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ABSTRACT

Time dependent isotropic turbulence belongs to a class

of problems for which modeling assumptions based on Kol-

mogorov's theory may not be appropriate: the Kolmogorov

theory de�nes a steady state, or perhaps more generally a

self-similar state, but during transient evolution, even the

smallest scales of motion can well be very far from steady or

self-similar. But spectral closures, which make no special as-

sumptions about either small or large scales, are appropