstation nowadays is just as, or almost as, powerful as a supercomputer a
decade ago. Yet, the fastest supercomputer available now, such as the CRAY Y-MP,
still by no means satisfies the demand from the scientific community. Many challenges,
such as weather forecasting and computational field theory, are still outstanding in
terms of our computational capability. As discussed in the preceding section, one

particular long-standing challenge to physical science is the understanding of turbu-
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lence. A hydrodynamic system with a high Reynolds number (> 10°, say) is a highly
nonlinear dynamical system with many degrees of freedom. The numerical simulation
of such systems is many orders of magnitude beyond the capacity of existing comput-
ing resources [2]. There are similar limitations on our ability to simulate many other

multi-dimensional field theories [4].

An important development in recent years has been the emergence of parallel
computers and algorithms. Massively parallel computers, such as the Connection Ma-
chines [5,6], the Hypercube, the Delta Touchstone and the Paragon (the last three
machines are made by Intel), and parallel algorithms have provided a hope to break
through a limitation set by the traditional computers with serial-architectures. Re-
cently, a spectral code with a grid-size of 512 to simulate turbulence (currently this is
the largest grid-size) has been implemented on a Connection Machine 200 (CM-200)
at the Advanced Computing Laboratory, Los Alamos National Laboratory. This code
is running on CM-200 at a speed of approximately 30 seconds per-time-step, which
is equivalent to 5-6 giga-FLOPs [7]. This speed is three times of the reported speed
achieved by a CRAY Y-MP computer with four processors (2 giga-FLOPs). The
new Connection Machine 5 (CM-5) is expected to advance the speed one order of
magnitude faster. Because parallel computing will certainly become dominant in the
90’s and well into next century, there is an urgent need to develop fully parallel algo-
rithms. The methods of the lattice-gas automata and the lattice Boltzmann equations
are such parallel algorithms, suitable for solving many difficult problems which can
be described by nonlinear partial differential equations, including the Navier-Stokes

equations.
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1.3 Historic Background

In what follows, we give a quick review of the history of cellular automata, discrete
velocity models of gases and lattice-gas automata. The connections between these
subjects are somewhat obvious. The lattice-gas automata belong to a special class
of cellular automata. The lattice-gas automata and discrete velocity models have the

similarity in modeling collision processes with finite number of discrete velocities.

1.3.1 Cellular Automata

In the early 1950’s, in the beginning of the computer era, Stanislaw Ulam [8] and
John von Neumann [9] had foreseen the use of a totally discrete model for natural
phenomena. Von Neumann’s primary aim was to devise a simple system capable of
reproducing itself in the manner of a living organism. The best-known model of the
kind, the “game of life” invented by John H. Conway, has a biological aspect, as the
name suggests; cells are born, live or die depending on the local population density.
The model, now referred to as a cellular automaton (CA) [10-15], is a dynamical
system in which time, space and state variables are all discrete, and there is only
a finite number of states on each site of the discrete space. The evolution of the
automaton is fully determined by a set of prescribed rules, which only involve the
states at the preceding time step. The updating rules are usually simple. A precise
definition of cellular automata can be stated as follows. Let A% be a state variable
at a moment of discrete time ¢ and a site ¢ of discrete space, the evolution of A} is

determined by

A = F({AL] 15l <)), (1.3.1)

where r is the radius of interaction. Typical rules, which determine the form of f, are

local (for instance, involving only the nearest neighbor interactions, that is, r = 1).

Although the updating rules of cellular automata can be very simple, the evo-
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lution, or patterns, exhibited by cellular automata can have an amazing complex-
ity [15,16]. The complex behavior of cellular automata is believed to be physically
related to a variety of natural phenomena, including self-organization phenomena,
and fluid flows [15,17]. Cellular automata can also be viewed as the idealization of
partial differential equations arising from mathematical physics [17-19]. Some classes
of cellular automata have been shown to be capable of universal computation, i.e.,
beginning with a particular initial state, the evolution of some automata could im-
plement any chosen finite algorithm [16]. Owing to their simple construction and
discrete nature, cellular automata are very suitable models to implement on digital
computers. Nowadays, cellular automata are becoming widely studied and have had

broad applications to many disciplines in science and engineering [15,19-22].

1.3.2 Discrete Velocity Models

While the lattice-gas automata are perhaps the simplest discrete-velocity models to
simulate fluid motion, there exist other discrete-velocity models. A reference in a
1964 paper by Broadwell [23] to an 1890 paper of J. C. Maxwell [24] has spawned
the erroneous notion, often stated in recent literature [25-27], that consideration of
discrete velocity models dates from Maxwell’s 1890 paper. The earliest discrete gas
model known to the author is the one which can be found in the 1954 textbook by
Hirschfelder, Curtiss and Bird [28, pages 2-5]." Their model consists of particles
residing in cubic lattice space. The model is only used to derive the equation of state

for gases.

Several discrete velocity models exist in the literature. Some of them are re-
viewed briefly in M. H. Ernst’s article in Physics Reports [29]. These models are

mentioned here only in a historical perspective. For further details, there are exten-

!The author is grateful to Prof. James E. Broadwell at Cal. Tech. for bringing this fact to the
author’s attention.
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sive reviews of the subject [30,26].

One of the simplest discrete velocity models is the one proposed by T. Carle-
man [31]. The Carleman model considers only particles with velocities v = +1 or —1
in one dimension. The dynamics is defined by binary collisions: A pair of particles
with +1 velocity collide and become a pair of particles with —1 velocity, and wvice
versa. Another similar model is the McKean model [32,33]. The McKean model and
the Carleman model differ from each other in their binary collisions. In the McKean
model, the binary collisions are that a pair of particles with +1 and —1 velocities
collide and become a pair of particles with —1 velocity, and vice versa. The general
solutions of the nonlinear Boltzmann equations for both the Carleman and the McK-
ean models are unknown, except for certain special cases [29,34]. Macroscopically,
these two models conserve the total number of particles and total energy (trivially,
as a consequence of the particle number conservation), but violate momentum con-
servation. The total momentum in both models decays to zero, as t — oo. These
two models can also be related to each other by a partial differential equation, the
telegrapher’s equation [29]. Furthermore, the Carleman and the McKean models are
special cases of a more general two-velocity model, the Illner model [35,36], which
includes the most general quadratic (binary) collisions. For the Illner model, some
soliton solutions can be found analytically [34]. The Carleman, the McKean and the

Illner models are also called two-velocity models.

In 1964, Broadwell proposed two discrete gas models with six (v = (£1, 0, 0),
(0, £1, 0) and (0, 0, £1)) and eight velocities (v = (+1, £1, £1)) allowed, respec-
tively, and with continuous space-time, to study rarefied gas dynamics [23,37]. Broad-
well solved the Boltzmann equations analytically for these two models, obtained so-
lutions for some simple flows, and computed shock structure for one of the models.

There also exist many other models of this type [25].

In 1968, Kadanoff and Swift used a master-equation with continuous time, dis-
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crete space and momentum to study hydrodynamics (propagation of sound waves) in

a spin system [38].

It should be stressed that most of the models mentioned here have been studied
only within the framework of the Boltzmann equation. They provide various model
equations for the Boltzmann equation, which are easier to deal with than the Boltz-
mann equation. They are very helpful in studies of some important issues in kinetic
theory, such as fluctuation theory. Neither the derivation of correct macroscopic equa-
tions from microscopic dynamics in simple models, nor the utilization of the model
equations of the Boltzmann equation as effective algorithms are the primary concern
in the previous studies of these models. Most studies in the field of discrete velocity
models are concerned with the exact solutions (or the analytic properties of the solu-
tions) of the Boltzmann model equations [23,37,25,39-41,34,42,26,43]. However, in
studies of the lattice-gas automata and the lattice Boltzmann equations, the primary
goal is to use these simple models to simulate complex systems. In order to do so, two
criteria must be satisfied: First, these models must lead to the correct macroscopic
equations. Second, they must be simple enough in construction that they can be
used as fast algorithms for difficult physical problems. These features of the methods
of the lattice-gas automata and the lattice Boltzmann equations clearly distinguish

themselves from other models.

1.3.3 Lattice-Gas Automata

The lattice-gas automata [44-50] belong to a special class of cellular automata de-
signed to study various physical systems. The lattice-gas automata and their floating-
point-number counterparts, the lattice Boltzmann equations, have been successfully
applied to physical systems such as single- or multi-phase/component fluids [51-58],
chemically reactive systems [59-65], non-ideal gases [66,67], phase transition phe-
nomena [68, 69, 58], magnetohydrodynamics (MHD) [70-73], and semiconductor de-



1. INTRODUCTION 11

vice [74,75]. The lattice-gas automata and the lattice Boltzmann equations can be
used to “solve” partial differential equations arising from physics, such as the Navier-
Stokes equations [44], Burgers’ equation [76], the wave equation [77], Poisson’s equa-
tion [78], reaction-diffusion equations [59,79], and the transport equation of electrons
in semiconductors [74,75]. Models of various lattice-gas automata share some common
advantages. First of all, the updating rules are local (the nearest neighbor interac-
tions only, for instance). Thus the system can be updated synchronously. In other
words, computer programs of lattice-gas models are completely parallel. Second, the
rules can be implemented either by simple Boolean logic operations (bit operations)
or by table look-up. Therefore the algorithm is very fast. Third, since the LGA
algorithm involves only integer (or logical) operations, the utilization of memory can
be highly efficient. Fourth, since the updating rules are logical, thus they are exact
and have no roundoff error. Hence, the conservation laws can be exactly satisfied
and the algorithm is unconditionally stable. Last, the method is capable of efficiently
handling complicated boundary geometries, which are difficult to implement using

conventional methods.

The LGA also possess some inherent shortcomings. One problem is that with
only a few particle speeds allowed, the range of velocities is severely limited. A second
problem is that because of the discreteness of the model, Galilean invariance is lost.
Also the lattice-gas equation of state is velocity-dependent. A fourth problem is
that the results tend to be noisy, with significant density and velocity fluctuations
occurring. Nevertheless, most of these shortcomings can be overcome by an alternative
method — the method of the lattice Boltzmann equations, a floating-point-number
variation of the lattice-gas automata. We will discuss in detail both the lattice-gas

automata and the lattice Boltzmann equations in later chapters.

The first totally discrete model, a lattice-gas automaton in two-dimensional

square-lattice space, was proposed by Hardy, Pomeau and de Pazzis (HPP) in 1972
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[80-83]. The HPP model, a discussion of which shall be postponed to §3.1, is a sim-
ple model introduced to analyze fundamental questions in statistical mechanics such
as ergodicity and the divergence of transport coefficients in two dimensions. The
HPP model has some useful features. For instance, it leads to sounds waves; it also
gives the correct result on the divergence of transport coefficients in two dimensions.
However, it does not satisfy symmetry criteria required for a correct hydrodynamic
equation. Like all of those aforementioned discrete-velocity models, the HPP model
only has been used for theoretical analysis. It cannot be used as an effective algorithm
to simulate realistic physical systems. Therefore, it has not had an extensive impact

on practical applications.

The serious use of the lattice-gas automata as a practical algorithm to simulate
complex systems only began in the mid-80’s, after Frisch, Hasslacher, Pomeau (FHP)
[44,46] and Wolfram [45] invented the lattice-gas automaton in two-dimensional trian-
gular lattice space which leads to the Navier-Stokes equation. The FHP model later
was adapted to three-dimensional space by d’Humieres, Lallemand, and Frisch [84,46].
The lattice-gas automata, which are integer models, later also evolved to their floating-

point number counterpart, the lattice Boltzmann methods [85, 86].

In recent years, lattice-gas automata have distinguished themselves from other
discrete-velocity models because they can be used to solve complicated and practi-
cally important problems which are very difficult for traditional methods, such as
multi-phase or multi-component fluids flowing through porous media. Even in sim-
ulations of some standard benchmarking problems, such as flow past a cylinder in
three-dimensional space, lattice-gas automata have provided some results which are
in excellent agreement with experimental results and, indeed, have superseded the
accuracy of the recent numerical results obtained by traditional methods of compu-
tational fluid dynamics simulation [87]. There are other encouraging facts supporting

the new methods. It is not an overstatement that, together with massively parallel
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computers such as the Connection Machines, the methods of the lattice-gas automata
and the lattice Boltzmann equations have become useful algorithms for numerical

simulations.

1.4 Owutline of This Thesis

This thesis is solely devoted to the methods of the lattice-gas automata and the lattice
Boltzmann equations. These subjects, newly emerged in 1980’s, utilize the statistical
mechanics of simple discrete models to simulate complex physical systems. This the-
sis contains both theoretical and computational aspects of the lattice-gas automata
and the lattice Boltzmann equations. The theory of lattice-gas automata and the lat-
tice Boltzmann equations in two-dimensional space is reviewed in detail so that those
who are new to the field can use it as an overview. One new contribution we have
made here is contained in Chapter 4. We have solved the linearized lattice Boltzmann
equation valid for the entire range of the Knudsen number, and have demonstrated
its usefulness by obtaining analytic solutions for simple flows. In Chapter 5, we prove
H-theorems for the linear lattice Boltzmann equations. In Chapter 6, we also provide
an original study of simulations using the linear lattice Boltzmann equation: The
symmetry-breaking bifurcation phenomenon of flow past a two-dimensional, symmet-
ric sudden-expansion channel. Comparisons of our results with experimental ones

and those by other numerical methods are made.

This thesis is arranged as follows: In Chapter 2, hydrodynamic and kinetic
theory are reviewed very briefly. This chapter provides the theoretical background
for the later chapters. The hydrodynamic equations are derived from both the con-
tinuum and the kinetic point of view. A key technique for solving the Boltzmann
equation and for evaluating the transport coefficients, the Chapman-Enskog proce-

dure, is discussed in detail. In Chapter 3, the theory of lattice-gas automata is given
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in extensive detail. The properties associated with the evolution of the lattice-gas
automata are studied: The conservation laws and the symmetries of various models.
The lattice Boltzmann equation and the related H-theorems for the LGA systems
are shown. The macroscopic equations with the corresponding transport coefficients
for the LGA are obtained via the Chapman-Enskog procedure. The normal-mode
analysis of the hydrodynamic equation derived from the lattice-gas automata is pre-
sented. In Chapter 4, a rigorous analysis of the linearized lattice Boltzmann equation
is given with results on generalized hydrodynamics and solutions for some special
flows. In Chapter 5, the linear lattice Boltzmann equations are studied. The linear
lattice Boltzmann equations can be used as an efficient algorithm for simulation. The
H-theorems for the linear Boltzmann equation with continuous space and time, but
with discrete velocity are proved. In Chapter 6, numerical results of flow in a two-
dimensional, symmetric sudden-expansion channel by the linear lattice Boltzmann
equation are presented. Finally, in Chapter 7, conclusions and discussions on future

studies are presented.
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CHAPTER TWO

HYDRODYNAMICS AND KINETIC THEORY

Fluid motions are described by the Euler equations for ideal fluids and by the Navier-
Stokes equations for dissipative fluids [88,1]. These hydrodynamic equations can be
derived by two different methods: the continuum method and kinetic theory [47].
In the continuum approach, individual molecules are ignored. The fluid is viewed
as continuous matter. At each point of this continuous fluid, unique values of the
density, velocity, pressure and temperature field are assumed to exist. The fact that
this continuous fluid must obey the conservation laws of mass, momentum and energy
gives rise to a set of partial differential equations governing the field variables. The
solution to these differential equations then defines the spatial variation and temporal
evolution of each field variable. These continuous field variables are assumed to be
the mean values of the molecular magnitudes of corresponding field variable at each

position and time.

The alternative method, i.e., kinetic theory, treats the fluid as consisting of
molecules whose motion is governed by the laws of dynamics. Kinetic theory attempts
to derive the macroscopic behavior of the fluid from the laws of mechanics and prob-
ability theory. Kinetic theory can obtain the same set of partial differential equations
governing the field variables, as by the continuum method, provided that the fluid is
near equilibrium and the constitutive relation between stress and strain is assumed.
In addition, this method yields expressions for the transport coefficients, such as co-

efficients of viscosity and thermal conductivity, in terms of molecular quantities such
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as the interacting forces between molecules or the mean free path of molecules.

The validity of these two methods lies in two different, but overlapping, domains.
The continuum approach is appropriate only if the microscopic scale, i.e., the mean
free path of molecules, is negligible compared to the smallest physical length scale
of the flow field. Kinetic theory is useful when the concept of the continuum is no
longer valid, that is, when the effect of the mean free path cannot be ignored, such

as in rarefied gases.

The remains of this chapter review the essential basics of hydrodynamics and
kinetic theory. In the next two sections, the Euler equations and the Navier-Stokes
equations are derived from continuum point of view and the symmetry properties of
the Navier-Stokes equation are discussed. In §2.3. basic concepts of kinetic theory
are briefly introduced. In §2.4, the Chapman-FEnskog procedure to obtain the normal
solutions of the Boltzmann transport equation, the Navier-Stokes equation with the

corresponding transport coefficients is studied.

2.1 Continuum Description of Hydrodynamics

In this section, we will derive hydrodynamical equations using the concept of the
continuum fields. To do so, we only need to apply Gauss’ theorem for a vector field,

A, in D-dimensional space,
/ A-ﬁdS:/ V-AdV (2.1.1)
av 14
and the Reynold’s transport theorem [88]

%/Vdez/V (%—erv-(Bv)) dv (2.1.2)
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to the conserved quantities: mass, momentum and energy. The Fuler equations for

the ideal fluid can thus be obtained:

dp

2L Ve =0, (2.1.3a)
ov
Oe

P oy + p(v-V)e = —P(V-v), (2.1.3¢)

where P is the hydrodynamic pressure, p, v and ¢ are the mass density, the (macro-
scopic) velocity and the internal energy density per unit mass, respectively. These
fields are the fundamental thermodynamical variables specifying a thermodynamical
system. Eqs. (2.1.3) are differential forms of mass, momentum and energy conserva-

tion laws for ideal fluids (non-dissipative fluids).

For fluids with dissipation, i.e., the viscous fluids, the continuity equation (2.1.3a)
remains the same. However, the equations for momentum and energy are different
from Egs. (2.1.3b) and (2.1.3c). Let’s rewrite Euler’s equation (2.1.3b) as

0 oll;
5;(Pvi) = — 81:'] ; (2.1.4)
J

where the momentum flux density tensor,

Hij = P52] + pov;, (215)

represents the completely reversible momentum transfer due to the pressure forces
exerted on the fluid and to mechanical mass transfer for ideal fluid. For dissipative
fluids, viscosity causes irreversible momentum transfer in the direction opposite to

the velocity gradient. The equation of motion for viscous fluids can be obtained by
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/

adding a viscous term, —o;;, to the momentum flux density tensor for the ideal fluid

Ii; = Pbij + pviv; — UZ/']‘ = pUiv; — O4j . (2.1.6)

The tensor,

035 = —P(Sij—|-0'/~ (217)

15

is the stress tensor, and o}; is the viscous stress tensor. For a Newtonian fluid, the

stress tensor must satisfy the following conditions:

1. The stress tensor, o;;, is isotropic, so that the fluid properties are point func-

tions.

2. The stress tensor, o;;, linearly depends only on the deformation-rate tensor
avi
Tij = 7 -
81;]-

3. When the fluid is in linear uniform motion or in solid-body rotation, the viscous
stress tensor, o;, must vanish, so that the stress is hydrostatic and the pressure
exerted by the fluid is the thermodynamic one.

Using symmetry considerations, the viscous stress tensor, o/;, for the Newtonian fluid
in a D-dimensional Cartesian coordinate system can be written as (For details see

the derivation in Ref. [1]),

61;» 6v< 2 avk 81}1
v
= (n1Sijrr + n26i;6k1) 8—;;;’

where the tensor S;;x; is defined as follows:

2

Siiel = 601 + 05105 — D

5’ij5kl7 (219)
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and, 11 and 7y are coefficients of viscosity: n; is the dynamic shear viscosity and 7
the dynamic bulk viscosity. In the definition of the viscous stress tensor, Eq. (2.1.8),
the Einstein convention for summation is used, i.e., repeated indices are summed.
This convention is used unless confusion may occur." Note that o7, is constructed so
that the expression in the bracket proportional to 7, is traceless. The tensor S;;u is

isotropic and has the following symmetry properties
Sijkt = Sjikt = Sjitk, (2.1.10a)
D Sik =Y Sijer = 0. (2.1.10Db)
i k

Then, from Euler’s equation (2.1.4) and Eq. (2.1.6), the general form of the compress-

ible Navier-Stokes equation can be written as the following

avi 81;2» . @P 8 avk
P o1 + pv]a—l’]‘ = _aifji + 8—:1:] (UlSzgkl + 7]252]5k1) a—xl . (2111)

The coefficients of viscosity are usually functions of density, p, pressure, P, and

temperature, T', which in general are not constant throughout the fluid.

Similarly, we can obtain the energy equation for fluids with dissipation:

86 avi
@vi @vk

= —PV-v+ (mSijr +1n26i;60) =——=— + V- (kVT), (2.1.12)
8:@ 0:1;1

where & 1s the thermal conductivity. Here the constitutive relation between heat-flux,

Q, and temperature gradient, VT, Q = —kVT, has been used. In above equation,
(%Z»

Tijm— represents the work done by the surface force, and V-(kVT') represents the
T;

!Some care must be taken when the Einstein convention is in use: The convention is valid only
for product terms, for example, the term 6;;6;; implies Z]' 6i;6;1. However, for a single tensor, the

repeated indices do not imply the sum, for example, &; # >, =i i
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energy transfer due to heat conduction. The term — PV -v represents the reversible
transfer of energy due to compression. The other two terms related to the coeffi-
cients of viscosity measure the rate at which mechanical energy is being irreversibly
converted into thermal energy. Collectively they define the dissipation function:

81}2 avz avk
Uzl'j 83; (Tllsz]kl + 7]252]5191) G a{ﬂ[

(2.1.13)

a’l)i 61)]- 81)2»
+
8a:j 81'2 8:1;]-

B 2 , 1 dv;  0Ov;
= (772—5771)(V'”) ‘|‘§771 ((‘3— (‘3:102) ;

— (= ZnTo

which is positive definite for Newtonian fluids [88]. The positivity of ® manifests itself

for the fact that the energy transfer caused by the viscous effects is indeed irreversible.

To summarize, we have obtained a set of partial differential equations in D-

dimensional Euclidean space:

ap 0 (pv
ot 8:1’}2

Ov; v, P 0 vy,

i\ OV 2 §.:6
Par TGy = Tom t o, (MSium + mbiu) 5o

i) =0, (2.1.14a)

(2.1.14b)

de Oe ov; dv; Ovy, 0 ( oT

pa —I_ pvza—wl = _P8$Z (7]152]]6[ —I_ 7]252]6161) a 8—;[,'[ -I_ axl /{awl) . (2114(:)

Together with the thermal and caloric equations of state

P=P(p,T), (2.1.15a)

=¢(p, T), (2.1.15b)

this set of equations governs the motion of Newtonian fluids, provided that the trans-

port coefficients, 11, 72 and k are given. In situations where the variations of p, P and
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T are negligible, then the transport coefficients 71, 72 and k can be approximately

treated as constants, and Eqs. (2.1.14b) and (2.1.14¢) can be simplified:

D -2
+ p(v-V)v :—VP—|—771V217—|—(772—|—( 5 )nl)V(V-v), (2.1.16a)

81)2 8vk
8 6:(;1

"at

Oe
C v Ve =—=PV-v+ (mSiju + 120ij00) =—

pa + kV2T. (2.1.16b)

For incompressible fluids which satisfy
—=—4v-Vp=0, (2.1.17)
thus
Vv=0, (2.1.18)

the momentum equation reduces to the incompressible Navier-Stokes equation

av

1
v-V)v=—-VP+ vV, 2.1.19
at
P

where v = 51/p is the kinematic viscosity. Accordingly, the energy equation for the

incompressible fluid becomes

Ov ‘%j) 0 | G (kVT). (2.1.20)

%—I- v-Ve = +
p@t P €=M 81;]- 81;2 al‘j

Eqgs. (2.1.18), (2.1.19) and (2.1.20) constitute the governing equations for incompress-

ible fluids, the incompressible Navier-Stokes equations.

If p = constant, the divergence of Eq. (2.1.19) leads to the Poisson equation for

the pressure:

(2.1.21)

This equation can be used to eliminate the pressure term from the set of equations.
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2.2 The Symmetries of the Navier-Stokes Equation

Besides the conservation laws, Newtonian mechanics possesses symmetries (invari-
ances) under the following transformations: continuous spatial-temporal translations,
time reversal, space reversal, arbitrary 3-D rotations (isotropy) and Galilean trans-
formation. Inevitably, the Navier-Stokes equation inherits some of the symmetries
of Newtonian mechanics. Indeed, the Navier-Stokes equation has all of the symme-
tries of Newtonian mechanics except time reversal because of the dissipation. The
invariances of continuous spatial-temporal translations and space reversal are rather
obvious in the Navier-Stokes equation. The other two invariances, ¢.e., isotropy and

Galilean invariance, are less trivial.

The isotropy of the Navier-Stokes equation is reflected in the structure of the
viscous stress tensor
a’l)k

oy = (M Sijrt + 0:0i5611) et

which in turn depends on the structure of the tensor S;;; and 6;;05. It can be shown
that the most general isotropic tensor of the fourth order must consist of products of

Kronecker delta symbols with pairs in indices [89], i.e.,
Cijrl = abijOr + béixdj + cbubjx (2.2.1)

where a, b and c are constants. Then it is obvious that o{; is isotropic, because both

Sijkl and 5ij5kl are.

Galilean invariance uniquely determines the form of the nonlinear term pvwv, i.e.,
the factor in front of the nonlinear term is unity. Suppose Il;; = Pé;; + gpv;v;, where
g is a constant. Then in the new inertial frame of reference where @' = ® — u{, and
v/ = v — u, we have

I}, = Péij + gp(vi — ui)(v; — ;) (2.2.2)
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and

(a(g}))' _ (% —|—u-V) (pv — pu). (2.2.3)

Consequently, the equation

(@g}tv))' _ _% (2.2.4)

leads to

d(pv 0
(@t ) = _@:xj (Pbij 4+ gpviv; — (g — 1)p(viv; + viu; — wiuj)) . (2.2.5)

Now, it is apparent that if and only if ¢ = 1, the above equation is independent of u,
that is, the equation is Galilean invariant. Therefore, ¢ = 1 is a necessary condition

for Galilean invariance.

2.3 Kinetic Theory, the Boltzmann Equation and Hydro-

dynamics

In contrast to the continuum field approach, kinetic theory assumes that a fluid is
made of a huge number of molecular constituents, whose motions obey Newtonian
mechanics. Directly solving the system with a large number of degrees of freedom,
which is in the order of the Avogadro’s number (10**), is impossible. Moreover,
the objective is not to know the motion of every individual molecular constituents.
Rather, one is interested in the collective behavior of such systems. Therefore, a
statistical description of the system becomes inevitable. One fundamental assumption
in kinetic theory is that complete information for the statistical description of a fluid
at, or near, thermal equilibrium is contained in the single-particle distribution function
Fi(r, I', t) for the molecular constituents of the system, where variables », I" and ¢
denote space coordinates, the rest of the phase-space coordinates complementary to

space coordinates 7 (such as linear and angular momenta) of the molecules, and time,
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respectively. The moments of the distribution function are the macroscopic quantities,

which are observables.

The central problem of kinetic theory is to formulate and solve the transport
equation, which is the equation of the distribution function, with different collision
processes dictated by the nature of the interactions between molecules. The solu-
tion of the transport equation provides the equations of the moments, which are the
macroscopic equations such as the Navier-Stokes equations, with relevant transport
coefficients, such as the shear and bulk viscosities which are unknowns in the Navier-
Stokes equations. One particular transport equation is the celebrated Boltzmann
equation. In this section, the Boltzmann equation is formulated, and in the next
section, a perturbative technique for solving the Boltzmann equation, the Chapman-

Enskog procedure, is reviewed.

2.3.1 The Distribution Function and Its Hydrodynamic Moments

We define the number density
n(r,I',t)=NF(r,I', 1), (2.3.1)

and the mass density
flr, T, ) =mNFi(r, T, 1), (2.3.2)

where m, is the mass of a single molecule and N is the number of molecules.

The macroscopic quantities, namely the mass density, p(r, ), the macroscopic
velocity, v(r, 1) and the internal energy density, ¢(», t), are moments of the mass

density distribution function f(r, I, ¢):

o(r, 1) = /f(r, T, tydr, (2.3.3a)
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po(r, 1) = /5f(r, T, 1)dr, (2.3.3b)
pe(r, 1) = %/(g — o) f(r, T, 1), (2.3.3¢)

where & is the microscopic velocity. The first five moments of f(», I', t), given by
the above equations, are the hydrodynamic moments. The equipartition assumption

gives the following relation between the temperature, 7', and the energy density, e:
RT = —FkT, (2.3.4)

where D, is the number of the degrees of freedom of individual molecules, R is the
ideal gas constant, and ks is the Boltzmann constant. In what follows, we will only
consider point-like molecules, i.e., the molecules without structure; thus D, = 3, and

I' = mo& = p (p is the momentum), or I' = €, whichever is convenient in the context.

2.3.2 The Liouville Equation, the BBGKY Hierarchy and Kinetic Trans-

port Equation

The basic equation of kinetic theory is the evolution equation for f(r, I', ¢) in the
presence of molecular collisions. Conservation of phase-space volume (Liouville’s the-

orem) leads to the transport equation,

Df of
— = = Vf= 2.3.
where C(f), a collision operator, models the rate of change of the distribution function

f(r, ', 1) due to collisions, of which the details are yet to be determined. We will
derive Eq. (2.3.5) for a particular form of C(f) in what follows.

For the sake of completeness, we shall start with a derivation of the BBGKY

hierarchy of equations. Given a system of N particles, with the N-particle distribution
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function, Fy, the M-particle reduced distribution function, F\,, is defined as

FM(r17...7"=M7 F17...7FM7t>:

/drM+1 codrydl sy - dUy Fy(rr, o 1w, Ty oo, Tas ). (2.3.6)
Specifically, for M =1, 2, we have

Fl(rl, Fl, t) =
/agr2 coodrydly - dDy Fy(y, - vy, Ty oo, Ty 1), (2.3.7a)
Fz(ﬁ, ra, Flv an t) =

/d'r'S'"d"'NdFS"'dFNFN(Tlv Py Flv B FN? t)' (237b)

The Liouville equation for Fly is

oF, XN [. oFy . OFy
= Yl =0. 2.3.8
ol —|—;[r or; TP op; ( )
With the substitution
N
oV;
2.3.
-5 (239
J#z

where V;; = V;;(||r; — r;||) is the pair-wise potential, we can obtain the BBGKY
hierarchy of equations (for details see Refs. [90-92]):

oF, M. . JF M oV OFy
W—I_Z —_Zam @pz_

=1 1, 3=1
z#]

2.3.10
api apM+1 ( )

M Wisisr (0Fup OF
o 8 )

This equation was named after Bogoliubov, Born, Green, Kirkwood, and Yvon, who
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independently and originally derived the equation. Of particular interest are the first

two equations in the hierarchy:

oF, . OF OViy (OF, OF,

W + T‘l'a—rl = (N — 1)/dr2dF2 a’rl : (apl — ap2) s (2311&)
OF, . OF . OF OV (0F, OF) _

ot ! or, ? or, ory \Jp, Op, B

0‘/13‘(8F3 8F3) 0‘/23‘(8173 0F;
op, dps

(N—Q)/drgdrg [arl o (G apgﬂ . (2.3.11b)

Obviously, the equation for F), is not closed, and so is the equation for f(r, I, t).
The complete BBGKY hierarchy is equivalent to the Liouville equation, or the Hamil-

tonian equations of the system.

2.3.3 The Boltzmann Equation

The celebrated Boltzmann equation [90, 91,93, 92] is a specific closed equation for
f(r, ', ). Boltzmann assumed molecular chaos (stosszahlansatz). The immediate
implication of this assumption is the fact that the molecules entering a collision process
do not have any correlation with each other so that the following factorization can be

realized:

FQ(T‘l, T2, Fl, FQ, t) = Fl(’f'l, Fl, t)Fl(’f'Q, FQ, t) . (2312)
To justify the assumption of molecular chaos, we must also assume:
1. The density is sufficiently low so that only binary collisions need to be consid-
ered;

2. The spatial dependence of gas properties is sufficiently slow so that collisions

can be thought of as being localized in physical space;
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3. The inter-particle potential is of sufficiently short range so that the assumption

of low density is meaningful.

With all these assumptions, and with the Boltzmann gas limit (BGL):

N — o (2.3.13a)
my — 0 (2.3.13b)
ro — 0 (2.3.13¢)
Nm, = constant (2.3.13d)
Nr? = constant (2.3.13e)

where r, is the interaction range, the Boltzmann equation, which is a nonlinear

integro-differential equation of f(r, I', ), can be obtained (for details see [90,91,94]):

af

af 1 /o
Gt EGe= o [ Asde & — €U - Th) | (2.3.14)

where [/ = f(r, €, 1), fi = [(r, €, 1), [ = [(r, & 1) and f; = [(r, &, 1), respec-
tively. In the above equation, dS is the collision cross section; in particular, it is
here the area-element of the disc of radius, r,, perpendicular to the vector (& — §);
& and &) are the velocities before a binary collision, which become & and &, after
the collision; & and &) are related to & and &, by momentum and energy conserva-
tion constraints. The Boltzmann equation (2.3.14) is a specific form of the transport

equation (2.3.5).

It should be noted that, historically, the Boltzmann equation was studied long
before the BBGKY hierarchy. Boltzmann studied the equation in 1872 [95]. It was
not until 1946 that Bogoliubov and others studied the BBGKY hierarchy. However,

mathematically it is logical to include the Boltzmann equation as the first order
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truncated and closed equation in the BBGKY hierarchy. This is the reason we choose
to present the Boltzmann equation and the BBGKY hierarchy in a nonchronological

order.

2.3.4 Conservation Laws and Summational Invariant

Let h denote a function of velocity & with the property that the sum of its values for

the two particles is the same before and after a collision:

(&) + h(€,) = h(&) + h(£). (2.3.15)

Such a quantity is called a summational invariant.

It can be shown that the collision operator C(f) in Eq. (2.3.14) conserves mass,

momentum and energy [96], i.e.,

/hC(f)dF —0, (2.3.16)

where

h=co+ece-&+c.t?, (2.3.17)

¢, and ¢, are arbitrary constants, and ¢; is an arbitrary D-dimensional constant

vector.

It can also be shown that mass, momentum and energy are the only summa-
tional invariants for structureless molecules. (For molecules with structures, angular
momentum is a summational invariant, too.) Because, the conservation of momen-
tum and energy imposes four conditions relating & and £} to € and &, (with given &
and &), and specification of the scattering angles imposes two more. Then there is

no freedom remaining for additional constraints.
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2.3.5 Equilibrium and Boltzmann’s H-Theorem

In most cases, the Boltzmann equation is difficult to solve. However, even without
solving the Boltzmann equation, a great deal of significant information can be ex-
tracted from it. For instance, one can obtain the hydrodynamic equations from it.

Also the H-theorem, a result first proved by Boltzmann, can be shown.

In equilibrium, f is independent of time and, if there is no external force, it is
independent of position. Then the Boltzmann equation (2.3.14) reduces to C(f) = 0.
It can be shown that

[demes. =1 | dedsldsnel—£||<f’f{—ff1)1n(

4m,

Jh
T'h

) =0. (2.3.18)

For any positive z and y the function (y — z)In (z/y) is never positive. Therefore,

the above integral vanishes if and only if

I'h="Th. (2.3.19)

This implies that In f is indeed a summational invariant, that is, f = exp(h), where h
is given by Eq. (2.3.17). Because of the hydrodynamic moments, given by Eqs. (2.3.3),
the equilibrium distribution function, denoted by f;, is

mg
fo=r [zkaT]

D
2

exp (— QZ‘)T(g - 'v)2) . (2.3.20)

The distribution function, f;, is call the Maxwell-Boltzmann distribution function,
which was first obtained by Maxwell. The above derivation is due to Boltzmann. It
should be noted that in the above equation, p, v and 7' are independent of & and ¢,

as f, is an absolute global equilibrium.
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Now, define the quantity

H = /dsfln I (2.3.21)

And, consider a spatially uniform system, with f depending on ¢ only. Then the

Boltzmann equation for the system becomes

=, =C(f). (2.3.22)

The time derivative of H is

/d£ (1+1nf /df 1+ 1n ))C(f), (2.3.23)

which can be written as

i _
dt 4

ds|& =&l (S fi = ffi)In (?}i) : (2.3.24)

By the same argument used in deriving f;, the integrand is never positive, and we
have Boltzmann’s H-theorem:

d—H<0 (2.3.25)
dt — 7 o

where the equality holds if and only if f = f,.

The above theorem states that the quantity H is a non-increasing function of
time. It can be shown that H has a lower bound. Consider a nonequilibrium distri-

bution function, f, such that

/dﬁ(f — fo)h =0 (2.3.26)

where h is any summational invariant. Let H, be the value of the functional H at
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Am:/&ﬁMh (2.3.27)

Obviously, H, is a constant, because for a spatially uniform system at equilibrium, p,

v and T are constants. Also, because of Eq. (2.3.26) and the form of f,, we have

/%ﬂgﬁ:/%ﬁmﬁ, (2.3.28)

and it immediately follows that

et~ [derms/h) = [ det, (1 +Lan /) - 1)) S a3

Because the quantity (1 — 2 + 2 In z) is non-negative for non-negative x, therefore, as

a consequence of the above equation,
H>H,. (2.3.30)

Thus, H is a monotonic function of time and is bounded from below, then H must

approach a limit, or an equilibrium. At the limit, = 0, which implies f is

H
at
a Maxwell-Boltzmann distribution. Since p, v and T' are constants, the particu-
lar (global) equilibrium f approaches must be the one constrained by Eq. (2.3.26).

Therefore, f approaches f, as t — oo.

The H-theorem can be extended to spatially non-uniform system. The result
would then be the local Maxwell-Boltzmann distribution. However, the details of this

aspect will not be discussed here, and readers should be referred to Ref. [96].

2.3.6 From the Boltzmann Equation to the Euler Equations

The Euler equations (2.1.3) can be easily derived from the transport equation (2.3.5),

independent of the details of the collision operator, C(f), as long as certain sym-
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metries, such as conservation laws, are preserved. We can immediately see that the
zeroth order moment of Eq. (2.3.5) with respect to velocity £ yields the continu-
ity equation (2.1.3a); the first order moment yields Euler’s equation (2.1.3b); and
the second order moment yields Eq. (2.1.3c), provided that f(r, T', ¢) is the local

Maxwell-Boltzmann distribution.

We will derive the Euler equations (2.1.3) in detail. Note the fact that =, £ and
t are independent variables, therefore € commutes with the operator V and d/0Lt.
The zeroth order moment of the transport equation (2.3.5) immediately leads to the

continuity equation of mass:

G G )
/ (a—f +€-Vf) d€ = a/fdé + V-/éfdé = a—j +V-(pv) =0.  (2.3.31)

Next, we compute the first order moment of the transport equation (2.3.5) to

obtain the momentum equation. Decompose & as
E=¢& +o, (2.3.32)

then
0 0 0
[€%ae =7 [epie = pw). (2:3.33)

and

[ €&-V)rde = V- |(poo) + [ €6, d¢] 2 (2.3.34)

The integral /ﬁofofdf can be identified as —o;;, where o;; is the stress tensor. If

f(r, ', 1) is the local Maxwell-Boltzmann distribution function,

Wl

r=r [QWH;;T] P <_QZ(‘)T(€ N ”)2) ’ (2.3.35)

“Note that vv # v-v = v* = ||v||* = v%. It represents a second order tensor v;v;.
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then the integral, /fofofdf, is indeed equal to P¢;;, where P is the hydrodynamic
pressure. Therefore the second order moment of f; is the momentum flux tensor II;

in Eq. (2.1.5). Hence Euler’s equation (2.1.3b) is obtained.

Similarly, for the second order moment of the transport equation (2.3.5), we

have:
1 0 J /1
5/528—{d = <§pv2 n p@) , (2.3.36)

and

3 [ €€ de =V ooz +o) b o[ e+ o [egrie] @)

In the above equation, it is obvious that the last term in the right-hand side can be
identified as the heat-flux, @, which vanishes if f = f, (due to the symmetry of the

integral). Therefore

%/§Q(§-V)de§ = V. <pv(%vz +e)+ Pv) : (2.3.38)

Then the energy equation, (2.1.3¢), follows.

So far, we have derived the Euler equations (2.1.3) from the viewpoint of kinetic
theory. It is a much more difficult task to obtain the Navier-Stokes equations via
kinetic theory. The next section is devoted to the derivation of the Navier-Stokes

equations using the Chapman-Enskog procedure.
2.4 The Chapman-Enskog Procedure and the Navier-Stokes
Equation

Much of the effort in kinetic theory has been devoted to the solutions of the transport

equation, in particular, of the Boltzmann equation. There are several outstanding
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names associated with this effort: Boltzmann, Maxwell, Hilbert, Chapman, Enskog
and Grad [90]. In this section, a perturbative method of solving the Boltzmann
equation, the Chapman-Enskog procedure, is reviewed. This method provides the
normal solutions of the Boltzmann equation. The normal solution is the one which
is uniquely determined for ¢ > 0 by the values at ¢ = 0 of the five hydrodynamic
moments. That is, the solution, f,is uniquely determined by the macroscopic thermo-

fluid state.

2.4.1 The Chapman-Enskog Expansion and the Normal Solution of the

Boltzmann Equation

The Chapman-Enskog procedure is a method of solving the Boltzmann equation (2.3.14)
by asymptotic expansion. In any expansion procedure, it is necessary to formally
introduce a small expansion parameter such that in certain regime of which the ex-

pansion is valid. The parameter to be used in what follows is the Knudsen number,

-

[Xn :
)

=— =K 2.4.1
€ L n ( )

where [ and L are the mean free path and the typical macroscopic length scale of
the system. The mean free path measures the average distance a molecule travels
without collisions. Clearly, Kp has to be small for the hydrodynamic description
(or continuum description) to be valid. Besides [ and L, other relevant physical
parameters in the system are the typical macroscopic time scale, 7,, and the typical
microscopic time scale, 7, which is the time interval between successive collisions. If

we restrict ourselves to the regime in which

O(€) = O(l/r) = O(L/n) = O(v) (2.4.2)
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i.e., the magnitude of the microscopic velocity, &, is of the same order as that of
the macroscopic velocity, v, and note that the mean free path, [, is proportional to
(pr?/m,)~', then dimensional analysis shows that the terms on the left-hand side of
the Boltzmann equation are of order 7' and v/ L, while the collision term is of order
(p/mo)vr? = v/l. Comparing both sides of the Boltzmann equation, we can introduce

the small parameter, ¢, into the Boltzmann equation

Df of 1
Eza‘Ff‘——zc(f), (2.4.3)

where the collision term, C(f), could be given by Equation (2.3.14). The parameter
€ is introduced for obtaining successive equations in the same order of ¢, and it shall

be set to unity eventually.

To solve the above equation, it is assumed that the entire time dependence of
f(r, ', 1) is solely in the thermodynamical variables, p, v and T'; that is, instead of
being a function of ¢, f is treated as a functional of p, v and T'. Thus, this assumption,

the Chapman-Enskog ansatz, formally leads to the replacement

f(r & 1) = f(r, & p, v, T). (2.4.4)

In the Chapman-Enskog procedure, we are seeking solutions of the form:

fzfiﬁﬂ“ (2.4.5)

which 1s the normal solution, such that

[aero| e = | |, (2.4.6)
(€ —v)’ 3pRT
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/d5f<"> ¢ — 0, n>l. (2.4.6b)
(& —v)?

Of course, the f’s themselves depend upon ¢, due to Eq. (2.4.6). One should notice
that f, as a function of v, £ and ¢, is not expanded as series of functions of e. In fact,
/™ depends upon € in a complex way only through the thermodynamical variables

p, v and T.
Because of the ansatz given by Eq. (2.4.4),

af 9fdp  Of dv 9T

dv 9t OT 9t

ot dpot v ot (247)

Although the moments of f, i.e., p, v and &, themselves are not expansions of €
due to Eq. (2.4.6), their derivatives are. By substitution of the expansion for f —

Eq. (2.4.5), the equations for the moments of f can be rewritten as follows

% — V(). (2.4.8)
v, 10 &

'~ -V 4 - 7 (n) 2.4.8b
5 v-Vu —I_Pa%'n:oe T (2.4.8b)
ar 2 & v,

— =—voVT+—> |V~ () 2.4.
5 v- VT + 3, nzoe (0'” o7, V-Q ) , (2.4.8¢)

where
o ] =t
Yol = [ defr : (2.4.9)
{ Q™ ] / { .60 ]

For the purpose of proper ordering of terms in O(€"), we introduce the operator

0y | Ot:

= —V-(pv), (2.4.10a)
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>1 2.4.10b
5 0, n=>1, ( Ob)
Oyv; 1 00(0)
—v-Vu; + — , 2.4.1
Y v-Vu; + Bz, ( 0c)
O,v; 1 80'(;)
= > 1 2.4.10d
ot p dz; "’ e ( )
0, T 2 v,
— = VI +— |0 QY 2.4.1
Y v-V —|—3R (U”@ -V-Q ), ( Oe)
0,T 2 () , Ov;
- = -Vv-Q™ > 1. 2.4.10f
dt  3Rp ( 7 dx; @ ) "= ( )
Now, we can use the above notation and rewrite
ot —; Z;( FTENPTRPTE at aT)f
= " 2.4.11
The left-hand side of the Boltzmann equation is
af o0f _ & O f f ™ o~ o Dnf
— = = " = " 2.4.12
o o T ;6 (875 nz:%e Dt (24.12)
while the right-hand side becomes
1 | R ol / (e
O = FCU) + X T 3D e, o), (2.413)
n=1 m=0

where C(f) and C(f) are defined in Eq. (2.3.14), and C(f"™, f&=™) is

e, 1) = - [ asdg, g, ~ ¢l

LF (e, & 1) (e, & 1) + [, &, ) f (0, €1, 1) —
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S (e, &0 [ (v, &y, 1) — [ (v, & 4) [ (v, &4, 1)) (2.4.14)

Now, a set of equations for f can be obtained by equating the terms of like order

Dn n
in the small parameter €. One should notice that operator — (or —) represents the

Dt at

time derivative with respect to time scale of ¢, = €7 "¢, because

D, D, D,
Dt D(emt) — Di,

(2.4.15)

™M
|
Il

Therefore, the appropriate physical characteristic time scales corresponding to the
different order of perturbations are different. The higher the order of the perturbation
is, the longer the characteristic time scale, and hence the slower the corresponding
physical process. This constitutes the basic idea of the multiple time scale formalism

[46].

2.4.2 The First-Order Solution

By considering the terms of order O(e™'), we have the first order equation from the
Chapman-Enskog procedure:
C(f)=0. (2.4.16)

Subject to the conditions given by Eq. (2.4.6), the first-order equation immediately
yields the solution that f is indeed the local Maxwell-Boltzmann distribution func-
tion, f,. The first-order solution is a direct consequence of Boltzmann’s H-theorem,
which has been discussed in the previous section. Thus the first-order approximation
leads to the usual equations for an inviscid fluid, i.e., the Euler equations (2.1.3). The

derivation is straightforward, as outlined in the previous section.
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2.4.3 The Second Order Solution, the Navier-Stokes Equation and Trans-

port Coefficients

The second-order equation is obtained by equating terms of order O(€%), which is an
equation for f:

Dof _

2L O, JO) 4 CUY, [O) = 2O, [V) = 2iLs(6V), (2407)

where ¢ = f/f,and the linear operator L, is given as follows

Lo(6") = — [ dSdE 16, ENFENS + 67 = 7 —67).  (2415)

The solution of equation (2.4.17) is not as trivial as the one for the first-order equation.
It is a rather tedious process. We shall omit the details of the process, which can be
found in some standard references (e.g., [90,96-98]), as they are beyond the scope of

this thesis. We will only present essential results in what follows.

/ D /
Because f® = f, is known, the term DLtf depends only upon f® and hence

can be carried out explicitly in terms of p, v, T'" and their derivatives,

Dof _ (0p0  0v 0 0T

Dt (875 ap "ot av T arar )fL (2:4.19)
fi J ov;
SHT {(gzw F2)RT) €V InT + Sy - fokfol}

e s oy
fL{(QRT 2)5 VInT + o (fozfo]——foz)awj} (D=3).

Eq. (2.4.17), an inhomogeneous integral equation for f), has the solution in three-

dimensional space [90,96-98]:

81)2»

f(O)
(A(fo, T)¢,-VInT + B(&, T) (c‘mfw — ”) %) o (2.4.20)

ay _
/ pRT
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where A(&, T') and B(&,, T') are the solutions of

2 )
_’C¢(A€0) = <2§ET - 5) 607 (2421&)

—Ly(B - (&oiboj — %53527)) = Loiboj — %53&; . (2.4.21b)

Solving these equations is a difficult task even for simple inter-molecular potentials,

e.qg., the hard-sphere potential. However, it can be done by various approximation

methods [90,96,98].

Once f% is obtained, then O'E;) and Q" can be computed, and it is easy to
calculate the corresponding transport coefficients — the kinematic viscosity, v, and

the thermal conductivity, «:

_ 15{);@ / dEELAT, | (2.4.22a)
K=o /dgg;*BfL. (2.4.22D)

Consequently, the incompressible Navier-Stokes equations are derived with the values

of transport coefficients.

The above derivation is specific to an ideal gas (i.e., particles without structures)
at low density. The result implies that the bulk viscosity vanishes. The bulk viscosity
is actually negligible in such case. In order to obtain the compressible Navier-Stokes
equations and the corresponding transport coefficient (the bulk viscosity), one has to
consider either monoatomic gases at high densities in which the correlations between
colliding molecules cannot be ignored, or polyatomic gases in which particles have
internal degrees of freedom (such as rotational and vibrational degree of freedom).
The study of such cases is beyond the scope of this thesis, thus we refer readers to

available references [98,90,96, 98].
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We have illustrated the Chapman-Enskog procedure by carrying out the first-
and the second-order solutions. One can continue the procedure to higher orders.
However, the physical significance of the higher-order solutions is not clear. For

certain problems the third-order solution leads to the Burnett equation [96].

In summary, the Chapman-Enskog procedure is an expansion procedure in which
the distribution function is expanded as a series in the Knudsen number in which the
zeroth order approximation is the local Maxwell-Boltzmann equilibrium distribution
function, subject to the conditions that the higher order distribution functions have
no contribution to the hydrodynamic moments of the distribution function (mass,
momentum and energy densities), given by Eq. (2.4.6). The term f is the nth-
order term of the spatial derivatives of the thermodynamical variables p, v and T'.
For instance, f® is linear in the first-order spatial derivatives of p, v and T'; f®
is linear in the second-order derivatives and quadratic in the first-order ones. The
derivatives are multiplied by coefficients which are functions of p, v and 7. In the
Boltzmann equation, the time derivatives of p, v and T are eliminated by the hy-
drodynamic equations (2.4.10). The lowest-order approximation leads to the local
Maxwell-Boltzmann equilibrium distribution function f = f;. Then f® is used to
calculate UEE) and Q" and hence to solve f. Once f® is known, a;?;) and Q" can

(

be evaluated, and so can f®. Continuing, ;"

2]) and Q" at any stage are available to

proceed to the next stage. The existence of the nth-order solution, f, can also be

shown rigorously [97].

2.4.4 The Validity of the Chapman-Enskog Procedure

Finally, we should briefly discuss the validity of the Chapman-Enskog procedure. First
of all, one should notice that the Chapman-FEnskog expansion is one in inverse powers
of the density while the Boltzmann equation is valid at low density. The Boltzmann

gas limit (2.3.13) specifies Nr) < 1, which leads to r, < . On the other hand, the
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expansion is valid when [ < L, because it is an expansion of the Knudsen number,
Ky, Therefore, the density must be in the range where inequalities r, < [ and
[ < L hold simultaneously. That is to say, the density should be both low enough
so that only binary collisions need to be considered, and high enough so that the
collision mechanism is effective in establishing a local Maxwell-Boltzmann equilibrium
distribution. Then f, is a good zeroth-order approximation to f. Second, because
of the dependence of the Chapman-Enskog expansion upon the spatial derivatives,
the approximation is expected to be valid in the regimes where the spatial gradients
of p, v and T are small. Therefore, the Chapman-Enskog expansion is valid when
the system is not too far away from the thermal equilibrium, in the sense described

above.

2.4.5 Some Further Developments

So far we have demonstrated how to derive hydrodynamic equations from the Boltz-
mann equation via the Chapman-Enskog procedure. Two comments are in order at

this point.

First, for the purpose of deriving hydrodynamics from kinetic theory, one need
not start from the Boltzmann equation. One can obtain the same set of hydrodynamic
equations by starting from the BBGKY hierarchy. The Chapman-Enskog procedure
can be generalized and applied to the BBGKY hierarchy. This was done in 1958 by
S. T. Choh [99]; the procedure is well summarized in Ref. [100, pages 135-142].

Second, there exists a more rigorous procedure, which is also equivalent to the
Chapman-Enskog procedure, for deriving the hydrodynamic equations from the Boltz-
mann equation. This procedure is due to R. Fox, and since it is equivalent to the
Chapman-Enskog procedure, it is referred to as the Fox-Chapman-Enskog proce-
dure [101]. The Fox-Chapman-Enskog procedure is based on the contraction pro-

cedure of n stationary, Gaussian, Markov variables to m ones (n > m) [101]. One
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advantage of the Fox-Chapman-Enskog procedure is that the hydrodynamic and the
kinetic time scales are naturally separated; there is no need to introduce an expansion
parameter (the Knudsen number, Kp) to distinguish different time scales. Although
the Fox-Chapman-Enskog procedure is more elegant and rigorous, the results obtained

by it are the same as that obtained by the Chapman-FEnskog procedure.

2.5 Some Dimensionless Parameters, the Law of Similarity

and Asymptotic Ordering in Hydrodynamics

The Navier-Stokes equation can be written in a dimensionless form associated with
dimensionless parameters. The order of magnitude of these dimensionless parameters
qualitatively characterizes the solution of the Navier-Stokes equation. In this section,

we derive these parameters and discuss some related issues.

As in the Chapman-Enskog expansion, we shall keep the Knudsen number small,

e, Kn = 7= O(e), where € is a small parameter. Define the Mach number,
0 UO 0

M= —= Tl , the Strouhal number, S; = T—, and the Reynolds number, Re =
Cs T

LUO

, with U, as the characteristic hydrodynamic velocity, ¢, the sound speed, L the
characteristic hydrodynamic length scale, [ the mean free path, 7, the characteristic

hydrodynamic time scale and 7 the characteristic kinetic time scale, respectively.
2

Also, the kinetic viscosity, v, goes like —. Furthermore, we have Re S = K 2.
T
Rescaling
v="Uu (2.5.1a)
1= 7t (2.5.1b)

r=Lr (2.5.1¢)
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and using the isothermal equation of state
P =¢cp=+/vRTp, (2.5.2)

where v = O—P, and Cp and C,, are specific heats with constant volume V' and constant
1%

pressure P, respectively, we can rewrite the incompressible Navier-Stokes equation in

dimensionless form,

1 Ou 1 1
— Vu=—-——Vp+—V" 2.5.3
Mg or T wYIe=—pVet Ve (253)
where V' = % In order to keep every term in the above equation in the same
r

asymptotic order in terms of the small parameter ¢, we must have

Kn ~ O(e), (2.5.4a)
Re ~ O(€°), (2.5.4b)
M ~ O(e), (2.5.4¢)
S~ O, (2.5.4d)
@ ~ 62 €

; (€9). (2.5.4€)

That is, for hydrodynamic description to be valid, the Knudsen number, Ky, has to
be small. Also, for the viscous effect to be non-negligible, the Reynolds number, Re,
has to be O(1). Consequently, the Strouhal number is O(¢~?), which measures the
characteristic time scale of the hydrodynamic effect governed by the Navier-Stokes
equation. The small Mach number limit is equivalent to the incompressible limit,

\Y
hence the density fluctuation P s O(e?).
p

By ignoring the viscous term, vV?w, in the Navier-Stokes equation, Euler’s equa-
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tion can be obtained. In this case, we must have Re ~ O(e™!). Similar dimension

analysis will lead to the asymptotic ordering for Euler’s equation

Kp ~ O(e), (2.5.5a)

Re ~ O(e™), (2.5.5b)

M ~ O("), (2.5.5¢)

Sy~ O(e™), (2.5.5d)

Ve ~ O(%). (2.5.5¢)
P

One can immediately notice the distinction between the Euler ordering and the
Navier-Stokes ordering. Euler’s equation governs inviscid fluids, and the viscous effect
should be negligible. Therefore, Re ~ O(e™"). Consequently, we have M ~ O(1) and
S; ~ O(e7'). Because M ~ O(1) and thus Vo ~ O(1), the system described by the
Euler equations is further away from equilibgum than that described by the Navier-
Stokes equations. Also, S; ~ O(e™!) suggests that the process governed by the Euler
equations is much faster than that by the Navier-Stokes equations. This is somewhat
obvious, because the Euler equations are obtained in the order of O(e™!) and the
corresponding time scale is et, while the Navier-Stokes equations are in the order of

O(1). Thus, the related time scales should also follow the ordering accordingly.

Usually, the given characteristic physical quantities for a hydrodynamic system
are L, U, and v. The only dimensionless quantity constructed from the above three is
the Reynolds number, Re. Furthermore, the ratio between the magnitude of the non-
linear convective term, (vV )v, and that of the viscous term, vV?wv, is just the Reynolds
number, Re. Thus, the Reynolds number, Re, measures the relative strength of the

nonlinearity. Under this circumstance, the incompressible Navier-Stokes equation in
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dimensionless form, Eq. (2.5.3), can be written as

0 1
a—'z (V= VP 4 -V, (2.5.6)
7 UO . . ! .
where ' = ft’ and the dimensionless pressure P’ = i The solution of the above
PYs
equation has the general form
u=u(r,l; Re) (2.5.7)

for flows of the same type, (e.g., flows with the same geometric boundary conditions
but with different viscosity, etc.) i.e., the dimensionless velocities, u, for flows of the
same type are the same functions of #' and ¢', if the Reynolds number, Re, is the
same. In other words, the flows of the same type are similar to each other if the

Reynolds number, Re, is the same for each flow. This is the law of similarity [1].

In Eq. (2.5.6), the Reynolds number, Re, can be treated as an adjustable pa-
rameter, which measures the relative strength of the nonlinearity. Then, flows with
large enough Reynolds number can be turbulent. Thus, the Reynolds number, Re,
also qualitatively characterizes a flow, whether it is a steady state, a time dependent

state, or a turbulent state.

If the system were driven by an external force with period T', then, besides the

Reynolds number, another dimensionless number characterizing the flow, the Strouhal

U, T
number, 5; = z , can be defined. Consequently, by rescaling the time, { = T,

the incompressible Navier-Stokes equation in dimensionless form, Eq. (2.5.3), can be

written as

1 Ou 1
E% + (’U,V/)’U, =-V'P' + R_QVIZU' (258)

Thus, similar to the previous case, the solution of the above equation should have the
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general form

u=u(r,t; Re, S)) (2.5.9)

for flows of the same type. It should be noted that although the Navier-Stokes equa-
tion can be written in a dimensionless form, the characteristic quantities of a system
still play important roles. That is, the Reynolds number and other dimensionless
parameters cannot fully determine the physics of a system. For instance, there are
boundary layers near boundaries. Moreover, the boundary layers are different for
different velocities. Hence, the effects due to the boundary layers are different with

different velocities.
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CHAPTER THREE

THE FHP LATTICE-GAS AUTOMATA

Before studying the details of the lattice-gas model proposed by Frisch, Hasslacher
and Pomeau (FHP) [46], first of all we should re-emphasize the motivation of using
simple cellular automata models to study hydrodynamical systems. The possibility of
using such a simplistic model as the lattice-gas automaton to simulate hydrodynamic
systems, which are highly nonlinear and high-dimensional complex systems, is based
upon the following observations [4]: The first is that studies of molecular dynamics
have demonstrated that hydrodynamics applies quantitatively on a microscopic scale.
Therefore, instead of 10?* particles, only 10°-10® particles (or, in other words, an
equivalent number of simultaneous equations of motion), depending on the hydro-
dynamic problem to be investigated, are needed for simulations for hydrodynamical

systems.

The second observation is that one does not need to solve a set of the exact equa-
tions of motion, rather one can choose to solve a simplified system. The reason is the
following [102,4]: The physical content of the Navier-Stokes equations is nothing but
the conservation laws supplemented by the definition of the transport coefficients.
The form of the hydrodynamic equations is very much determined by the symme-
tries of Newtonian mechanics and by the conservation laws. Such symmetries are, for
instance, continuous spatial-temporal translational invariance, rotational invariance
(isotropy), parity invariance and Galilean invariance. So long as these symmetries,

together with the conservation laws, are preserved in the underlying microdynamics,
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then the hydrodynamics should be the emerging collective behavior of the system
governed by the microdynamics. For discrete models, the question which should be
asked is whether the discrete models can be constructed so that these invariance prop-
erties are relaxed by necessity and without losing the proper hydrodynamic behavior.
The FHP lattice-gas automata have been shown to be successful in this regard. We

will study this model in detail in the subsequent sections.

The final observation is that lattice-gas automata can be thought as the ex-
tremely simplified models of molecular dynamics. This simplification has gained an
enormous computational advantage, owing to the fully parallel nature of FHP lattice-
gas automata. Lattice-gas automata run very fast on parallel computers such as
Connection Machines. On a quarter machine of CM-200, a speed about 300 million
site updates per second has been achieved at the Center for Nonlinear Studies, Los
Alamos National Laboratory. It has been speculated that it is possible to obtain a
speed of 6 x 10'% site updates per second on a specialized dedicated computer based

on existing technology, which is 10® times faster than CRAY-2 computers [103].

We will mathematically justify the validity of using the FHP lattice-gas models
to simulate hydrodynamical systems in this chapter. The remaining materials in this
chapter is organized as follows: §3.1 briefly discusses the HPP lattice-gas automaton
in a square lattice space. §3.2 presents the microdynamics of the FHP lattice-gas
automata. §3.3 explicitly derives the collision operator of the FHP lattice-gas au-
tomata. §3.4 studies the FHP lattice-gas automata with rest particles. §3.5 discusses
the spurious conserved quantities associated with the microdynamics of the FHP
models. §3.6 analyzes the symmetries of the underlying lattice space and the asso-
ciated tensor structures. §3.7 computes the equilibrium distribution function of the
particle number through the usual analysis of the equilibrium statistical mechanics.
As a consequence of the equilibrium, a set of necessary collisions to thermalize the

system are also derived. §3.8 derives the lattice Boltzmann equation. §3.9 proves the
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H-theorems for the FHP models with the Boltzmann approximation. §3.10 and §3.11
derive the macroscopic equations with the transport coefficients for the FHP lattice-
gas automata with and without rest particles via the Chapman-Enskog procedure.
§3.12 provides the normal modes analysis for the lattice-gas hydrodynamics. Finally,
§3.13 concludes this chapter.

3.1 Prelude: The HPP Lattice-Gas Model

In 1972, J. Hardy, Y. Pomeau and O. de Pazzis (HPP) proposed a two-dimensional
lattice-gas automaton model to study two-dimensional hydrodynamics [80-83]. Their
motivation was to study fundamental questions in statistical mechanics such as er-
godicity and the divergence of transport coefficients in two dimensions (the long time
tails of the time correlation functions), in the simplest possible model. In particular,
they studied a class of equilibrium states and the time correlation functions of the
model. They were able to evaluate the transport coefficients via the Green-Kubo
formula. The HPP model consists of a two-dimensional square lattice space with unit
lattice constant and with discrete time. Each particle has unit mass and unit speed.
The four possible directions of a particle’s momentum are those of the links to the
nearest neighboring sites. On each site at each time step, there can be either one
or zero particles with a particular momentum (exclusion principle). The evolution of
the system has two steps: Collision and advection. At each time step, inter-particle
interactions occur through local collisions, i.e., the collision process only involves par-
ticles at the same site and the same time. The collision rules are designed to conserve
particle number, momentum and kinetic energy, locally and exactly. For the HPP
model, the collision rules are particularly simple: There are only two-body head-on
collisions. When the head-on collision occurs, the relative velocities of the pair of the
particles involved in the collision will rotate 7 /2 (or —x/2), as shown in Fig. (3.1.1).

After collision, particles move to adjacent sites in the direction of their momentum.
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Figure 3.1.1: Two-body (head-on) collision rules of the HPP model.

The HPP model is a completely deterministic one — the evolution is reversible. Also,
conservation of kinetic energy is indistinguishable from conservation of particle num-
ber (mass conservation), because there is only a single speed of particles. Therefore,
the energy conservation does not play any role in the hydrodynamics of the single

speed models.

There are immediate drawbacks of the HPP model due to its simplicity. Obvi-
ously, the HPP model is not Galilean invariant because of its discrete nature, just as
any other discrete models. (The reason is very simple: The collision processes depend
on the frame of reference. For instance, a pair of head-on particles in a rest frame
of reference 1s not so in a moving frame of reference with a velocity perpendicular to
the velocities of the particles.) In addition, the Navier-Stokes equation derived from
the model is anisotropic, because the stress tensor lacks the necessary symmetry (this
will be explained in detail later). Also, the collision rule preserves the differences
of particle population with opposite momentum along each row and each column of
the lattice if a periodic boundary condition is imposed. Therefore, all together, these

differences introduce many spurious conserved quantities.

By observing the fact that the triangular lattice possesses the sufficient sym-
metry, Uriel Frisch, Brosl Hasslacher and Yves Pomeau (FHP) proposed a lattice-
gas model, popularly named the FHP model, with triangular lattice structure, in

1986 [44]. The invention of the FHP model has stimulated research of lattice-gas
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Figure 3.2.1: Triangular-lattice space for FHP models. In this Figure, two successive micro-

scopic configurations of the FHP lattice-gas automaton are shown. Each arrow represents a
discrete particle with the momentum directing as the arrow. The solid arrows are particles at
time t; and the hollow arrows are those at time ¢ + 1, after a collision and an advection process.

automata, and has offered a realistic promise of simulating real physical problems

using lattice-gas automata methods [48-50,104].

3.2 Evolution, Microscopic Equation and Conservation Laws

The essence of the FHP lattice-gas automaton is not much different from that of
the HPP lattice-gas automaton, in the sense that they all possess the exact conser-
vation laws, and have the same evolution processes — collision and advection. The
only difference between the HPP and the FHP lattice-gas automaton is the symme-
try dictated by the underlying lattice space structure, which in turn determines the

symmetry of tensor structure of the models.

The FHP lattice-gas automata live on a two-dimensional triangular-lattice space
with unit lattice constant, as shown in Fig. (3.2.1). Each site on the lattice is con-
nected to its six neighbors by links corresponding to the unit vector e, through é,

given by

e, = (cos(2r(a —1)/6), sin(2x(a — 1)/6)) aef{l,2,---,6}. (3.2.1)
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(Greek indices «, 3, - -+ always run from 1 to 6, or 0 to 6 for models with one rest
particle; whereas Roman indices z, j, - - - run between z and y in two-dimensional space
and between z, y and z in three-dimensional space, unless otherwise specified.) There
can be only one or zero particles lying on each directed link at any time (exclusion
principle). Assuming unit particle masses and unit time steps, the momentum and
velocity of each particle is simply given by the vector, é,. The evolution of the system
consists of two steps: Collision and advection. At each time step, particles on each site
collide and then scatter according to a set of rules which conserve mass, momentum
and energy exactly and locally. The collisions are elastic and instantaneous, with
zero interaction range. Therefore, all particles have equal kinetic energy and zero
potential energy. After collision, particles move in the direction of their new velocities

to adjacent sites.

Fig. (3.2.2) illustrates the collision rules of the FHP lattice-gas automata. In
the left column are the incoming states, and in the right column are outgoing states.
In the first row is the two-body head-on collision; in the second row is the symmetric
three-body collision; in the third row is the asymmetric three-body collision; and in
the fourth row is the four-body collision. In Fig. (3.2.2), all possible configurations
for a collision to occur have been illustrated, except for degeneracies by sixfold rota-
tional symmetry of the triangular lattice space or by mirror reflections. Those input
states equal to their output states are also omitted in Fig. (3.2.2). Two particles
on the same site would collide only if they have opposite momentum, then they will
undergo a head-on collision and scatter by rotating 7/3 randomly either clockwise
or counter-clockwise. Three particles on the same site always collide: A ftriple of
particles 27 /3 apart (symmetric) scatters by rotating x/3; a pair of head-on parti-
cles with a spectator rotates #/3 to the only possible configuration dictated by the
exclusion principle. Four particles on the same site will collide only if they are two
pairs of head-on particles, then one of the pairs is randomly chosen to rotate #/3

either clockwise or counter-clockwise. Therefore, the two-body head-on collision rule
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Figure 3.2.2: The collision rules for the 6-bit FHP lattice-gas automata. In the left column
are input states, and in the right are output states.
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is undeterministic, and so is the four-body collision rule. Whereas the symmetric and
asymmetric three-body collision rules are deterministic. The symmetric three-body
collisions destroy the spurious conserved quantities along each lattice line. Notice that
in the model there may be a particle-hole duality, if two- and four-body collisions are
included in the model. In this case, one can view the collision of four particles as the
collision of two holes, and wice versa. In Fig. (3.2.1), two successive configurations
of a FHP lattice-gas automaton, which evolves according to the rules prescribed in

Fig. (3.2.2), are illustrated.

Because of the exclusion principle, the occupation number of the particles at
site, &, time, ¢, with velocity, e,, is a Boolean number. We can therefore use a 6-bit
binary number to denote the occupation number of the particles at site, &, and time,
t. For instance, a configuration with one particle with momentum, é;, and the other
one with momentum, é4, on a site can be represented by a binary number 001001.
Therefore, the FHP models without rest particles are also referred as to the 6-bit
FHP models. We can therefore construct a table of the collision rules in binary form,

which is equivalent to Fig. (3.2.2):

| INPUT STATE | OUTPUT STATE |

010010

1001
00100 100100
010101 101010
001011 100110
TT0TI0

11011
0110 101101

Table 3.2.1: The collision table for the 6-bit FHP models.

Because of this binary representation, we can use either Boolean logic operations or

table-lookup when implementing the FHP lattice-gas models.

The evolution of the FHP lattice-gas automaton on a two-dimensional triangular-

lattice space, {@}, with a unit lattice constant and with discrete time, ¢ € {0, 1, 2,-- -},
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is governed by the following equation
(T + €4, 1+ 1) = na(x, t) + Col{na}), (3.2.2)

where n, (&, t) is the occupation number of the particle at site, @, time, ¢, with
velocity, €,; {n.} denotes the set of all ny(e, t), {n.(e, t)|a = 1,2---,6}, and
Ca({na}) is the collision operator which represents creation or annihilation of n, (@, t)

due to collisions. Since n, (@, t) is Boolean, consequently C,({n.}) € {1, 0, 1}.

The collision rules of the FHP lattice-gas models conserve the particle number,
momentum and kinetic energy at each individual collision. The conservation laws are
satisfied exactly and locally. The conservation laws can be expressed mathematically,

similar to Eq. (2.3.16) for the continuum case, as the following

S hCo({na}) =0, (3.2.3)

where

h=co+c e,+cl(é,—v), (3.2.4)

with ¢, and ¢, as arbitrary constants, and ¢, as an arbitrary D-dimensional constant

vector.

For single-speed lattice-gas models, the energy conservation law is equivalent to
the mass conservation law. Therefore it is redundant and it does not play any role in

the dynamics of the system.

3.3 The Collision Operator, C,

The collision operator, C,({ns}), can be written out in detail. Consider the term due

to the two-body collisions, C'({n,}), which represents the scattering of a single pair
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of head-on colliding particles with momenta e, and —é, in any directions eg and

—eég with 3 # a. Obviously,

2) 2 o _ _ 2) o _ _
C((y) - 6&{)na+1na+4nana+2na—|—3na+5 + f(L MNa42Na+5NaNa+1Na4+3Na4+4—

(fg) + f(;))nana+3ﬁa+1ﬁa+2ﬁa+4ﬁa+5 3 (3'3'1)

where

o = 1 — 1y (3.3.2)

is the complement of n,; £ and ¢® are Boolean random numbers which determine
the outcome of head-on two-body collisions. Boolean random number &2 and £»
reflect the randomness of the outcomes of the two-body collision: When ¢ = 1
(£ = 1), velocities of the scattered pair of particles choose to rotate /3 (—=x/3).
The first two terms in C'? represent the possible creation of n,, and the last term the

possible annihilation, due to the two-body collisions.

Similarly, we can write the collision term due to the symmetric three-body col-

lisions:
38 38 - _ — — —
CU? = £°9 (nag1natsNatsNallatolats — NaNataNatalati NatsNats) ; (3.3.3)
the collision term due to the asymmetric three-body collisions:
y y
3A 3A - — - —
Cl(y ) = 5( )(na+1na+2na+4nana+3na+5 + na+1na+4na+5nana+2na+3+
na+1na+2na+5ﬁaﬁa+3ﬁa+4 —I' na+2na+4na+5ﬁaﬁa+l'ﬁa+3 -

nana+1na+3ﬁa+2ﬁa+4ﬁa+5 - nana+2na+3ﬁa+lﬁa+4ﬁa+5 - (334)

nana+3na+4ﬁa+lﬁa+2ﬁa+5 - nana+3na+5ﬁa+lﬁa+2ﬁa+4) )
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and the collision term due to the four-body collisions:

1) __ (1) = = 4 _
Céz‘ — ga Na+1Na42Na4+4Na4+5M N a43 + fé )na+1na+2na—|—4na+5nana—|—3_
(4) — — (4 _ _
fﬁa NaNa41Na43Na+aNa 42N 045 — 631 )nana+2na+3na+5na+lna+4 ) (335)

where Boolean random number %), (84 £ and ¢ are similar to £ and €.

By observing the form of the collision terms, we can write the collision operator

in a general form

Cal{na}) = 3 (st = sa)éss [T ns®(@, 1) (1 = my(z, 1)) 7%, (3.3.6)

s, 8’ 1<)

!

— [ — !
where s = {s;, 85, -+, 8¢} and s’ = {s!, s/,

.-+, st} are all possible incoming and
outgoing configurations at a given site, ¢, and time, ¢, the quantity, £sg/, is a Boolean
random number in space and time which determines the transition between states s
and s’. In the collision operator, the factor, (s, — s,), accounts for the sign of a
particular collision term: When s,” — s, = +1 (i.e., s/, = 1 and s, = 0), the collision
is a creation process; when s/ — s, = —1 (i.e., s/, = 0 and s, = 1), the collision

is an annihilation process; when s/ = s,, nothing happens in collision process. The

Boolean random number, {g4/, must satisfy the normalization condition
Zfssl — 17 VS . (337)
sl

£ss must also have rotational symmetry, i.e., for any states s and s’, {gg is invariant
if states s and s’ are both subjected to simultaneous proper or improper rotations.
Particular examples of g are &) 2 09 (B0 €0 and ¢, For the collision

operator to satisfy the complete lattice symmetry group, one must have

(€27) = (&), (3.3.8a)



HI. THE FHP LATTICE-GAS AUTOMATA 60

(€)= (&), (3.3.8b)

where (-) denotes the ensemble average. Note that

Sp

ng” (1 — nﬁ)(l_sﬁ) = bnyss s (3.3.9)

where dp s, is the Kronecker delta symbol with two indices. Thus, the collision

operator can be rewritten!

Ca({na}) = E(S/a - Sa)fss' H5nﬁsﬁ . (3.3.10)
s,s’ 6

With this concise notation, the collision operator can be easily understood.

With the form of the collision operator given by Eq. (3.3.6), mass and momentum

conservation laws can rewritten as

> (sl —s4) =0, (3.3.11a)

> (s, — sa)éa = 0. (3.3.11b)

3.4 The FHP Model with Rest Particles

In the original paper by Frisch, Hasslacher and Pomeau [44], only the two-body and
symmetric three-body collisions were included in the model, which is referred to as
the FHP-I model [46]. In a subsequent paper [46], the FHP-II model, which is a 7-
bit variation of the FHP-I model including zero-velocity rest particles, was proposed.

The FHP-III model is the collision-saturated version of the FHP-II model, i.e., all

possible collisions are considered in the model.

!This notation is due to Ms. Shuling Hou.
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Input State Output State
3 2 3 2
4 1 4 1
5 6 5 6
3 2 3 2
4 1 4 1
5 6 5 6

Figure 3.4.1: The two-body collision rules including rest particle for the 7-bit FHP lattice-gas
automata. In the left column are incoming states, and in the right are outgoing states. The
solid circle represents the presence of a rest particle.

In the FHP-II model, the new collision mechanisms with a zero-velocity rest
particle are shown in Fig. (3.4.1). Similar to the 6-bit models, Table (3.4.1) is the
binary collision table for the collision rules involving a rest particle. In the binary
notation, we use the seventh bit of a binary number to represent the occupation

number of the rest particle. The collision operator for the above collisions can be

| INPUT STATE | OUTPUT STATE |

1000001 0100010
0100010 1000001

Table 3.4.1: The collision table for the 7-bit FHP models. Shown here are only the binary
collision rules involving a rest particle. The seventh bit of a binary number represents the
occupation number of the rest particle.
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easily written down:

6

55)2) Z(na+1na+5ﬁaﬁ0 - nonaﬁa—}—lﬁa—l—S) ) a = 07
a=1
cem = (3.4.1)
€g)n0(na+1ﬁaﬁa+2 —I' na+5ﬁaﬁa—|—4 - naﬁa+1ﬁa+5) ) o 7£ 0 )

where the presence of other spectators has not been excluded. Besides the binary
collisions, there can be triple collisions with rest particles, Fig. (3.4.2) lists some

possible triple collision configurations.

Notice that, like the symmetric triple collisions, the binary collisions involving
a rest particle also destroy the spurious conserved quantities along each lattice line.
The rationale of introducing binary collisions with rest particles is that, when particle
density is low, the probability of triple collisions is much lower than that of binary
collisions. Thus, introducing rest particles effectively enhances the probability of the
collisions removing the aforementioned spurious conserved quantities along lattice
lines. Besides, the enhancement of collision probability reduces the kinematic viscos-
ity, v, and thus enhances the Reynolds number, Re. It should also be noticed that
the kinetic energy is not conserved in the collisions involving rest particles, whereas
mass and momentum are. If each rest particle is considered to carry an amount of
potential energy equal to that of the kinetic energy of a moving particle, then the

total energy is conserved exactly and locally in the collision processes.

3.5 Spurious Conserved Quantities

We have mentioned spurious conserved quantities in the HPP model previously, in
§3.1. In this section, we shall discuss spurious conserved quantities with sufficient

rigor and details.
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Figure 3.4.2: The three-body collision rules including rest particle for the 7-bit FHP lattice-
gas automata. In the left column are incoming states, and in the right are outgoing states. The
solid circle represents the presence of a rest particle.
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Due to the simplicity of the discrete phase-space structure and updating rules of
lattice-gas automata, there exist some extra conserved quantities besides the physical
ones (mass, momentum and energy). These unphysical conserved quantities are called
spurious conserved quantities. These spurious conserved quantities certainly affect the

hydrodynamics of the lattice-gas automata [105-107].

The spurious conserved quantities in the HPP model are total momentum along
each lattice line. For periodic boundary conditions, these quantities do not change
as the system evolves, therefore, they are static invariants of the system [107]. This
kind of spurious conserved quantities are eliminated in FHP models by introducing
symmetric three-body collisions. However, there is another kind of spurious conserved
quantity found in FHP models, called the staggered invariant [105]. To illustrate the
staggered invariant, we start with a trivial example of an one-dimensional cellular
automaton with periodic boundary conditions. Suppose the collision rules of this 1-D

automaton conserve mass and momentum locally. Then

Pon(t) = Y p(z, 1) (3.5.1a)

r=2j

Pus(t)= 2. p(z,1) (3.5.1b)

r=27+1

are the total momentum on even and odd sites, respectively. Because particles can
only hop one lattice spacing at each time, p,...(¢) and p,,,(t) are exchanged at each
time step. Therefore, besides the total mass and momentum, an additional con-
served quantity, (—1)*(p,...(t) — P,..()), exists, which is due to the extremely simple

dynamics of the system.

The staggered momentum in the FHP models can be defined as follows

Ga(t) = (~1)' 2 (~1) T ex-p(r, 1), (3.5.2)

r
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where the unit vector €. is obtained by rotating &, 7/2 counter-clockwise, and e

is th i 1 t dicular to e, @ L 2
1s the reciprocal space vector perpendicular to €,, t.€., €, = —3ea.

Eq. (3.5.2), one can see that the staggered momentum is the difference between the

By inspecting

sum of momentum component perpendicular to a lattice line over even lines and that
over odd lines. Again, because particles can only move to the nearest neighbors, the
sum over even lines and the sum over odd lines alternate at each time step. The factor
(—1)" accounts for this effect. Due to the spatial symmetry of the underlying lattice
structure, i.e., &, = —€,43, there are only three independent staggered-momentum
modes, instead of six. The staggered momentum has no physical interpretation or

appropriate analogy in real systems.

In addition to the physical conserved quantities, the staggered momentum af-
fects the hydrodynamics of the system. The hydrodynamic equations of the system
depend upon the staggered momentum explicitly [105]. Therefore, the lattice-gas au-
tomata could produce flow patterns which deviate from solutions of the Navier-Stokes
equations. This peculiarity of the lattice-gas automata is completely due to the sim-
plicity and discreteness of the dynamics: Particles can only move between the nearest
neighbors with one time step. Thus, one might expect that the staggered-momentum
invariants may be eliminated by introducing multi-speed models with the next-nearest
neighbor advections, although there is no rigorous proof of this conjecture. In prac-
tice, simulation setups commonly used do not seem to have, either in the initial
conditions or while running, a significant projection on the staggered-momentum
modes, although some pathological initial condition can be found to demonstrate the

appreciable effect of the staggered momentum [105].

Because of the spurious conserved quantities in the lattice-gas automata, two
remarks are in order. First of all, some additional care should be taken when im-
plementing the algorithm in simulation and analyzing the simulation results by the

method. Second, it should be stressed that finding all of the spurious conserved quan-
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tities is a nontrivial matter. For further studies on the subject, we refer to the work

by d’Humieres et al. [107], and Zanetti [108].

3.6 Lattice Symmetries and Tensor Structures

The form of macroscopic equations derived from microdynamics depends on the sym-
metries (i.e., spatial and temporal symmetries) of the underlying dynamics. It can
be shown later that the isotropy of the hydrodynamic equations of the LGA systems

is completely determined by the symmetries of the tensor,
Ex;ln = Z é%iléa,lé T éa,in 5 (361)

where €, ; is the ¢th component of €, in D-dimensional Fuclidean vector space. In
particular, the isotropy of the Navier-Stokes equation depends on the tensor E',
because E explicitly appears in the leading order approximation of the momentum
density flux tensor II;;. In this section, we briefly discuss symmetries of the tensor,

E" . within the context of lattice gas automata.

Tensors that are invariant under continuous rotations and reflections are isotropic
tensors. By definition, the tensor, E'™, is symmetric in their space indices. If the
symmetric tensor, B, obtained with sets of o, vectors, {é,] a =1, 2, ---, 0, }, uni-
formly distributed on the unit sphere in D-dimensional space, is isotropic, it must

satisfy

EC™) =0, (3.6.2a)

0,

E® —
D(D+2)---(D+2n-2)

AP (3.6.2b)
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where
A;j) = 52']‘ 5 (363&)

A;;}gl = 5ij5k1 + 5ik5jl + 5i15jk . (363b)

In general, A® consists of a sum of all the (2n — 1)!!? possible products of Kronecker

delta symbols of pairs of indices, given by the recursion relation
1112+ 120 12931 _1%j41 " t2n

2n
AED oS 6 A . (3.64)
71=2

For a triangular lattice in two-dimensional space, i.e., o, = 6 and D = 2, it can

be shown that the tensor, E™, is isotropic up to n =5 [45], i.e.,

B <0, (3.6.50)
EY® = 95., (3.6.5b)
2] 2 ( .0.

. 6
Ei’j}cl =51 (6:;0k + 6ir651 + 6idjx) - (3.6.5¢)

However, for a square lattice in two-dimensional space, the tensor, E'™, is isotropic

only up to n = 3. Specifically,

ety — 0, (3.6.6&)
/ 4

Egj) — 552.],7 (366b)

E), = 28, (3.6.6¢)

where ;3 1s the Kronecker delta symbol with four indices, which is not isotropic.

2 —1N=1-3-5---(2n—3)- (2n— 1).
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Therefore, the square lattice does not have sufficient symmetry to produce isotropic
hydrodynamic equations (this is one of the major shortcomings of the HPP lattice-gas

automaton); whereas the triangular lattice does.

The symmetry of discrete lattice is a rich subject, which we will not discuss in

depth here. A more extensive discussion of the symmetry considerations can be found

in Ref. [45].

3.7 The Equilibrium Distribution Function and Necessary

Collisions

For the lattice-gas automata, or other discrete velocity gas models [109,27], the com-
putation of the equilibrium distribution is the same as that of the most probable
distribution of an assembly of N non-interacting particles, quantum or classical. The
problem can be formulated [110,111] as how to find the most probable distribution,
{n}, of {n;}, consistent with the constraints of the total number of particles, N, and

the total energy, K:

> ni=N, (3.7.1a)

Zni& = E, (371b)

for a given system with micro-eigenstates of which each can be specified by its corre-
sponding energy eigenvalue, ¢;, with multiplicity, m;, confined by the volume V. The
most probable distribution is the one maximizing the entropy, 5, of the system for a

given macrostate (N, F, V).

The number of distinct microstates, A(N, £, V), accessible to the given system
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under the macrostate (N, £, V) is given by

A(N, E, V) Zw%n (3.7.2)

where W ({n;}) is the number of distinct microstates associated with the distribution

set, {n;}, and

ni}) = [Jw(n), (3.7.3)

where w(n;) is the number of distinct microstates associated with the ith eigenstate
with n; particles. For a classical system, i.e., the Maxwell-Boltzmann case, particles

are distinguishable, and

(3.7.4)

wMB(ni) =

For quantum systems, particles are identical and indistinguishable. Also, particles
can be either Boson (the Bose-Einstein case) or Fermion (the Fermi-Dirac case). In

the Bose-Einstein case,

Wee(n;) = m, (3.7.5)
and in the Fermi-Dirac case,
The entropy of the system S(N, E, V) is
S(N,E,V)=ksInA(N, E, V) =k In>_ W({n;}). (3.7.7)
{n:}
In the thermodynamical limit, we can use the law of large numbers [112]:
S(N, E, V)~ ks InW({n}), (3.7.8)

where {n’} denotes the most probable distribution set. Since {n}} maximizes W ({n;})
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and consequently maximizes the entropy, it is the equilibrium distribution. With the
approximation given by Eq. (3.7.8) and the constraints by Eqgs. (3.7.1), the equilib-

rium distribution is determined by
SInW({ni}) — |ad éni + b eibn;| =0, (3.7.9)

where a and b are the Lagrangian multipliers. Here, it has already been assumed that
N and FE are the only constraints, or the conserved quantities, of the system. When

numbers m; and n; are assumed to be large, the Stirling formula
n!la~n"e™" (3.7.10)
can be applied, thus
InW({n;}) = Z Inw(n;)

Z[niln <@—z) My <1—z£)] , (3.7.11)

&

where z = 0 for the Maxwell-Boltzmann case, +1 for the Fermi-Dirac case and —1

for the Bose-Einstein case. Now, Eq. (3.7.9) becomes

Z [ln <ﬁ - Z) —a— b&'] . én; = 0. (3.7.12)

Obviously, the most probable distribution is

* m;
"= (3.7.13)

and the equilibrium probability of finding a particle in ¢th level is

* 1
e R — (3.7.14)

m;  estbsi 4 o7
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The above results can also be derived more rigorously using the formal theory of
an ideal gas in the canonical and grand canonical ensembles [111], which we do not

discuss here.

For the FHP lattice-gas models satisfying the exclusion principle, we have the

equilibrium distribution

1
1+ exp(a+ be,-v)

Fle (@, 1) = = fD), (3.7.15)

The single-particle distribution function, f,(@, t), is the ensemble average of n, (@, 1),
i€

?

falz, 1) = (na(, 1)) . (3.7.16)

Note that the conserved quantities are mass and momentum in the models. The
constants a and b are functions of p and ||v||? because of the spatial parity symmetry
(v - —v, e, — —é,). They can be obtained analytically when v is aligned with
é, or v bifurcates two adjacent e,’s [113,114]. In general, a and b can be expanded
as a power series in ||[v]|* [45,46]. This will be discussed in later sections of this
chapter. The mean mass density per node p(«, t) and mean momentum density per

node p(x, t) are related to f,(@, t) by

ple, t)=>" folz, 1), (3.7.17a)
plz, t)=pla, ho(x, 1) =D e.fa(z, 1), (3.7.17hb)

where we assume that the mass of each particle is unity.

We can also view the most probable distribution from the viewpoint of necessary

collisions. The number of distinct microstates with the total number of particles with
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velocity e,, N, = Zna, is
T

N!
A = 3.7.18
[T, No{(N — N,)! ’ ( )
with the mass and momentum conservation constraints
ZNQ =N, (3.7.19a)
> N.é,= Nv, (3.7.19b)

which pose (D+1) constraints, where D is the dimension of space. The most probable

distribution set {N*} should maximize A, therefore, we must have

0A

ONa {Na}={Ng}

=0, a=1,2,--,r—D—1, (3.7.20)

where r is the number of velocities. The results of the above equation are

fifa= fafs, (3.7.21a)
fafs = faf6, (3.7.21b)

fafe = fifa, (3.7.21c)
fa

where f, = 7 These results show detailed balancing of a set of two-body colli-

sions which conserve mass and momentum. Furthermore, these collisions are dictated

by the equilibrium solution, which suggests that the two-body collisions are necessary
for thermalizing the system. Of course, spurious conserved quantities have not been

considered here.

The method to obtain the equilibrium distribution and the necessary collisions,

as illustrated above, can be a quite general procedure, independent of the underlying
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lattice structure, details of collision rules and space dimensions [27]. The equilibrium
distribution of the FHP lattice-gas automata can also be obtained by other methods
[46].

3.8 The Lattice Boltzmann Equation

In this section, we shall discuss the Boltzmann approximation in the context of FHP
lattice-gas automata, and derive the lattice Boltzmann equation, which leads to the

Navier-Stokes equation for FHP models in §3.10.

The ensemble average of Eq. (3.2.2) with the Boltzmann approximation yields

the lattice Boltzmann equation [85]:

Jolw +éa, 1 +1) = folz, 1) + Qa({fa}), (3.8.1)

where f,(x, t) is the single-particle mass density distribution function, and {f,}
denotes all of f,(@, t). The operator, Q,, is equal to C, if ng and g are replaced
by fz and Ags = (€ss), respectively, in Eq. (3.3.6):

Qu({fa}) = D (st — 5a)Ass I;Iféﬁ(a:, (1 — fa(a, )75 . (3.8.2)

s,s’

The ensemble-averaged value of {sg1, Ass = (€ss/), defines a transition probability
from state s to s, for any arbitrary s and s’. The transition probability Agg must

satisfy the normalization condition

ZASS/ — 1 VS, (383)
sl
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and either semi-detailed balance
D Ay =1 Vs’ (3.8.4)
S

or detailed balance

Ass' — As's- (3.8.5)

Of course, Agg has rotational symmetry, as {gg does. The meaning of semi-detailed

balance is that the collision process does not change the probabilities of states.

For the FHP 6-bit models, the constraints of the six-fold rotational symmetry
(€2 = (£2) and (€19) = (£) imply detailed balance, and vice versa. In other
words, the six-fold rational symmetry is equivalent to detailed balance for the FHP

6-bit models.?

The crucial approximation used to obtain Eq. (3.8.2) is the random phase ap-

proximation (RPA) (or molecular chaos)

(nang - ny) = (na)(ng) () (ny) = fals - I (3.8.6)

In this approximation, all correlations have been neglected. The difference between
the random phase approximation and the Boltzmann approximation is that the low-
density limit is not imposed in the random phase approximation, here collision pro-

cesses still include multi-particle collisions.

The above approximation also leads to result that the Fermi-Dirac distribution

is the equilibrium distribution. Indeed, it can be shown that the solution of equation

Qu({fa}) = D25, — sa) Aser [T f77 (1 — f)" 7 =0
B

s.s'

3This point was brought to the author’s attention by Dr. Hudong Chen.
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is the Fermi-Dirac distribution function f{"™™ [46].

3.9 The Local and Global H-Theorem

In this section, we show proofs for both the local and the global H-theorem in the
context of the lattice Boltzmann equation. These proofs are due to M. Hénon and

can be found in Ref. [46].

For a pre-collision state, s, P(s) is the probability associated with it, and

S P(s)=1. (3.9.1)

Ja =) saP(s). (3.9.2)

Similarly, denote P’(s’) and f’ for a post-collision state, s’. The probability of a
post-collision state s, P'(s'), is related the transition probability from state s to s’

via collision, Agg, and P(s) as follows

P'(s") = ZS:ASS/P(S). (3.9.3)

The local H-theorem then can be stated as follows.

Theorem 3.1 (Local H-Theorem) If the collision rules satisfy semi-detailed balance,

and the Boltzmann approximation is valid, then the following inequality holds:

S+ (= f)In(1 = 1 < S [fuln fu+ (1= f)In(1 = f)] . (3.9.4)

(%
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The proof of above theorem goes as follows: First of all, the function P(s)In P(s)
is convex function? (derivative is nondecreasing) and Agg satisfies semi-detailed bal-

ance. Therefore,

’

ZP JInP(s) = Z ZASS/) s)In P(s)

B Y5 Ass P(s)In P(s)
= pE (3.9.5)
>y et HIB R B L) ()

= ZP "Yn P'(s").

Next, using the fact that, for any z, Inz < = — 1, where the equality holds when
x =1, then,

00 O e Y Y § O C e Y S
1 ( s) )g s) 1. (3.9.7)

Multiplying above inequality by P(s) and summing over s, the result obtained is®

;P(s)ln (H“ far (1 = f“)l_sa) <0. (3.9.8)

2
4If function f(z) is a convex function on an open interval (a, b), then Tz > 0 on the interval,
T

or alternatively, for each A, 0 < A <1,

fQz+ (1= XNy) <Af(x) + (1= A)f(y) z,y € (a, b)),

the equality holds when A = 0, 1. For further details about convex functions, see Ref. [115].
5Note that, with the Boltzmann approximation,

2 LU= £ 700 = D P(s)
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Now, rewrite the above inequality as

ZP )In P(s) > ZP (H (1= fu)'~ SQ) (3.9.9)
= ZZ [saP(s)In fo + (1 — s4)P(s)In(1 — f,)]
= > falnfot (1= f)In(1 = 1),

where we have used the result from Eq. (3.9.2). Therefore,

> P(s)lnP(s) > Z [faln fo + (1 — f,)In(1 = f.)] , (3.9.10)

where the equality holds if and only if

Hf‘S“ — fa)' 7 (3.9.11)

Eq. (3.9.11) is an exact statement of the Boltzmann approximation, that is, the prob-
ability P(s) for any state s is independent of its previous states. In other word, the
fact that the joint probability P(s) is a product of individual probabilities, f,’s, and
(1 — fa)’s, implies that f,’s are independent of each other. Finally, combining the re-
sults of inequality (3.9.7) and the equality in (3.9.10) (the Boltzmann approximation),
the local H-theorem is obtained.

As a direct consequence of the local H-theorem, the global H-theorem can be

obtained by summing inequality (3.9.4) over all lattice sites.

Theorem 3.2 (Global H-Theorem) The function

Yo [falnfut+ (1= fo)In(l = fo)] (3.9.12)

of time ¢ is non-increasing as time ¢ increases. O
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The H-theorems ensure that systems, with the validity of the Boltzmann ap-

proximation, irreversibly approach equilibrium.

3.10 The Solution of the Lattice Boltzmann Equation, the
Chapman-Enskog Procedure and Hydrodynamic Equa-

tions

In what follows, we shall apply the Chapman-Enskog procedure to the lattice Boltz-
mann equation, and obtain the corresponding macroscopic equations. Because of the
special features of the lattice-gas automata, we shall briefly review the Chapman-

Enskog procedure within the context of LGA.

3.10.1 The Chapman-Enskog Procedure and the Perturbative Solution

of the Lattice Boltzmann Equation

Instead of assuming both the lattice constant and the time step size equal to unity,
we designate 6, as the lattice constant and é; as the time step size. Then, the lattice

Boltzmann equation becomes
Jfol@ + 6,60, L+ 6) — fulz, 1) =Q,. (3.10.1)
Expand f,(@ + 6.€,, t + 6;) in its Taylor series

@4 e t46) =3 % (% n (éa-V)) Ful, 1), (3.10.2)

n=0 ""°
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where 6 = 6, = é6;. Furthermore, f, can be expanded as a series of ¢, around the

local equilibrium distribution function f( = f{®:

25” I, (3.10.3)

with the same constraints as those in Eq. (2.4.6)

NEN
SO - |7 : (3.10.4a)
o €, pv

!
ST = 0, n>1. (3.10.4b)
o €,

Consequently, the collision operator can also be written as a series of 6:
Q, = Z 8", (3.10.5)

Here, the parameter, 6, is used to obtain a set of equations according to the order of

0. Eventually, 6 should be set to unity.

With the expansions (3.10.2), (3.10.3) and (3.10.5), the lattice Boltzmann equa-

tion becomes

o] n+1 1 D m
DY — (E) fortm = Z O (3.10.6)
m=1 :

n=0

d R . . . . .
Where — = Em + (€,-V). The above equation is obviously different from its contin-

uous counterpart, Eq. (2.4.3). Because of the discrete nature, higher derivatives are

important in the equation, as higher order corrections.

As discussed previously, the time scales in Euler’s equation and the Navier-
Stokes equation are different. To incorporate these different time scales with the

proper ordering of spatial derivatives, the multiple time scale formalism should be
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explicitly employed. Thus, we write

o o9 9 0 SR
a_a_%+5a_tl+5a_t2+_§5 atn (3107)

to separate the different time scales. Eventually, we have to set 6 = 1 in both

expansions (3.10.2) and (3.10.7).

To obtain the Euler and the Navier-Stokes equations, only the first two terms are
kept in the expansion (3.10.7). Substituting expansion (3.10.7) into Eq. (3.10.6), and
equating terms of like order in é, then a set of (infinite many) hierarchical equations
can be obtained simultaneously. The first three consecutive (order O(671), O(1) and
O(8)) equations are

QS)({JCS)}) =0, (3.10.8a)
9 F© / /

(;C_ta + (60" V)f©O = Jsfy", (3.10.8b)

aféo) 1 d o ’ (0) J 5 (1) (2)
o, + 3 (a—to + (ea-V)) 1y + a—to + (e V) | i) =19, (3.10.8¢)
. . . . o,
where J,g is the Jacobian matrix of the Boltzmann collision operator 2, —@f ,
&)

evaluated at fo = f©; Japfs’ = QF; and Q2 depends on {f}, {fV} and {f?}.

The above three equations are sufficient to obtain the desired macroscopic equations,

i.e., the continuity, Euler’s, and the Navier-Stokes equation.

Once the lattice Boltzmann equation is solved (up to order of O(é) in the ex-
pansion (3.10.3)), the macroscopic equations can be derived simply by computing the

moments of Eqgs. (3.10.8). The moments of f, needed are

p=_fa, (3.10.9a)
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po =28, €ufa, (3.10.9b)

Hij = 5925 Z éa,iéa,jfoz 5 (3109C)

where II;; is the momentum density flux tensor, and é,, accounts for a non-unity lattice

constant.

3.10.2 The First Order Solution and the Euler Equations

The solution of the first order equation is the local equilibrium distribution given by

the Fermi-Dirac distribution function

) 1
©) — 3.10.10
I 1 + exp(a + bé€,-v)’ ( )

where constant @ and b are functions of p and v?, and in general they cannot be
obtained analytically, except for some special cases [113,114]. Usually, they are eval-

uated in the small-velocity limit using the series expansions:

a=a,+a,v + -, (3.10.11a)

b=by+bv’+--. (3.10.11b)

Denote

1
1 4ev

Joo(y) (3.10.12)

where y = a + bé,é,-v. Then expand [ at v = 0:

: dy 1 ay\’ 0%y
(0) _ / . - 1" ! 3
L= ot fFD_av vt (fFD (—av) magz | PVt O(v?) (3.10.13)

. 1 .
= oo+ Sio(babota-v) + 5 (fr0262(eav)? + fi20,0%) + O(2?),
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where fip, fi, and f7 are all evaluated at v =0, i.e.,

o = 1+16a0 =d, (3.10.14a)
Jo = _ufie)? —=d(d-1), (3.10.14b)
1= —% =d(1 —d)(1 —2d), (3.10.14c)
and d = £ is the mass density in each direction. The first equation above deter-

2]
mines the value of a,. Consequently, the small-velocity expansion for the equilibrium

distribution function is

1
O —d (1 — (1= Dsby(eav) + 51— d) (1 = 20082 (&0 0)" — 20,27 + O(v3)> ,
(3.10.15)
The remaining two coefficients, b, and a,, can be determined using conservation laws.

The mass conservation leads to
27291 9 2
(1-— 2d)(5zboﬁv —20,0,v° =0,
and the momentum conservation leads to
—d(1 - d)(sgbo%v = .

In above equations, the symmetry properties of the underlying lattice structure, ¢.e.,

E®tY) = ( and EE?) = %&j, have been used. The results for b, and a, are
D
by = ———r, .10.1
521 = d) (3.10.16a)
D (1-2d
—g . (3.10.16b)

T 952 (1 - d)
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Substituting @, and b, into ¥, we have

o _ P D, G(p) (. 1
fé) = 0_—1 (1 + Eewvi + ? (60472'6@7]' — 552]) VU5 + O(’UB) , (31017)
where
D2 (1 = 2d)
_ ' 10.1
G =5 (3.10.18)

As shall be seen later, in the expansion for f, Eq. (3.10.17), the constant term
only contributes to p; the linear term (in v) only to pwv; the quadratic term to the
nonlinear convective term pvwv and a velocity dependence of the pressure. Because of

the structure of f(* in Eq. (3.10.17), it is useful to define the tensor

0, a=0,
Qayij = (3.10.19)
1
éa,iéa,j - 552] ) a 7£ 07
which has the property >, Q. ; = 0, and the tensor
Tiitt = Y €0,i€a,jQa (3.10.20)

Z 1 / 1
~ ~ ~ ~ (4) (2)
— eaﬂ'ea’]’ (ea7kea7l — _5k1) — Eljkl - _EZ] 5k1

F)
81+ Subn — =66
D(D+2)<kg1‘|‘ 0k~ sz)

2]
D(D +2)"""

both of which will be frequently encountered in what follows.

The zeroth order moment of the second order equation in the Chapman-Enskog

procedure, Eq. (3.10.8b), with the approximation f, = f{* given by the low-velocity
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expansion (3.10.17), yields the continuity equation

gf + V' (pw) = 0, (3.10.21)

where V' = —_ and 2’ = §,x.

oz’
With the same approximation, the momentum density flux tensor, in the leading

order approximation of the Chapman-Enskog procedure, 1s
o G
Hij = 5923 Z ewea’jfé) = (53;[) (Déw + (P) Tuklvkvl) (31022)

o2 g(p
= g(p)pviv; + D’ (1 — —22)’02) 0;;

T

= g(p)pviv; + Pd;;

= g(p)pviv; — o7,

where the factor

2 D (1-2d)
=—F-G(p) = ) 3.10.23
and
& 9(p)
(0) _ T 2
is the leading-order approximation of the stress tensor. The term
o2 9(p) » 2 9(p) »
P = P (1 ~ v =cipll— 2 v (3.10.25)

has been identified as the hydrodynamic pressure. The above equation is the isother-
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mal equation of state of the system, where

bz
vD

(3.10.26)

Cs =

is the sound speed. Then, the first order moment Eq. (3.10.8b) yields an equation of

momentum conservation:

8 o, 9 apP
a—to(pvz) B (9(p)pviv;) — oa (3.10.27)

Eq. (3.10.27) resembles Euler’s equation except in two aspects. First, the pres-
sure has a velocity dependent term. Second, Galilean invariance is destroyed by the
lead factor in the nonlinear convective term, g(p), which is not unity in general. Both
of these defects can be corrected by properly introducing rest particles and alternat-
ing the equilibrium distribution function in the lattice Boltzmann equation, which
shall be discussed in a later chapter. However, near the incompressible limit where
density, p, is approximately a constant in the system, g(p) can be approximated as a
constant, and can be scaled out by changing the variable t — ¢(p)t, or equivalently,

x
by € - —.
9(p)

It should be noticed that g(p) vanishes when d = %, i.e., when particles and holes
equally populate in the system. This fact reflects the particle-hole duality: f(* and v
are exactly equivalent to (1 — f(") and —v at p = % This duality holds independent
of the collision rules, so long as the semi-detailed balance is satisfied, because the
equilibrium distribution function is universal (e.g., Fermi-Dirac distribution, ete.).

The duality has no physical reality, it is only an artifact of the model.



HI. THE FHP LATTICE-GAS AUTOMATA 86

3.10.3 The Second Order Solution and the Incompressible Navier-Stokes

Equations

Since fl% is given by the solution of the first order equation, the left-hand side of the

second order equation

Df© a . . .
S = (8_75 + ea-V) SO = Jasfy’ (3.10.28)

can be computed explicitly. Thus the above equation can be solved by inverting the

matrix J,g.

The form of f(" is known, as discussed in §2.4 — the nth order solution is
proportional to the nth order spatial derivatives of the hydrodynamic variables p, v
and . The first order solution f{” is a local equilibrium which is not an explicit
function of time. The Chapman-Enskog ansatz should be assumed, i.e., the depen-

dence of f on time is through the macroscopic variables p and v. Then the term

o10  0f0 0p s> ow o, (o, Aowy)
— el i or

8t0 8,0 6750 8'0 8750 6:{:2 81;2

hydrodynamic equations previously obtained from the first order solution. Therefore,

depends only on Vp and ), because of the

it is natural to assume that

d(pvi)
aiL’]‘ ’

fél) = —C(ll)(éa'Vp) — (Cgl)éaﬂ'éa’]‘ + Cgl)(si]') (31029)

where constants, ¢, ¢/ and ¢", depend on p, but not on v, because they are
evaluated at v = 0. Because f{" has no contribution to p and pv due to constraints
given by Eq. (3.10.4), it is straightforward to show that ¢+ D¢cl" = 0, (from 3_, fiV =
0), and ¢ =0, (from Y}, e, f{’ = 0). Thus

1 1 a(pvl) (s 2 1 a(pvl)
[ = =P Qasj o —c;’ <ea,¢ea,j - 5%’) “oz; (3.10.30)
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and the stress tensor in the second order approximation is

: 0
0-(1) = 5226azea]f(1) c(1)52T2]k1 (p'U])

’ 3:1;k
g () 0 2, o
= 6ID(D +2) (( Ox; + Oz; Déw(v pv) | . (3.10.31)

Note that the coefficient in the above equation is directly related to the viscosity.

Now, the zeroth-order moment of the third-order equation in the Chapman-

Enskog procedure, Eq. (3.10.8¢), is

Zf(0)+__ iZf(0)+v.Zé FO )+

ot, 20l, \Ot, ="~ —
1 0 ~ (0) A A (0
_V' —Zeafl;' —I'V'Zeaeafé) ‘I’
2 at, -
d (1) 5 (1)
a—tha + V- e, f =0. (3.10.32)

The second and third term of the left-hand side of the above equation are identical to
zero because of the the continuity equation (3.10.21) and Euler’s equation (3.10.27).
The last two terms are zero because f(" has no contribution to mass and momentum,
due to the constraints given by Eqs. (3.10.4). Therefore, the above equation reduces

to
dp

5 =0 (3.10.33)

The equation for the first order moment of Eq. (3.10.8¢) is
d 1o (o0

(0) 2 : (0) E (0)
at, €als 3, (at Cofs” TV 2 Eokula )

1. (9 / /
5V (8—75 S lata S+ VY éaéaéafy) +
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0

. e f)+ V- Zé of = 0. (3.10.34)
. .1 d(pv) .
In above equation, the first term is TR the second term is equal to zero due to
T 1

Euler’s equation; and the fourth term is equal to zero because f'" has no contribution
@U(l)

to momentum; the last term is ﬁ 5 , where O'( 'is given by Eq. (3.10.31). Because
L

A s o 1 G
Z €0,i€a,i [ = 51)52']' + %Tijkl(f)vkvl)a

and
& &, € (0) D A
Zea,iea,jea,kfa' = 6 - Zea,iea7]‘ea7kea7l (pvl)
D
T 5 o, (Tiﬂ“l + D2 5215“) (pvr) (3.10.35)
therefore,

1 0 0 0
_ 5 .5 . fO) 5 .5 P (0)
s (g Tenstust + e Nbuitusénr?)

_ L1 9 (o 1_0% (Glp)
- Ea—w] (at + V- ( )) 52]‘|‘26t a:E]( o, szkl(/)vkvl) +

D 9*(pw)
T ,
+ 26,0, ikt dx;0xy,

(3.10.36)

where the first term in the right-hand side of the above equation is zero because of
Euler’s equation — Eq. (3.10.27); the second term is usually neglected because it is
of order O(v?), whereas the remaining terms are of order O(v), and the low-velocity

approximation is still in consideration. Now, Eq. (3.10.34) reduces to

Lo 0 D g o)
— T o) — 2 (e - T _
s, atl (Iovz) 8;r:j (<CQ 26350'1) Tukl al'k ) 0. (31037)
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To obtain Navier-Stokes equations, setting 6 = 1, substituting

0 5, d

7g_2 .9 10.
ETRRrTS + o (3.10.38a)
oij =05 + ol (3.10.38b)

and combining Eqs. (3.10.21) and (3.10.33), we obtain the usual continuity equation:

% + V' (pv) = 0. (3.10.39)

Egs. (3.10.27) and (3.10.37) lead to

0 0 oprP 0 Dé? o, d(pwr)
_ ) — ) _ (1)g3 T
at(pvl) - am (g(p)pvzv]) ax/ —I_ aw (<C2 5z ) D( S ’

! T 20, ) D(D +2)""" 9z},
(3.10.40)
where the substitution 75 = m&jm has been made. The above equation

does bear strong resemblance to the Navier-Stokes equation. In contrast with the

standard Navier-Stokes equation, it can be immediately recognized that the term

_ (o A N (3.10.41)
"T\D 12" 2tz T o

is effectively the kinematic shear viscosity, which consists of two parts:

3
y o= o (3.10.42a)
- D(D+2) 2
52
—___ % 10.42b
Vp 2(D T 2) (3 0 )

The first part, v, is due the collision processes, and is called the collision viscos-
ity. The second part, v,, is purely due to the discrete nature of the model, which
directly comes from the second order spatial derivative in the Taylor expansion of

fol@ + bz€4, L + 61), and v, is usually called propagation viscosity. Note that v, is
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negative, and consequently it reduces the kinematic viscosity.

In the approximation of homogeneity, i.e., p = p, + dp, where p, is constant and

the density fluctuation & < p,, the continuity equation (3.10.39) becomes

Vv =0, (3.10.43)

where the term involved é has been neglected because it is a higher order term in

the homogeneity approximation. Similarly, Eq. (3.10.40) becomes

% +v-Vv=-V'P 4V, (3.10.44)
where
t"= g(po)t, (3.10.45a)
v = %V, (3.10.45b)
P = (5/) - pogg)v?) : (3.10.45¢)
y = v (3.10.45d)
9(po)

Eqgs. (3.10.43) and (3.10.44) constitute the exact form of the incompressible Navier-

Stokes equations.

An alternative representation of the incompressible Navier-Stokes equation is to

use the mass density current 3 = pv instead of the velocity v. Then, we have

V'.j=0, (3.10.46a)

93 9(p) . ). .
%, 9I0) 505 = NP 4 () (3.10.46h)
Po
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The advantage of using the g-representation is that it better approximates the steady
states of the Navier-Stokes equation, because, the continuity equation at the steady

state implies exactly V-3 = 0.

3.10.4 The Viscosity due to Collisions

In Eq. (3.10.40), the coefficient ¢!V is yet to be determined. This can be done by
directly solving Eq. (3.10.8b)

i
ot

+ éa'VféO) — Jaﬁfg)-

Now, the Jacobian matrix J,s is evaluated at the zero-velocity limit, i.e., at f, =

féo) |v:0 =d
o0,

a3 — .
afﬁ fa:d

By using the small-velocity expansion and neglecting all terms beyond the linear ones

J

(3.10.47)

in the velocity v, one has

afey i@Jrié d(pv)
o o, 0t b0y Ol

+ O(v?)

1 1
= —5 - Vi(pv) = —€a-Vp+ O(v%),

0,0,

where the Euler equations have been substituted, and the terms neglected are g(p)v;v;

g(p)
&2

v%. One also has

and

D (€4-V)(&a:(pv)) + O(v?). (3.10.48)

0,0,

1
éa'vfg)) = O__éozvp +
1

Then
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D 'a(l)vi) 2
5170]62&7” oz, + O(v?) (3.10.49)

and, with Eq. (3.10.30), Eq. (3.10.8b) becomes

d(pvi)

D a(pvi) (1)
a,ij = —c"J, e 3.10.50
050, Qo Ox; & NasQs.i Oz ( )
or
D 9(pvi)
(Jaﬁ + m%ﬁ) Qﬁ,uij =0. (3.10.51)
d(pvi
This equation is true for arbitrary (apv ), hence
Zj
D
Jop + m7—"0as | @s,ij = 0. (3.10.52)
cs 0,0,

This means that, for any pair of indices (7, j), Qa,; is the a-th component of an

eigenvector of the matrix J,g, with the eigenvalue — . Therefore,

&V8,0,
D QuiQaj
6201 QaijdapQpij’

(1 —
C, =

(3.10.53)

and the collision viscosity is

62 Qoz ionz 1
Ve = — £ ’ . . 3.10.54
(D +2) QuijJap@ps.ij ( )

Note that the sum has been taken over all of the repeated indices: «, 3, ¢ and j.

The eigenvectors of J, which are also relate to tensor @), ;;, can be computed in

a straightforward manner. Denote these eigenvectors as |Q,;). Then, it is easy to
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show that

1] -1 3 1
|Qa,z‘z‘> = - |Qa,yy> =7 ? |Qa,l’y> - |Qa,yz‘> - %

4 9 0
—1 1
—1 —1

It turns out, as we shall see in Chapter 4, these eigenvectors are degenerate ones with

the same eigenvalue A. Therefore, the viscosity is

2 /1 1
U <X n 5) _ (3.10.55)

3.11 Rest Particles and the Compressible Navier-Stokes Equa-

tions

The derivation of the Navier-Stokes equation from the 6-bit FHP model in §3.10
indicates that the bulk viscosity is zero for the 6-bit models. However, this is changed
with the presence of rest particles in the model. As mentioned previously, non-
vanishing bulk viscosity may be due to two causes: The correlations among f,’s and
the internal degrees of freedom of particles. The collision processes involving both
the rest and the moving particles imitate the latter cause. Intuitively, this can be
understood as follows: The compressibility of a gas system is represented by (V- wv.
This implies that there are sources or sinks of the velocity field, or the kinetic energy.
In other words, there must be a mechanism of energy transfer between kinetic energy
and other forms of energy. The inclusion of rest particles in lattice-gas automata

provides such a mechanism.
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In this section, the 7-bit model will be considered. The compressible Navier-
Stokes equation with the corresponding transport coefficients (e.g., the bulk viscosity)
arising from the model will be derived by the same technique — the Chapman-Enskog

procedure.

3.11.1 The Euler Equations

Let f, be the distribution function for zero-velocity particles (rest particles). Because
rest particle also satisfies the exclusion principle, its equilibrium distribution function

must also obey the same Fermi-Dirac statistics, with e, = 0, i.e.,

1

0o = ; 3.11.1

f 1_|_ et ( )

where @ = a, + a,v* 4 - - -. Therefore, the small-velocity expansion (up to O(v?)) for

the equilibrium distribution functions is

foo = (fp20,0%) a=0
FD 2 FD 1 Y

fO = (3.11.2)

. 1 .
Joo - fip(boboa-v) + 5 (20282 (ear)? + fL20,0%) a #0.

As consequences of conservation laws, we have

by = — (Ui) ﬁ, (3.11.3a)
a, = (Ui) 2%%, (3.11.3b)
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where o is the total number of particles allowed per site, i.e., 0 = o, + 0y, 0, is

maximum number the rest particles per site, o, = 1 for the 7-bit FHP models. Then

d (1 + Gé(f) C?&'ﬂ)ﬂ)j) a = 0,
FO =
D, G 1 2
d (1 + ;5—%,2"02' + 5(;0) (Qa,ij + (5 - %) 52']‘) ’Uﬂi]’) a#0,
(3.11.4)

where

a
s = 6,1/ — 1.
c D (3.11.5)

i)ZD2 (1 —2d)

is sound speed, and

2 (1—d) -

Glp) = ( (3.11.6)

The factor G(p) here is consistent with the previous definition, Eq. (3.10.18), for the

0,

6-bit models, as 7 — 1 for the 6-bit models. Also note that d = £ here.
o

a0,

The leading order approximation of the momentum density flux tensor is

I = 8.3 éaia;f (3.11.7)

o, G(p o, 0004
= §2d (5% + 5(2) (D(D gy Sijkt + m@'ﬂkz) vkvz>

oo(D+2)—20 )
b,
20D ) pU0ij

= g(p)pviv; + c2pbi; + g(p) (

= g(p)pviv; + Pd;;

where the pressure

2

P=cp (1 - 92(5”2) ((D +2)— 5—§) 172) , (3.11.8)

xr cS
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and the factor

o, 2 o D (1-2d)
9(p) = ;mG(P) (D12 (1=d) (3.11.9)

Then one can obtain the Euler equations as before (with a different sound speed and

a different velocity dependence of the pressure term)

g—tp—l—V’-(pv) =0, (3.11.10a)

0 d oP
a—to(ﬂ’vi) = =5 9(p)pvivy) + = (3.11.10b)

/, .
7 k3

3.11.2 The Compressible Navier-Stokes Equations

Next, by the virtue of the conservation laws, we can immediately write

I(pi
Vo (apv ) a=0,
Z;j
[ = (3.11.11)
— (A Qi + V6;5) 9lpvi) a#0,
7 a:L'j

where the constants, ¢{" and ¢\", are yet to be determined. The stress tensor in the

second order approximation can be evaluated:

o = —82) eaeaif
(1) o) a(por)
S 3 (L S A b W 3.11.12
I(D(D+2) MED f’”) dzy, ( )

(1) (1) a(pvy)
Y S [P L R NI L Y ‘
- (D(D +2)Sf“ T
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Then, it 1s obvious that

55301 "
v, = mcz)' , (3.11.13a)
820,
(e = —g ", (3.11.13b)
M2

where (. is the bulk viscosity due to collisions, and { = —.

Similar to that in the previous section, the zeroth order moment of the third-

order equation gives
dp

TR (3.11.14)

There is a slight difference in evaluating the first order moment, because

1 0 0 0
_ 5 .5 fO) 5 5 .p (0)
T (SRR LS SRENENY )

1 0 [o,0p D 3*(puy)
= =5 | o5+ V- bij T;
2D Ox; (0‘ Ot, v (pv)) it 26,0, ik Ox;0xy,

b 00 0%(pv;) b 0*(pwr)

— S’L s
2D o @:1:28:1;; + 2(D+2) ikl 01’}6:1:?C

(3.11.15)

where we have omitted the terms of order O(v?) or higher. Moreover,

s 2 1 0 0
VY éaiéaif) = 529, (veSijn + Cebijbr1) (‘ngil) . (3.11.16)
a 7

T

Then, the macroscopic equation of the first-order moment is

Apv:)) 9 ) N
at, 0! ((l/Sukl + C6ij6x1) oz ) (3.11.17)

where

V="V 1, (3.11.18a)
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(=C+6G, (3.11.18b)
and
52
=72 d1.1
Vp D+2)° (3 9a)
5200

Combining the results from the first and the second order solution, we obtain the

final macroscopic equations

% V- (pv) =0, (3.11.20a)
dpvi) 0 9P 9 .4 am)
o~ or (9(p)pviv;) — o + P ((I/S”kz + (6:6k) o) (3.11.20b)

The above equations are the compressible Navier-Stokes equations derived for the

7-bit FHP model.

3.11.3 Evaluation of the Coefficients of Viscosity

The coefficients of viscosity for the 7-bit models can be evaluated in the same way as

for the 6-bit models in the previous section. First,

1 d(pv;)
—— & 0,
o bs0 ’ 8$] “=0
gj +é, VO = (3.11.21)
D 1 d(pvi)
L, 52 0
<5$ 1Q / 5$ (o} ]> aLE]‘ 7£

Because of isotropy, the linearized collision matrix, J,g, has the property that

Joa = Jog, for all a, B # 0; and of course, Jo3 = Js,. The kinetic equation, (3.10.8b),



HI. THE FHP LATTICE-GAS AUTOMATA 99

becomes

a (0) . o1

afto = Joof§" + Jo1 >_ [, (3.11.22a)
0 a=1

af(o) . 71

FTh eo VI =Jor fo" + > Jasfy’, a#0. (3.11.22b)
0 ﬁ:l

Because J conserves mass, t.€.,

Joo + 0:Jo1 =0, (3.11.23a)
Jor 4+ > Jag=0. (3.11.23b)
/=1
Also
S =1 (3.11.24)
a=1
Then,
1
W= 3.11.25
“ (SIUQUlJOl ( )

The right-hand side of Eq. (3.11.22b) is

DI . . 71 . . d(pv;
Jorf§" + D Japfy) = Jor f§7 = D Jap (" Qpi; + AV6:5) ((91,,)
B=1 B=1 J
& / d(pv;
= (—Cél) > JapQpij + Vo1 (on + 1)52'1‘) (apv )
B=1 r;

& 1 d(pv;)
— _AD J,, i &is
( () ;:21 pQp,ij + .00, ]) @:Ej )

where Eq. (3.11.23b) and the result of ¢!V given by Eq. (3.11.25) have been substituted.
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Hence, Eq. (3.11.22b) becomes
D (1) S
ﬁ@a,ij = —C E Jap@s,ij 5 (3.11.26)
1 ﬁzl

and it follows immediately that

D QaiiQaij

’ 6201 QaijdapQpij’

(3.11.27)

where the convention (), ;; = 0 for @ = 0 has been used. Note that the above result
is identical to the one for the 6-bit models. Now, the coefficients of viscosity due to

collisions for the 7-bit FHP model can be given explicitly:

62 QuijQaij

Ve = — , 3.11.28a
(D +2) Qaijdaplpij ( )

52
.= — . 3.11.28b
CL DO'ZJ(H ( )

3.12 Normal Mode Frequencies of the LGA Hydrodynam-

ics

In the linear regime, the momentum p & p,v, and the Navier-Stokes equations can

be rewritten as

%erov-v:o, (3.12.1a)

8_17
Po a1

D -2
D

= —Vp + porV?v + py <C + 1/) VV.v, (3.12.1b)

where the nonlinear term g(p)pvv has been neglected. Define

. 1 (k
ok, ) = 7/dmdt eilkm+ut)y (g ). (3.12.2a)
/_27T(D+1)
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~ 1 —i(k-z4wt)
ik, w) = w/dwdt el o, 1). (3.12.2b)
\ 27

Then the Fourier transform of the linearized Navier-Stokes equation is

wp +ipk-v =10, (3.12.3a)

D -2
D

iwpe® = —ikctp — k?povv — kp, (C + 1/) (k-v). (3.12.3b)

The velocity v can be divided into two parts, the transverse and the longitudinal

component with respect to the wave vector k:

v =0+,
where
v,'k=0.
Then, we have
wp+ipkvy =0, (3.12.4a)
iwpydy = —kcp — k*p, (c + Q(D,%UZJ By (3.12.4D)
wpety = k*pov, . (3.12.4¢)

In order for the solutions of p, v, and v, to exist, the determinant of the coefficients

of p, vy and v, must be zero. This leads to three solutions of w:

wy = likQ (C‘F My) T %\IME?C? _ A (C‘F My>
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1 2(D —1
~ +ke, + 5@'18 (g + %:J : (3.12.5b)

2pt

The above results suggest that the transverse-momentum mode decays like e 7*"**, and

the modes which couple the longitudinal momentum and the density (or the pressure)

§(<+2(DD—1) V)

modes propagate with a speed ¢;, and decay like e~ . The modes coupling

the longitudinal momentum and the density are called the sound modes.

3.13 Epilogue

In this chapter, the macroscopic equations have been derived from the FHP lattice-
gas automata. In obtaining the hydrodynamic equations, two crucial approximations
have been employed: The first is the Boltzmann approximation (molecular chaos)
which neglects the correlations between molecules involved in a collision process; and

the second is the zero-velocity limit or the small March number limit.

The Boltzmann approximation is justified if one is interested in the Navier-Stokes
systems, where the correlations are unimportant. There has been a numerical test
which confirms that the Boltzmann approximation is indeed valid for FHP models: In
Ref. [116], D. d’Humieres and P. Lallemand numerically compared f, with the Fermi-
Dirac distribution function, and they found the error is less than 1%. However, there
are other systems where the correlations do play an important role. Examples are
systems with shock waves, i.e., Burgers’ equation [76], or chemical reactive systems
capable of spontaneous self-organization [59-65]. Also, it is a well known result that
in two dimensions the transport coefficients, such as the kinematic viscosity, v, diverge
logarithmically in ||L|| (L is the system size) [117]. This result can be theoretically
obtained only by including correlations [118].

It should be stressed that the Boltzmann equation for the lattice-gas automata

is different from that for continuous systems in two aspects. First of all, for lattice-



HI. THE FHP LATTICE-GAS AUTOMATA 103

gas automata, the lattice Boltzmann equation keeps not just two-body collisions, it
includes all possible many-body collisions, while the original Boltzmann equation only
considers two-body collision. This difference arises because of the difference in the
dynamics. The dynamics of lattice-gas automata is completely local, as opposed to
non-local in other systems. The other difference is in the expansion parameter in the
Chapman-Enskog procedure. In the case of lattice-gas automata, not only the mean
free path, but also the lattice constant have to be considered. There is an interplay

between them. In the continuum case, only the mean free path needs to be considered.

The small Mach number limit poses a severe limitation on the maximum obtain-
able Reynolds number. It, in turn, affects the efficiency of using the LGA algorithms
to simulate hydrodynamical systems [119]. Despite this disadvantage, one can still
use LGA as an alternative for problems which are very difficult (if not impossible) for
traditional methods to deal with, such as multi-phase/multi-component flow through

porous media. Therefore, LGA can be viewed as a complement to traditional meth-

ods.

Besides viewing the lattice-gas automata as practical algorithms for simulations,
more importantly, one may also view them as simple, but powerful, models for ap-
propriate physical systems, just as the Ising model is for ferromagnetism, which cap-
tures the physical essence of the phase transition in the system. In this view, the
importance of the lattice-gas automata then becomes self-evident, the model might

eventually provide insight and prove to be useful in studying nonequilibrium systems.

In summary, the lattice-gas automata can be characterized as follows. The model
mimics the Newtonian dynamics at the microscopic level in a most simplistic way.
However, at the macroscopic level, it leads to the correct hydrodynamics equations
because it satisfies the minimum requirements of conservation laws and symmetries.
This is possible precisely because of the universality of the Navier-Stokes equations (or

other macroscopic equations). That is, the Navier-Stokes equations are valid for either
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gases or liquids despite the drastic difference between the molecular constituents of,
and the inter-molecular interactions in these systems. These differences only affect
the numerical value of the transport coefficients, but not the form of the macroscopic
equations, provided that the symmetry criteria are fulfilled. This heuristic point of
view, although somewhat ad hoe, is very intuitive. This argument is most eloquently
presented by the late Richard P. Feynman, when he tried to explain the reason why
the FHP lattice-gas automaton works for hydrodynamical systems. We would like to

conclude this chapter by an inspiring quotation from Feynman [120]:

We have noticed in nature that the behavior of a fluid depends very
little on the nature of the individual particles in that fluid. For example,
that flow of sand is very similar to the flow of water or the flow of a pile
of ball bearings. We have therefore taken advantage of this fact to invent
a type of imaginary particle that is especially simple for us to simulate.
This particle is a perfect ball bearing that can move at a single speed in
one of six directions. The flow of these particles on a large enough scale

is very similar to the flow of natural fluids.
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CHAPTER FOUR

THE LINEARIZED LATTICE BOLTZMANN
EQUATION

The full lattice Boltzmann equation is a nonlinear equation for the distribution func-
tion, f,. Analytic solutions are difficult to obtain in general for this equation. As
a common practice in dealing with nonlinear equations, the linearized approximate
equations are studied. In this chapter, we discuss the solution of the linearized lat-
tice Boltzmann equation. The linearized lattice Boltzmann equation will be used to
provide two main results: One is the generalized hydrodynamics of LGA; the other

is analytic solutions for some simple flows.

Ordinary hydrodynamics is valid in the hydrodynamic limit, i.e., the limit of
long wavelength (k — 0) and slow time variation (w — 0). Ordinary hydrodynamics
studies macroscopic spatial-temporal behavior of fluids. The objective of generalized
hydrodynamics is to go beyond the macroscopic scale to the microscopic scale. This
extension is needed because the usual hydrodynamics requires significant modification
when the characteristic length scale is the same order as the mean free path. Usually
(as is done here), a generalization is made to include wavenumber dependence of the
transport coeflicients in such a way that the constitutive relation is preserved [121].
This generalization produces a nonlocal hydrodynamic response to fluctuations. Gen-
eralized hydrodynamics has been studied previously in the context of a hard sphere

fluid [122,123,121]. The study of generalized hydrodynamics in the context of LGA
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models 1s motivated by the fact that the LGA method has been successtully used
to solve difficult physical problems such as flow through porous media [124,125], a

situation where generalized hydrodynamics can be important.

There are a few pedagogic examples in hydrodynamics for which analytic so-
lutions can be obtained. Such examples are forced flow between two parallel plates
(Poiseuille flow [106]) and Couette flow [1]. These problems have been used as tests
for LGA simulations. Here, analytic solutions of the linearized lattice Boltzmann
equation for these flows are obtained. Differences between the ordinary hydrodynam-
ics and generalized hydrodynamics will be discussed. The method developed in this

chapter can be used for other discrete velocity models.

This chapter is organized as follows: §4.1 derives the linearized lattice Boltzmann
equation as an approximation to the full lattice Boltzmann equation, and studies the
properties of the linearized collision operator. Because the linearized collision operator
is related to the circulant matrix, §4.2 gives a quick review of the circulant matrix. §4.3
solves the eigenvalue problem of the linearized collision operator. This is the solution
for the linearized lattice Boltzmann equation in the limit of & — 0. §4.4 solves
the linearized lattice Boltzmann equation through a perturbative scheme. Closed-
form solutions are found along some special directions of k. Also, the k-dependent
dispersion relations of the transport coefficients, the kinematic viscosity, v, the bulk
viscosity, (, and the sound speed, c;, are calculated. §4.5 compares the results from
a simulation of the dispersion relation of ¢, by computing the power spectrum of
the density-density correlation function and that from the solution of the linearized
lattice Boltzmann equation. Finally, §4.6 analytically computes velocity profiles of
Poiseuille flow and plane Couette flow. The analytic results are also compared with
the results of LGA simulations. Also, boundary effects due to a finite mean free path

(Knudsen layer effects) are analyzed.
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4.1 The Linearized Lattice Boltzmann Equation and the

Linearized Collision Operator

Assuming that f,(@, t) = d(1 + é.(x, t)) with |¢.| < 1, where d is the equilibrium

density per direction at zero mean velocity, we can linearize Eq. (3.8.1) to obtain

¢a(w+éa7 t—l_l) = ¢a(w7 t)+Jaﬁ¢ﬁ(w7 t)' (411)
Because
I, ! (Sﬁ — fﬁ) S -
— S, — o) Agg B I TT g1 - f ) 4.1.2
then
Jag = D (s, — sa)(sp — d)Agerd® (1 = d)7 571, (4.1.3)
s,s'
where s = 3", 5, = §* = ||s|| is the number of particles in a configuration s. For

any states, s and s’, with finite transition probability, Ags/, s = s’ because of mass

conservation. Assuming semi-detailed balance, it is easy to show that

D> (sl — sa)Ased® (1 = d)7 5 =0. (4.1.4)
s,s'
Therefore,
Jaﬁ = Z(S; — Sa)SﬁAssldS_l(l — d)O'—S—l . (415)
s,s’
If we further impose the condition of detailed balance, i.e., Ags = Agg, which is

true for all 6-bit models with isotropy, then we can exchange s and s’ in the above

equation:

Jaﬁ — Z(Sa — sg)slﬁAss/d‘S_l(l — d)O'—S—l , (416)

s,s'
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where the conservation of mass, s = Y., s, = Y., s, = s, has been used. The average

of the above two equations leads to a symmetric expression for J,z:

1
Jop = 3 > (st — sa)(sh — 55)Ased® (1 —d)7 7571 (4.1.7)

s,s'

Note that J,s depends only the equilibrium density, d, for a given set of collision
rules. Because of the six-fold rotational symmetry, J,s is not only a 6 x 6 symmetric

matrix, it is also a circulant matrix for the 6-bit models.

For the 7-bit models, the lower-right 6 x 6 block is circulant because of the
isotropy. However, the linearized collision operator is symmetric if and only if Jy, =

Jao for a # 0, that is, if detailed balance is satisfied.

4.2 The Circulant Matrix

In this section, we shall only briefly discuss the circulant matrix for what is necessary
for the subsequent sections. The following material is extracted from Ref. [126]. For

more extended details, one should refer to Ref. [126].

An n x n matrix, C, is a circulant matrix of order n, if

C Cy Cs Cp, Cp,
Cp, &} Cy o Cp—1 o Cpa
Cn—1 Cp &} R &, R & . )

c=|: : : SO SO . (4.2.1)
Cpn—l4+1 Cn—i42 ©Cp—i43 ' Cpm—| *** Cp_q

Cy Cs Cy e cm+1 “ e C
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The above circulant matrix is denoted by
C =circ(ey, ¢, Cay ooy Cmy 70y Cp) - (4.2.2)

Obviously, we can also write

Cij = Cj—i41 (423)
where the subscripts of ¢;_;41 are (5 —¢ 4+ 1) mod n.

Associated with the n-tuple
Y= (1 Coy Cor -y s o Cn) s (4.2.4)
the polynomial,
P (z)=c+cz+ Gt o™ 2™ (4.2.5)

is called the representer of the circulant.

Let w = ¢*™/". By Fourier matrix of order n, we mean the matrix, F, such that

11 1 1
1 w w? w"!
1
":T = \/—E 1 u}z w4 - wZ(n_l) 5 (426)
1 wn—l w?(n—l) w(n—l)(n—l)

1
— w0 where FT is the conjugate transpose of F.
Vn

Now, we can state the following theorem:

that is FL =
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Theorem 4.1 If C is a circulant, it is diagonalized by F,

C =F'LF, (4.2.7)
where L is the diagonal matrix:
L = diag(P,(1), Py(w), Py(w), -, Py(w™), -, P(w™™Y). (4.23)
Therefore, the eigenvalues of C are
A= P (w'™). (4.2.9)
O

Note that the eigenvalues need not be distinct. Furthermore, the columns of F are

a universal set of (right) eigenvectors for the circulant matrix.

4.3 The Eigenvalues and Eigenvectors of the Linearized Col-

lision Operator

Before solving the linearized lattice Boltzmann equation, it is useful to study the
linearized collision operator, J. In what follows, the calculations will be done for the
case of the FHP 6-bit collision saturated model. For the model, J,3 is a circulant
matrix of order 6, which can be diagonalized by F. Also, because of the conservation
laws, we do know that J,z has a zero eigenvalue with (D + 1)-fold degeneracy, where
D is the dimension of the space. The eigenvectors with zero eigenvalue are the modes

associated with conservation of mass and components of momentum.

The matrix, J,gz, is not only circulant, it is also symmetric, therefore J,5 has
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only four independent matrix elements (instead of six):

Jog = cire(h, Jo, Js, Ju, J3, J2), (4.3.1)
where the J,’s can be computed directly from the collision operator, 2,. For the
6-bit collision saturated model,

Ji = Joo = — d) (€9(1 = d)? + (4659 4 €99)d(1 — d) + £€9d?) | (4.3.2a)
Jo = Joat1 = d) (€2(1 — d)? + (269 + €99)d(1 — d) + £9d2) , (4.3.2b)
Js3 = Joosz = d) (€2(1 — d)? + (2609 — £99)d(1 — d) + E€0d?) ,  (4.3.2¢)

Ji = Joags = —d(1 = d) (€2(1 — d)? + (4649 — £09)d(1 — d) + £9d?) . (4.3.2d)

/ 1
Assuming that &) = ¢ = 5(2) and ¢ = ¢ = 55(4) (as required by isotropy),

then the eigenvalues of the hnearlzed collision operator are:

o = Py(w?) = =3d (€21 — d)? + 4609 d + ¢9d?)

A\, = P,y(wg) _ —Gf(SS)JQ,

where d = d(1 — d). For the collision saturated 6-bit model, {3 = £¢9

(4.3.3a)
(4.3.3b)
(4.3.3¢)
(4.3.3d)
(4.3.3¢)

(4.3.30)

— e =
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£W =1, then
Aae =10, (4.3.4a)
oo = —3d (1+2d) , (4.3.4b)
A, = —6d°. (4.3.4¢)
The universal eigenvectors of 6 X 6 circulant matrix are:
1 1
1 w
py=—|! A== (1.3.50)
1) = —= s 2) = 6 = — .D.0a
Ve | 1 Ve |
1 —w
1 w*
1 1
—w* —1
A=y =] 7" n=— L s
3 - 5 - \/6 1 b] 4 - \/6 _1 .
—w* 1
—w —1

where * means the complex conjugate. These eigenvectors can be reorganized such

(o) + [Xe))s [py) =

1
thlat their components are1 real. Let |n) = |\), |pz) = 7 !
—=(|A2) — | X)), | K3) = —=(|Xs As)), and [Ky) = [\, |K5) = —=(1A) — [As)).
) = D) 1K) = () ), and K} = M), 1K) = (10~ 0)
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Then,
2 0
1 1
1 -1 1 1
pe) = a | s | py) =5 NE (4.3.6a)
—1 -1
1 —1
2 0
—1 1
| Ks) = L : |K5) = Lt (4.3.6b)
PAVER 2 0
—1 1
-1 1

The eigenvectors corresponding to zero eigenvalues, namely, |n), |p;) and |p,), are
called the hydrodynamic modes, and the remaining three are called the kinetic modes.
The physical significance of the hydrodynamic modes are obvious: |n), |p,;) and [py)

are the density, z-momentum and y-momentum modes, respectively.

4.4 The Solution of the Linearized Lattice Boltzmann Equa-

tion and Generalized Hydrodynamics

The Fourier transform of Eq. (4.1.1) is

Gall, t+1) = e M€ 5765 + Jop)ds(k, 1). (4.4.1)
B8



1V. THE LINEARIZED LATTICE BOLTZMANN EQUATION 114

This can be written in a vector form as
|p(k, L+ 1)) = H(k) |6(k, 1)), (4.4.2)

where the component of the fluctuation vector |¢(k, t)) is ¢.(k, 1), i.e., |o(k, 1)) =
(¢17 ¢27 ¢37 ¢47 ¢57 ¢6)T- The matriX

H(k) = D(k)Ho, (4.4.3)

where

Ho =1+ J (4.4.4)

is the evolution operator. The diagonal matrix

D(k) = diag(e™ €1, eke2 ... miken) (4.4.5)

is the displacement operator.

In general, the eigenvalue problem for H(k) cannot be solved analytically except
for special cases, whereas that for Hy = H(0) can be trivially solved because Hq is
a circulant matrix. Indeed, the eigenvalues of Hy are 1 4+ A,, where A,’s are the
eigenvalues of J, and the eigenvectors of Hy are those of J. Then, the matrix Hy
has three unit eigenvalues corresponding to those three hydrodynamic modes, i.e.,
the corresponding eigenvectors are associated with the conserved quantities of the
system. Hy also has three non-unity eigenvalues corresponding to those three kinetic
modes. In what follows we will show how these modes can be analytically continued

to the k # 0 region by a perturbative procedure.

Because the hydrodynamic modes have a three-fold degeneracy, they must be

recombined to obtain a new basis for the perturbed system. It can be shown that the
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new eigenvectors are

|us(0)) = cos 0 |py) —sinf [ps) = |p.), (4.4.6a)
1 1

us(0)) = (I & (cos ) + sind|p,)) =

NG (In) £ lpy)), (4.4.6b)

where 6 as the angle between k and &, (= @); |p.) and |p;) are the transverse and
longitudinal momentum with respect to k, respectively. Now, |u,(k)) and |uy(k))
are the generalized hydrodynamic eigenvectors, which represent one transverse and

two sound modes, respectively.

Let ¢, (k,t) = {u.(k)|o(k, 1)) and ¢o(k, t) = (us(k)|o(k, t)), then the lin-

earized hydrodynamic equations for the linearized lattice Boltzmann equation are
bk, t4+1) =z (k)b (k, 1) = 2y (K, 0), (4.4.7a)
bk, t +1) = z1(k)ds(k, t) = VN4, (B 0), (4.4.7b)

and the generalized hydrodynamic transport coefficients are defined in analogy to

their definitions in hydrodynamics [121]:

v(k) = —7111(2;5’@)), (4.4.8a)
Sty (k) = ekl (1:450)
(k) = iw, (4.4.8¢)

where v, ( and ¢, are the kinematic viscosity, the bulk viscosity and the sound speed,

respectively. By expanding D(k) in k, i.e.,

P"(0) (4.4.9)
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with
P(0) = diag(cos 8, cos(§ — x/3),---, cos(f + 7/3)), (4.4.10)

the coefficients of perturbation expansions for the eigenvalues of H(k), e.g., z, and
z4, can be calculated. The coefficients in perturbation expansions for the transport
coefficients are just the cumulants [127] of the corresponding eigenvalues. As an exam-
ple, the first few coefficients in perturbation expansions for z, (k) and the kinematic

viscosity, v(k), are given as follows:
z(k)=1- zf)kQ + zf)k4 + ...

where

/ 1 2
ZJ(_2) =9 <1+_)7

8 s

(2)
4 — _ZL 190605 — 6Ms + 3Xs% — 6As )y — AsZ)
z) 48)\32)\4{( 3 4+ 3A3 3A4 3°A4)+

— COS(69))\3(12 + 6)\3 + 6)\4 + )\3)\4)}

Then the kinematic viscosity is

where

The zeroth order (in k) results of the transport coefficients obtained by this pertur-

bative method are identical to the earlier results [44,45].
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The above analysis clearly shows that the zeroth order result of the viscosity,
vy, is independent of the angle 6 (of k), therefore it is isotropic. However, the higher
order results depend on 6. For instance, v, depends on cos(66), and the next order
result depends on both cos(60) and cos(126), so on and so forth. This result is a
clear reflection of the fact that the tensor, E®*™, is isotropic only up to n = 2 in the

triangular lattice space.

In the case of § = 0 or § = 7/6, the eigenvalues of H(k) are obtained analytically
for arbitrary k. For § = 0, H(k) can be decomposed into the direct sum of a 2x2 and a
4 x4 matrix. For § = 7 /6, H(k) becomes a direct sum of two 3x 3 matrices. Therefore,
the eigenvalues are roots of quadratic, quartic or cubic algebraic polynomials. The
decomposition of H(k) along the special directions § = 0 and § = 7/6 is a consequence
of the fact that the collision operator, 2,, is invariant under the complete lattice

symmetry group [45]. This decomposition is also applicable to other FHP 2-D models.

For § = 0, the eigenvalue corresponding to the transverse mode can be obtained

analytically:

(k) = %(2 T \s) cos(k/2) + %\/(2 ) cos?(k/2) —a(L+ Na) . (4411)

The kinematic viscosity possesses an imaginary part between the two branch points of
2z, which satisfy (24 A3)? cos?(k/2) —4(1+ A3) = 0. As k increases from 0 to the first
branch point, z, (k) and the eigenvalue of the kinetic mode coupled by the quadratic
equation collide with each other. Then both of them become complex conjugate
until they collide again at the second branch point. After the second collision they
separate along the real axis of the z-plane. The cusps in Figs. (4.4.1) clearly exhibit
the coalescence of the eigenvalues. Numerical results indicate that a similar situation
occurs when 0 < 6 < 7/6 for the transverse mode. However, when 6 = 7 /6, the
kinematic viscosity has no imaginary part in the physical region (0 < d < 1) of the

k-d plane. The fact that z, (k) can be complex indicates that the relaxation of the
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transverse momentum can be oscillatory. In the limit d — 0, z, (k) — e'z. This
suggests that oscillations in relaxations of the transverse momentum are related to
the free streaming of particles (a ballistic effect). Indeed, this kind of oscillation has

been observed in numerical simulations.

Plots of the wave number dependence of the kinematic viscosity, v, the bulk
viscosity, ¢, and the sound speed, ¢, for density d = 0.2 and § = 0, 7/12 and
7 /6 are shown in Figs. (4.4.1). For § = = /12, results are obtained by calculating
the eigenvalues of H(k) directly. We also calculated v(k) and ¢;(k) by perturbation
expansion for § = x/12. The 8th order perturbative result of v(k) agrees with the
exact result for & < 0.5; and for ¢;(k), results agree when k& < 0.2. One can clearly
see that these transport coefficients are highly anisotropic even for moderate values
of k. This fact indicates that in LGA simulations, only very small &k results are
isotropic. Hence, a large number of cells must be averaged over in order to overcome

the anisotropy.

Note that, for § = 0, ((k) is negative for k # 0. Whereas in the case of usual
hydrodynamics (i.e., in the limit of & — 0 and w — 0), it can be shown that all the
transport coefficients should be positive for the sake of stability [1, §15-16 and §49].
It should be pointed out that, it is not just ¢, but the combination of v and (, i.e.,
%(Z/—I-C), which determines the stability (or damping) of the sound modes (see detailed
analysis in §3.12). Moreover, %(V—I—C) is always positive here for all k; and both v and
( are non-negative at the limit of k = 0. The negative (k) in certain regions of k # 0
has been observed in numerical simulations, but there were no correct interpretations
given at that time [128,116,129]. The negative bulk viscosity ((k) in the context
of generalized hydrodynamics has been studied first by the author [114], then by
Das et al. [130]. It should also be stressed that the negative ((k) for k # 0 does

not contradict the H-theorems for the lattice-gas automata shown in §3.9, because

the local H-theorem is proven based upon the pointwise collision mechanism on the
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Figure 4.4.1: Kinematic viscosity v(k), bulk viscosity ((k) and sound speed c;(k) vs. k for
density = 0.2, and 6 = 0 (solid line), 7 /12 (dotted line) and 7 /6 (dashed line): (a) v(k) vs. k;
(b) C(k) vs. k; (c) cs(k) vs. k.

lattice, a situation where k is not a relevant quantity.

The anisotropy of the LGA is definitely unphysical. It is an effect due to the
small number of allowed velocities. More precisely, the tensor, E*™ . is isotropic only
up to the order n = 2. That means the transport coefficients are isotropic only at
the limit & — 0. The analysis here quantitatively shows the anisotropic effect in the
transport coefficients related to the higher order spatial derivatives (or higher order
in k). The anisotropy of the transport coefficients is a direct consequence of the

(2

anisotropy of the tensor, E?", for n > 2.
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4.5 A Numerical Test of the Dispersion Relation of the

Sound Speed

To verify the dispersion relations of transport coefficients discussed in the previous
section, we set up a numerical test of the dispersion relation of the sound speed, ¢s(k).
The measurement is made by computing the power spectrum of the density-density
correlation function, which is based upon the Green-Kubo formula. In what follows,
we will derive the form of the power spectrum from the linearized LGA hydrodynamic

equation, and discuss the details of the simulation.

4.5.1 The Green-Kubo Formula

Define the Laplace-Fourier transform

. 1 &

o(k, s) = 7/dwdt e~k +st) (g ) (4.5.1a)
\/2—7T(D+1)

plle ) = gy [ ddt R (1), (4.5.1b)
\ 27

where s = e+ 1w, and € > 0. Then the transformed linearized Navier-Stokes equations

are:

sp+ipk-v = p(k, 0), (4.5.2a)

spe = —ikcip — k2 pyvv — kp, (C + l/) (k-v) + pov(k, 0).(4.5.2b)

From the above equations, it follows almost immediately that

(, 8)/;*(’67 0) _  s+k(C+v) (4.5.3)

(k, 0)p"(k, 0)) &%+ sk*(C +v) + k22’
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where we have assumed D = 2, and (v(k, 0)p*(k, 0)) = (v(k, 0)p*(k, s)) = 0, be-
cause v and p are statistically independent variables. Taking the limit ¢ — 0, we have

the power spectrum of the density-density correlation function:

(i, )i (b, ) _ 4R )
(p(k, 0)p*(k, 0)) N (w — key)2(w + keg)? + w2k (¢ + v)? (4.5.4)

(p(k, w)p™(k; @)
(p(k, 0)p~(k, 0))

In the limit of & — 0, which is a part of the hydrodynamic limit (the other

The quantity is called the scattering function [101].

requirement is w — 0), and for w /& ¢k, the scattering function can be approximated

as

(p(k, )" (ky ) 1 ( ! N ! )
; (= e+ ECH PP (ot e+ AR

This approximation only affects the O(k*) term in the numerator of Eq. (4.5.4). In
above equation, the spectrum has two Lorentzian peaks centered at the frequencies
w = Zc¢gk. These are the Brillouin peaks, which are related to the propagating
sound modes in the fluid. The half-width at half-maximum of the peaks is given by
1 12

W= =

5 (¢ + v). Note that for homogeneous systems,

<15(k7 w)ﬁ*(k, w)> = <5/5(k7 w)515*(k7 w)>7 (4'5'6)

where 0p = p — p, is the density fluctuation, and p, = 6d for the 6-bit models.

4.5.2 The Simulation

The simulation to compute the dispersion relation of the sound speed will now be
described. Assume a 6-bit, collision saturated FHP LGA with a system size N, x N,

(where N, and N, are the number of the lattice points along z and y directions,
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respectively, and N, is along the direction of €,) and assume periodic boundary
conditions. We first let the system run for a period of time to obtain equilibrium.
Then, the density, p, is averaged along the direction of N, so it becomes a function
of y and time, ¢, p(y, t). Next, the spatial Fourier transform of p is computed with

2
k= —ﬂ-, where L, = TNy' Now, a time series of pi(t) is obtained. We then compute

y
the power spectrum of pi(t) with a period of T" time steps. The spatial average has
been used to replace the ensemble average.

Fig. (4.5.1) shows the power spectra with N, = 16, 32, 64 and 128, respectively.
wT

The vertical axis is the intensity of the power spectra and the horizontal axis is o
s
The Lorentzian form given by Eq. (4.5.5) is used to fit the spectra and locate the

center of the peaks, w.. The sound speed can be determined by w. = kc¢;.

In Figure (4.5.2), the analytic result and LGA simulations of ¢; are compared for
the direction § = 7/6. Simulation results confirm the prediction of the analytic result
that ¢, increases as k increases along the direction § = 7 /6. The relative differences

between the LGA simulation and the analytic result are less than 1%.

4.6 Analytic Solutions for Simple Flows

In this section, we show that the linearized lattice Boltzmann equation with simple
boundary conditions can be solved analytically. Although we only examine the equa-

tion for the 6-bit models, the following method can be extended to any other LGA

models.

Consider the system under the influence of time-independent external force,

F(x). Then we have

|6(k, L+ 1)) = H(E) |¢(k, 1)) + [F(k)) , (4.6.1)
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Figure 4.5.1: The power spectra to determine sound speed ¢, with various values of k£ and
6 = w/6. The histograms represent the data of the power spectra, the thin solid lines are
three-point-averaged smoothed results of the spectra, and the thick solid lines are the fitting
results of the smoothed ones by the Lorentzian form given by Eq. (4.5.5). (a) N, = 128,
T = 2% = 32768; (b) N, = 64, T = 2'5 = 32768; (c) N, = 32, T = 2'% = 8192; (d)
N, =16, T = 2'% = 4096.

where the components of |F(k)) are the Fourier transform of the projection of F on
the direction e,. Here it is assumed that the magnitude of the forcing is of the same

order of the fluctuation, ¢.

Since the force is weak and time-independent, we assume the existence of the

steady state, i.e., |p(k, t + 1)) = |¢(k, t)) = |¢(k)). Then,

6(k)) = [ — H(R)] ™ [F (R)) . (1.6.2)

By specifying |F/(k)), |¢(k)) can be calculated. One should note that even though
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Figure 4.5.2: Sound speed ¢;(k) vs. k for density d = 0.2 and § = 7/6. The analytic result
is represented by the solid line and the LGA simulations by +. The relative differences between
the LGA simulation and the analytic result are less than 1%. Nonlinear effects must explain the
differences.

the eigenvalue problem for H(k) cannot be solved analytically in general, [I — H(k)] ™'
and |¢(k)) can always be obtained analytically. Therefore, the flow profile can be

calculated for simple forcing functions.

In what follows, two simple flows are analyzed: Poiseuille flow and plane Couette
flow. The analytic results shall be compared with results of LGA simulations. In
performing the LGA simulation, the microscopic rules of applying uniform body force
are described in Fig. (4.6.1). The uniform body force is achieved by assigning a
random number r, 0 < r < 1, to each site at each time step, after collision and
advection process have taken place at each time step, the microscopic forcing rules

described in Fig. (4.6.1) are executed if r < r, and if the rule is allowed at the
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Input State Output State

Figure 4.6.1: Forcing rules of FHP 7-bit models. In the left column are states before the
forcing. Those in the right column are after forcing. The rules in the first four rows add one
unit of momentum to the system, whereas the rule in the fifth row adds two units. The solid
arrows indicate occupied states while the hollow ones indicate vacant states. States not indicated
may be either occupied or vacant.
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particular site. Upon each successful forcing application, the system gains one or two

units of momentum in & direction.

4.6.1 Poiseuille Flow

Poiseuille flow is uniformly forced flow between two parallel plates. We use periodic

boundary conditions for both z and y directions. The forcing is a square-wave function

along z-axis, i.e., F(@) = F(y)&, where

FO 1§y<Ny/27
Fy) =
—Fy N,/24+1 <y <N,

and N, is twice the channel width between the two plates. Then,

1 4 F
F(k) = N, 7(2k - )
The Fourier transform of v, is
0u(k) = (@ [6(k) = (&] (1~ H(E) ™ &) F(R)
where
(#10 - H(k) ) = 5 ( +— (éfi%_l))) ,
and

(2 — 3d — 15d%)
a = = = =,
3d2(2 — 3d — 6d2)

_ 0 3d(1+2d)
42 —3d —6d2)

(4.6.3)

(4.6.4)

(4.6.5)

(4.6.6)

(4.6.7a)

(4.6.7h)
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With the approximation k < N,

1 8HN?
| (1-H(k) ™ &) ~ — ) 16,
(6100 - 1w o)~ - (o ) (1.65)
Therefore,
IRIA 2 (2k — 1
Ux(y) - N vl‘(k)Sin (u) > 1 SySNln
Y k=1 Ny
Fy
2 (4N (Ny/2 = y)y + a) 1<y <N,/2,
Yy
~ (4.6.9)
Fo
2 (40N (y = Ny/2)(y — Ny) — a) N,/2+1<y <N,
Yy

In the thermodynamic limit (N, — oo, d — 0 and N;d — dp = constant), the

following parabolic velocity profile is obtained:

Fo(4by(1 — ) + a) 0<y<l1
0s(y) = lim ”“”(Z) = (4.6.10)
d—0 Yy

Fo(4b(y —1)(y —2) —a) 1<y<2,

where a = 1/(3d3), b = 3dy/32, and i = y/N,. We can rewrite a = 2[, where [ is the
mean free path in the limit. Therefore, the discontinuity of the momentum profiles,
which represents the slip velocity at the walls [131], is proportional to the mean free

path in this limit.

We perform a simulation to test the accuracy of the linearized theory. The setup
of this simulation will now be described. Plates are placed parallel to the velocity
direction (€,) and periodic boundary conditions are applied. The forcing is a square-
wave function between plates. It is of uniform magnitude on sites 1 <y < N, /2 and

of opposite uniform magnitude on sites N, /2 +1 <y < N,.
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Figure 4.6.2: Momentum profile of Poiseuille flow for density d = 0.2 and a channel width
of 16 lattice sites. To obtain steady state, 10° time iterations were run before the average.
The momentum p,. is averaged over I, and over 2 x 10° time iterations. The analytic result
(Eq. (4.6.9)) is represented by the solid line and the LGA simulation by O. The graph is rescaled
so that p,,,. = 1. Note the agreement for the non-zero momentum at the walls due to finite
mean free path. The simulation was run on CrAY Y-MP, with Iy = 1.0641 x 1073,

In Figure (4.6.2), the velocity profile of forced flow between parallel plates
(Poiseuille flow) [132] from our analysis and LGA simulations are compared. Note
that, in Figure (4.6.2), the discontinuity of the velocity profiles at the boundaries
(the slip velocity) is accurately predicted by the analysis. This phenomenon is a

manifestation of existence of a Knudsen layer [131,133].
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4.6.2 Plane Couette Flow

Plane Couette flow is the flow between two parallel plates moving in opposite direc-

tions. In the case considered here, two plates move in opposite directions, but with

the same speed. The forcing term for plane Couette flow is

Fly) = Fox (6(y — 1) — 6(y — Ny /2 - 1)),

with the Fourier transform

2F,

T; k=2n+1, n=0,1,2,
F(k) =

0 k=2n

Then, the Fourier transform of the velocity is

vs(k) = (&] (1 - H(k))™

2k, 81)]\@2
R a+ ,
N2 w22k — 1)?

z) F'(k)

and

2 L 2y (2k — 1)
ve(y) = — vz (k) cos
Ny i3 N,

(4.6.11)

(4.6.12)

(4.6.13)

(4.6.14)
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where @ and b are given by Eqs. (4.6.7). Because

N (=1)"N, if y=nN,, n=0,1,2,---
zy/: (2w(2k - 1)y)
cos =
k=1 Ny
0 otherwise,

therefore,
2F0a FobNy
=1
N, T2 y=>5
va(y) = ¢ Fob(N,/2 — 2y) 1 <y <N, (4.6.15)
2F06l FobNy
— — = N,.
N, 2 =N

Again, the above equation shows that the velocity profile has a slip (discontinuity) at

wall, due to the finite mean free path.

In Figure (4.6.3), the velocity profile of plane Couette flow from our analysis
and LGA simulations are compared. The setup of the simulation is the same as for
the Poiseuille flow, but the uniform forcing is only applied on two rows: y = 1 and

y = N,/2 + 1, with the same magnitude and opposite directions.

Our analysis here confirms what have been found in molecular dynamics sim-
ulations [117,121]. That is, hydrodynamics does apply quantitatively in very small
scales comparable to the mean free path. However, kinetic effects are also visible in
the small scales. Furthermore, we have shown that, for both Poiseuille flow and plane
Couette flow modeled by lattice-gas automata, the velocity profile consists a part
which satisfies the Navier-Stokes equation, and a part which is due to kinetic effect

of a finite mean free path and cannot be described by the Navier-Stokes equation.

In conclusion, we have obtained an analytical solution of the linearized lattice

Boltzmann equation. We have quantitatively analyzed boundary effects due to a finite
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Figure 4.6.3: Velocity profile of plane Couette flow for density per link d = 0.2 and a channel
width of 16 lattice sites. The system size N, X N, = 16384 x 32. The probability of applying
forcing is 0.06. To obtain a steady state, 10° time iterations were run before the average.
The velocity, v, is averaged over N, and over 2 x 10> time iterations. The analytic result
of Eq (4.6.15) is represented by the solid line and the LGA simulation by “+". The graph is
rescaled so that v,,,,, — 1. The simulation was run on a CM-200 computer.

mean free path (Knudsen layer) and anisotropy effects due to the lattice symmetry,

and find reasonable agreement with LGA simulations.
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CHAPTER FIVE

THE LINEAR LATTICE BOLTZMANN
EQUATION

The Boltzmann equation has been used as a theoretical tool to connect the microscopic
dynamics and the macroscopic equations. In the context of the lattice-gas automata,
the lattice Boltzmann equation has also been used as a technique for numerical sim-
ulations [85]. More recently, it has become popular to use the linear Boltzmann
equations as an alternative simulation technique, for their simplicity of implementa-
tion, flexibility of varying the transport coefficients, compatibility in both two and
three dimensions, immunity from the statistical noise due to the large fluctuations of

particle population, and computational efficiency [134-141,53,142,143,56].

The first lattice Boltzmann equation technique proposed by McNamara and
Zanetti in Ref. [85] is a straightforward floating-point-number counterpart of the
FHP lattice-gas automaton. Ignoring the correlations, probabilities, or average pop-
ulations, {f,}, substitute for discrete particle number, {n,}. The resulting equation
is Eq. (3.8.1), in which the collision operator becomes an arithmetic nonlinear op-
erator. The main advantage of this technique is the elimination of statistical noise.
Their method is more efficient than lattice-gas automata in simulating flow with low
Reynolds number (Re < 100) [85]. However, this approach is not easily implemented

in three dimensions.

An alternative approach is to use a lattice Boltzmann equation with the collision
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operator linearized about a chosen local equilibrium. This approach is not only easy
to implement in both two and three dimensions, it also possesses several additional
virtues. First of all, the collision operator is simplified. Thus the computational
efficiency is enhanced. Second, the viscosity can be adjusted quite close to zero, so
that high Reynolds numbers can be obtained in simulations. Third, the artifacts due
to non-unity factor, g(p), and velocity dependence of the equation of state can be

completely eliminated by choosing an appropriate distribution function [53,143,142].

As has been stressed before, one of the main advantages of the Boltzmann models
over the lattice-gas automaton models is the elimination of statistical noise. Freedom
from statistical noise is a virtue shared with systems such as the Navier-Stokes equa-
tions. However, for systems in which statistical noise plays a crucial role, such as
chemical reactive flows or phase transition phenomena, the lattice-gas method should

be used, because it contains the fluctuations needed for the systems.

In the next two sections, two models of linear lattice Boltzmann equation are

studied. In §5.3, the related H-theorems will be proved.

5.1 The Linear Collision Operator and the Equilibrium Dis-

tribution

There are at least two undesirable features in the Navier-Stokes equation derived from
LGA systems which we wish to correct. The first is the lack of Galilean invariance due
to non-unity factor, g(p), and the second is the velocity dependence of the equation of
state. These two problems arise because of the form of the Fermi-Dirac distribution
function. If the coefficients of the quadratic terms (in v) in the distribution function

were altered, then the aforementioned artifacts can be eliminated [54, 143, 142].
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We write the linear lattice Boltzmann equation as follows:

Jal@ + &ay t4+1) = ful@, ) + Juslfs = 157). (5.1.1)

where fg“’q) is an equilibrium distribution yet to be determined. The construction
of the above equation consists of two ingredients. First, the collision operator is so
constructed that it has the exact symmetry as that of the collision operator linearized
about the equilibrium p = p,. However, the matrix elements of J are not determined
by the collision rules of LGGA models, rather they are adjustable parameters for tuning
the system to the desired transport coefficients. The second ingredient is the con-
struction of the equilibrium distribution function, f{, so that the factor, g(p), is set

to unity, and the velocity dependence of the equation of state is eliminated.

From the analysis presented in Chapter 3, it can be clearly identified the sources
where the unphysical effects of g(p) and velocity dependence of the equation of state
come from. The factor, g(p), is due to the lead coefficient in the O(v?*) term in the
small velocity expansion of the distribution function. The velocity dependence of the
equation of state is due the diagonal term in Sj;pvrv;. Therefore, the unphysical
effects can be eliminated if the aforementioned two terms were adjusted properly. We
can set g(p) = 1 for f, being a polynomial in v up to second order, and adjust the
lead coefficient of §;;v* to correct the velocity dependence of the equation of state.
The degree of freedom provided by rest particles can be used to satisfy the mass and
momentum conservation constraints. In particular, the following distribution function

has the desired features:

P 01

p (Uo - D—cg@jvivj) a=0,
f(eq) —

p b, . (D +2) 2

P (1 Tttt g Qe T gyt i | e # 0,

(5.1.2)
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where 0, and o, are the maximum number of rest and moving particles with speed

one per site, respectively; o = o, + 0, is the maximum number of particles per site;

g
s = 8oy [ — 1.
c D (5.1.3)

is the sound speed. Therefore, the sound speed can be adjusted by varying o, (with

and

o, fixed), that is, by varying the fraction of rest particles in the system. The more

rest particles, the smaller the sound speed. It is easy to verify that Y, fi9 = p,
650 0] = pu, and

_ £2 5 P ) — .2
Iij = 6, ) €ai€a i = cipbij + pviv;.
(e}

Thus, both aforementioned artifacts have been eliminated.

The linear collision operator, J, is constructed as follows. To preserve the rota-
tional invariance of J, the transition probabilities among moving particles must form
a symmetric circulant matrix. Also, the transition probabilities between rest particles
and moving particles with momentum é,, a =1, 2, ---, 6, must be the same. Then,

c b"

J = : (5.1.4)
b A

where b = b(1, 1,1, 1,1, 1)", and A = circ(A;, Az, As, A4, Az, Az). Assuming
that the maximum number of rest particles is o,, and that of the moving particles
with velocity é, is one, the matrix J must have a zero eigenvalue with (D + 1)-fold
degeneracy, which corresponds to mass and momentum conservation constraints. The

conservation constraints lead to

oo+ 66=0, (5.1.5a)

A1—|—2A2—|—2A3—|—A4—|—Uob:0, (515b)
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A1—|—A2—A3—A4:0. (515C)

There are also three additional non-zero eigenvalues

11 = 6(A1 + Ay) + 20,b, (5.1.6a)

Y2 = —6(A1 +24;3) — 30,b, (5.1.6b)
6

Y3 = — <— + Uo) b, (5.1.6¢)
0o

where 7, has a two-fold degeneracy. Among the nonzero eigenvalues, v, is the most

important one, because the viscosity is related to ~; by

Thus, the range of «; must be between —2 and 0 for v to be positive. It should be
noted that by choosing ~; close to —2 from above, the viscosity, v, can be arbitrarily
close to zero and the Reynolds number can be enhanced. Of course, care must be
taken to ensure that the smallest scale of the simulated flow is greater than the lattice
scale, or numerical inaccuracies will occur and instabilities are observed. Of course,
this problem is not unique to LGA or LBE methods. It is a common problem for any
numerical methods for solving the Navier-Stokes equation. By specifying the 4’s, the
matrix elements of J can be completely determined. Usually, ¥ is chosen according to
the desired v; v3 and 73 are chosen to be —1 so that the corresponding kinetic modes
decay to zero as quickly as possible (in one time step), as these modes decay like 14,
and 1 + ~3. It should be pointed out that the matrix elements, J,3’s, determined by
choosing 7,’s may have no LGA equivalent. That is, no collision mechanism leads to

the values of J,g’s for certain values of 7, ’s.

Now, the linear lattice Boltzmann equation, which approximates the incompress-
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ible Navier-Stokes equations, is
al@ 4 e 1) = ful@, 1) + Japf5°0 (5.1.8)

where f(*® is the nonequilibrium part of the distribution function:

fo0 = fo =[50 (5.1.9)

The Navier-Stokes equation derived from above system does not have the artifacts
due to unphysical g(p) factor and the velocity dependence of the equation of state
found in the lattice-gas method.

5.2 Lattice BGK Model

The collision operator, J, can be further simplified by the single relaxation time
approximation. In what follows, the single relaxation time approximation and the

related equation are discussed.

5.2.1 The Single Relaxation Time Approximation

Recall the Boltzmann equation,

af

where the collision operator

C(f, f) = [dasde,(f'fi - 1),
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Near equilibrium, the system is close to a local Maxwell-Boltzmann state. Moreover,
the post-collision distribution functions, f”’s, should be closer to equilibrium than the
pre-collision f’s, because of the H-theorem. Therefore, we can apply the following

approximation:

/ dSde, 'l ~ / dSde, ' 1, (5.2.1)

Because [ is the solution of C(f*, f) =0, then,

[asde for = [asag, 10 = @ [ dsdg, . (5.2.2)

where we have used the fact that [ is independent of &,. Consequently, from the

above two equations, we have

/ dSde, [ f! ~ [© / dSde, [, (5.2.3)

Also, because of the constraints of the Chapman-Enskog expansion, that is, the hy-

drodynamic moments of f are equal to that of f(©, therefore,

[asde,fhi =1 [ dsde,fi = s [dsde, ;. (5.2.4)

Now, the collision term in the Boltzmann equation can be approximated by

Clf. f) = —2(f — 1), (5.2.5)

where
1
~ = [asdg, 1, (5.2.6)

-
7 is the characteristic relaxation time of collision processes, and w = 1/7 is the

characteristic frequency. Then the Boltzmann equation becomes the BGK equation

o )
S revi= (-0 (5.27)
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The above equation is called BGK equation, after P. L.. Bhatnager, E. F. Gross and
M. Krook [144]. In the literature, the operator

CUL 1) =~ = 1)

is some times referred to as the Krook operator.

The simple BGK equation still retains some important properties of the Boltz-
mann equation: H-theorem, and the correct prediction of the thermo-fluid conserva-
tion equations. However, the simplification also leads to some shortcomings. One of
its most noticeable defects is that it gives the wrong Prandtl number v/k. Therefore,

discretion must be taken when using the model.

5.2.2 Lattice BGK model

Application of the single relaxation time approximation to the lattice Boltzmann

equation leads to the lattice BGK equation:

Jola & 0, 141) = Lol 1) = L(fule, 1) — 59), (5.2.8)

where f(*¥ is given by Eq. (5.1.2) in the previous section. The viscosity of the lattice
BGK model is related to the collision time, 7, by

21 —1 (5.2.9)
v = DT 2.
. . . . 1
This result is obtained by recognizing that vy = —— here. Because of the above
T

equation, we must set 7 > 3 to keep v positive so that the system is stable.

The lattice BGK equation has great computational advantage when it is im-

plemented on parallel computers, because it does not require memory to store the
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collision matrix in each processor.

An important virtue of the linear Boltzmann equation technique is that one
has the freedom to choose the equilibrium distribution function, f{¢¥. By properly
choosing f{¥, the linear Boltzmann equation can be used to simulated various kinds
of physical systems, such as multi-phase or multi-component fluids [58]. Also, with
the freedom, one is not restricted to the triangle lattice now. Indeed, the square
lattice (with speed 0, 1 and v/2) can be used by choosing an appropriate equilibrium
distribution function, f{*, to satisfy the symmetry criteria [137,142].

5.3 The H-Theorem for Linear Lattice Boltzmann Equa-

tions

In this section, we will study how the linear lattice Boltzmann models approach
equilibrium. For the sake of simplicity, we shall prove the H-theorem for the following

system:

0fa
ot

Feu Vo= —(fu— [E) (5.3.1)

5.3.1 The Local H-Theorem for Spatially Homogeneous Systems

We first prove the local H-theorem for spatially homogeneous systems:

aai: = _%(fa - féeq))a (5'3'2)

where f{*9 is a constant.

Define
H =% foln(fo/ fS?), (5.3.3)
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then we can show that o7 < 0. The proof goes as follows.

aH _
dt

0fa /s
5 Yo, 1)+ 5

=——Z MWMAUW—q%Zn

The second term in the above equation is zero because of the homogeneity (f{v =

constant):
0 0
atza Ja 8tza 1d 0

Furthermore, (fo — fC9) In(fo/f9) > 0 for positive f, and f¢v. Thus, it follows
immediately that
<, (5.3.4)

Next, we can show that H, as a function of f,, is bounded from below, and has a

minimum at f, = fv. Since the system has the following conservation constraints:

pP= Zfoz = Eféeq)v
o o
— Zéa,zfa — Z éa,zf(ieq)a
o o
= Zéavyfa = Zéa,yféeq)a
o o

the system at minimum {f*} should satisfy

oH 5p ops py

5 s T T,

where the constant ¢’s are the Lagrangian multipliers. This leads to

ln(f;/féeq)) + (61 + 1) + C2éa,z + Cséa,y =0,
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or

A

= fCYexp(—(c; + 1) — €0.0 — C:€4.y)

where the constant ¢’s are to be determined by solving the following equations from

the conservation constraints:

DofLn =TI ST [N exp (—aa s — éayy),
[e3 o3

Dot =Yl fEY exp (— e — ko)
[e3 [e3

D layfi = eI S ea  fV exp (—eran = rEay)-
[e3 3

The results are ¢, = —1, and ¢, = ¢; = 0. Therefore, f* = fi9.

Now, we can conclude that {f{?} is a stable fixed point of the system, and the
system is irreversibly approaches the fixed point (equilibrium). This completes the

proof of the local H-theorem for homogeneous systems.

5.3.2 The Global H-Theorem for Spatially Inhomogeneous Systems

We now turn to the system

0fa
ot

FeurVfa= —(fu— f19), (5.3.7)

where the equilibrium distribution function f(*¥ depends on @ and ¢ only through the

thermodynamical variables p and v, that is, f{* = f*9(p, v).

Define
H= /da: S fuIn(fu) £O0). (5.3.8)
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Then,

af, af, O ftD
= [y 5; n(fu/ 127) + [ de 3 f - [ da 2 ’;q) L.

= [de X (VL4 2 = ) L £20) = [ o O

(o3

If the system size is infinite, or finite with periodic boundary conditions, then
[de S/ feMen Y fo == [de Y fabaVin(fu/ )
1 . 1.,
(eq) €ao

—/da: fa é Vf(eq)

It follows immediately that

O fled) .
R __/dw f(eq))ln(fa f(eq) /d Z (eq) ( ];; + ea-Vféeq)) ]

In the above equation, it is apparent that the first term is non-positive for any positive
fo and 9 and the second one is identical to zero due to Eq. (5.3.7). Therefore, we

have shown

dH
< 0.
dt -
Following the same steps in the proof of the local H-theorem, we can also show that

H, = H(f%v) is the lower bound of H. Thus, we have proved the global H-theorem.

A few remarks are in order regarding the H-theorems. First, the conditions
for the H-theorems should be restated: (1) {f.} and {f¥} are positive; (2) {fi}
are functions of p and v. For the choice of f(*¥ here, i.e., f¢Y is a second degree
polynomial of v, the magnitude of v (or Mach number) must be small to keep fi*®

positive. Second, in the proof, only the Krook operator is used for the collision
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operator. However, it is straightforward to extend the proof to the full linear collision
operator, J. Thus, the theorems are also true for the linear Boltzmann equation
with collision operator, J. Third, the H-theorems proved here are for the systems
with continuous space and time, instead of lattice space and discrete time. Thus, the
theorems are only applicable to lattice systems in the hydrodynamic limit, & — 0
and w — 0. Since the differences between the systems with continuous space and
time and those with lattice space and discrete time are the higher order derivatives
(or equivalently, the higher order terms in k and w in Fourier space). Thus, the local
gradient and time variation should be small for the system to maintain the stability

supported by the H-theorem, and thus to contract to the desired equilibrium.
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CHAPTER SIX

FLOW IN A 2-D SYMMETRIC
SUDDEN-EXPANSION CHANNEL

In this chapter, a numerical study of nonlinear flow phenomena in a two-dimensional
symmetric sudden-expansion channel by using the lattice Boltzmann equation method
is presented. The reason this system is chosen is that, not only does it exhibit an
array of interesting nonlinear flow phenomena, but also it has been studied both
experimentally [145-148] and numerically [149,148,150] using some traditional meth-
ods, so that a comparative study between the lattice Boltzmann method and other

traditional methods can be conducted quantitatively.

In the past two decades, it has been of great interest to study certain flow systems
experiencing transition to turbulence. One popular example is Taylor-Couette flow
[151,152]. The flow in a symmetric sudden-expansion channel serves as another
example. It has been observed experimentally that, below a certain critical value
of the Reynolds number, which depends upon the geometric configuration of the
channel, the flow pattern in a symmetric sudden-expansion channel is symmetric. The
two recirculation regions behind the steps are symmetrically located with respect to
the channel center plane. The flow is steady (time-independent) and two-dimensional.
The symmetric flow becomes unstable once the Reynolds number exceeds the critical
value, and a pair of steady asymmetric flows are observed as one recirculation region

grows at the expense of the other — a symmetry-breaking bifurcation has taken
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place. The flow is still two-dimensional at this point. As the Reynolds number is
increased further, various instabilities may be observed, depending upon the geometric
configuration of the channel. The flow may become first three-dimensional and then
oscillatory or wice versa. Ultimately, the flow becomes turbulent as the Reynolds
number increases further. Studies have shown that low asymmetry and hence solution

multiplicity remains a feature of flows in the turbulent regime.

In what follows, we shall describe the boundary conditions for the numerical

simulations in §6.1. In §6.2, we shall present the numerical results of the simulations.

6.1 The Description of the System and the Arrangement of

the Simulation

Figure (6.1.1) shows a schematic two-dimensional plot (in zy-plane) of the flow chan-

nel in the experiment [148]. The three-dimensional geometry of the channel used

main channel
entry section | y
flow direction —_— )— X

| z

Figure 6.1.1: A schematic two-dimensional plot of the flow channel in the experiment.

in the experiment [148] is now described. The flow-channel consists of two sections.
The long entry section before the expansion channel provides sufficient length for
the required parabolic entry (velocity) profile to develop fully. To ensure that the
entry flow is two-dimensional, that is, to minimize the three-dimensional flow effects
induced by the side walls, the width (in z direction) of the entry section is set much
larger than its height (24 : 1). After the entry section, the fluid then flows through
an 1 : 3 symmetric, plane expansion into a section 80 step-heights in length and of

aspect ratio 8 : 1. Experimental observations have shown that the low Reynolds num-
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(a) channel with square boundaries
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(b) channel with round boundaries
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Figure 6.1.2: Geometry of boundary walls used in the simulations.

ber flow (Re < 140) is nominally two-dimensional in a channel with such an aspect

ratio [146, 148].
The Reynolds number for the system is defined by

_

= d.1
Re 2 ) (6 )

where h is the height of the entry section, Uy the maximum inlet velocity and v the
kinematic viscosity. The Reynolds number is tuned by changing Uy in experiments

with fixed v.

To test the validity of the lattice Boltzmann method, this algorithm is em-
ployed to study the occurrence of the symmetry-breaking bifurcation of the flow in
the symmetric sudden-expansion channel. Because the bifurcation occurs at a critical
Reynolds number at which the flow is two-dimensional, the two-dimensional lattice
BGK equation with triangular lattice space is used for the simulations. There are two
boundary geometries used in the simulations, as shown in Fig. (6.1.2). At the entry,
the flow velocity is prescribed in the following fashion. The z-component of velocity,
vz, has a parabolic profile with a maximum, Uy, while the y-component, v,, is zero.
This entry profile is fixed for all time. At the boundary walls, velocity is always set to

be zero. In the algorithm used here, the number of rest particles equals the number
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1
of moving particles. Thus the sound speed, ¢;, 1s 2’ and the Reynolds number is

4hU,

=g v

(6.1.2)

V3

where h = TNO’ Np is the number of lattice sites in the y-direction at the entry.

The Reynolds number is varied by changing 7, with both h and Uy fixed.

6.2 Numerical Results for the Steady State Symmetry-Breaking

Bifurcation

In the simulations, the system size is N, x N, = 2048 x 256. The height of the entry
section is 86 lattice sites (in y-direction), thus h = 43v/3. The maximum speed at
entry Up = 0.15. The sinusoidal boundary walls are prescribed by y = + f(x), where

h (L, —h)

§—|-T(1—Cos((a:—1)7r/64)), 1 <z <64,
L,

fla)=1 L 65 <0 < L~ 6
g—k%i_m(l—cos((l)x—w)w/(ﬂl)), Ly—63<z<L,.

Note that the values of y are integers. With the configuration of the channel shown in
86 1
Fig. (6.1.2), the expansion ratio is 556 R~ 3 With the given h and Up, the Reynolds

number is

_ 25.8V3

Be =577

The initial conditions for the velocity field in our simulations are set to be

asymmetric with respect to the symmetric z-axis of the channel, v,(y > 0) = 0.01,
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vz(y < 0) =0, and v, = 0. The asymmetry of the initial condition determines the
branch the asymmetric final state reaches. The simulation is run until a steady state

is achieved.

We define the stream function,

y
P(z, y) = /0 UI(:L‘,y/)dy/, (6.2.1)
and a variable of state, y, to measure the asymmetry:

, [ dedy (e y) + (e, )
e /d:l:dy ‘

It is obvious that when the flow pattern is symmetric about the z-axis, y = 0. In the

(6.2.2)

simulations, y is measured as a function of Re.

Figures (6.2.1) and (6.2.2) are contours of the steady-state stream function for
different values of Re. The symmetric flow pattern for Re below the symmetry-

breaking bifurcation and the asymmetric ones for Re above the bifurcation are shown

clearly in Figures (6.2.1) and (6.2.2).

Figure (6.2.3) is the bifurcation diagram for the symmetry-breaking bifurca-
tion in the channel flow. The diagram clearly shows the existence of the symmetry-
breaking bifurcation at the critical Reynolds number, R;. For the channel with
square boundaries, we found that Ry = 46.19. For the channel with the sinusoidal
boundaries, Ry = 50.12. To test the stability of the solutions, random noise is added
to v, and v, at the entry. The results indicate that solutions are stable under the

disturbance.

In Ref. [148], a channel with square boundaries was used in both numerical
simulations and laboratory experiments. The value of the critical Reynolds number

obtained from their simulations was Ry = 40.45, and that measured from the exper-
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@ 1=1.05, Re=40.624

() 1=0.95 Re=49.652

(c) 1=0.90, Re=55.858

(d 1=0.86, Re=62.065

Figure 6.2.1: The contours of the stream function for the channel flow with square wall. Fig.

(a) illustrates the symmetric flow pattern before the symmetry-breaking bifurcation occurs. Figs.
(b), (c) and (d) illustrate the asymmetric flow patterns developed after the symmetry-breaking
bifurcation occurs.

iment was Ry = 47.3. Our results not only reconfirm the existence of the symmetry-

breaking bifurcation for flow in the 2-D symmetric sudden-expansion channel, but also

agree with the existing results in Ref. [148] quantitatively. In Ref. [149], the value of

% = 5.95 was obtained for the channel with the sinusoidal walls. Despite the dif-
ference in the definition of the Reynolds number, Re, the quantitative disagreement

cannot be resolved between two sets of results in Ref. [148] and in Ref. [149].

In the simulations, when the Reynolds number is close to the critical value, the
system is very slow to converge to the final steady state. This phenomenon is well
understood: as Re approaches Ry, the time to reach the final state increases expo-

nentially. Since the algorithm used here is based upon a kinetic model, it is expected
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@ 1=0.98, Re=46.548

() 1=0.93, Re=51.961

(c) 1=0.91, Re=54.496

(d 1=0.85 Re=63.838

Figure 6.2.2: The same as the Fig. (6.2.1), with the sinusoidal walls.

that the number of time steps of iteration is much larger than that in standard nu-
merical methods for solving the Navier-Stokes equations, such as finite-difference or
finite-element methods, because the time steps here are on the kinetic, or microscopic,
scale, while that in standard methods are on the hydrodynamic, or macroscopic, scale.
Thus, the lattice-gas or the lattice Boltzmann methods might not be superior to those
standard methods in terms of computing time for this particular problem. This is be-
cause, with the regular boundary geometries used here, standard methods can handle
the problem in a straightforward fashion. If, however, the geometry of boundaries
were more complicated, standard methods may be very inefficient in dealing with such
boundaries. Then the advantages of the lattice-gas or the lattice Boltzmann methods
become immediately self evident, because complicated boundary geometries do not

slow down the algorithm at all.
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30 40 50 60 70
The Reynolds number Re

Figure 6.2.3: Bifurcation diagram of the symmetry-breaking bifurcation for flow in the sym-
metric sudden-expansion channel. X represents the values of y with the sinusoidal walls; O
represents x with the sinusoidal walls and with random force at the entry; () represents y with
the square walls.

As shown in the results, the value of R} sensitively depends upon the boundary
conditions. The values of Ry for two sets of boundaries, i.e., the square and the
sinusoidal walls illustrated in Fig. (6.1.2), are significantly different. One would expect
the stability of the symmetric mode (or the asymmetric modes) in the problem to
depend upon the boundary conditions. This boundary condition sensitivity could
also contribute, at least in part, to the difference between the results here and that
obtained by the standard methods. Although, in the limit of an infinitely large lattice
system, the lattice-gas or the lattice Boltzmann algorithms should converge to the
Navier-Stokes equation. But, with the finite-size system, differences between kinetic
models and PDE’s are visible. It is hoped that the relative convergence rates can be

investigated in more detail in the near future.
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CHAPTER SEVEN

CONCLUSION AND DISCUSSION

In this thesis, the theory of the FHP lattice-gas automata and lattice Boltzmann
equations is thoroughly reviewed. The linearized lattice Boltzmann equation is an-
alytically solved. Generalized hydrodynamics of the FHP lattice-gas automata, i.e.,
the dispersion relations of transport coefficients, is studied wvia the linearized lattice
Boltzmann equation. The solutions for some simple flows, such as Poiseuille flow and
plane Couette flow, are obtained. These solutions of the linearized Boltzmann equa-
tion are valid for the entire range of the Knudsen number, Ky,. That is, the solutions
not only contain a hydrodynamic component, but also contain a kinetic component.
This is important in quantitative study of the kinetic effects in the simulations by
the lattice-gas methods. Although we only solved the linearized lattice Boltzmann
equation for a FHP 6-bit model, the method is applicable to any other lattice-gas

models.

The original study of the symmetry-breaking bifurcation in a 2-D symmetry
sudden-expansion channel provides convincing evidence to support the validity of the
simulation techniques of the lattice Boltzmann equation. This example is valuable
especially when the general convergence of the lattice Boltzmann method is not fully

understood, and the quantitative numerical evidence is scarce.

Although the hydrodynamic equations can be derived from the lattice-gas and
the lattice Boltzmann models, the discrepancy between the simulation by directly

solving the Navier-Stokes equations and by using the methods of the lattice-gas au-
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tomata and the lattice Boltzmann equations has not been quantitatively studied.
One possible way of analyzing this discrepancy is to use the method of approximate
inertial manifolds [153—-156]. The theory of inertial manifolds provides a rigorous con-
nection between certain evolution partial differential equations and low-dimensional
dynamical systems. The restriction of the flow of the partial differential equation to
the inertial manifold is given by a finite set of ordinary differential equations called
an inertial form, which captures the long-time dynamic behavior of the partial differ-
ential equation. One can certainly apply this method to study long-time dynamics
of the lattice-gas automata and the lattice Boltzmann equations, and make close

comparisons with that of the Navier-Stokes equations.

The lattice-gas automata and the lattice Boltzmann equations are very simple
algorithms for simulating complex physical systems. Because of their simplicity, there
are some inherent shortcomings in these models. For instance, with the small number
of speeds allowed, it is difficult to simulate temperature. Although this difficulty can
be overcome by allowing more speeds in the model, this will increase the complexity
of the model and thus decrease its numerical efficiency. Therefore, there is a trade-off
between the complexity and the efficiency of these methods. This issue also deserves

further study.

In closing, we have studied, in both theory and applications, the methods of the
lattice-gas automata and the lattice Boltzmann equations. We have demonstrated

that these methods can be utilized to solve difficult problems.
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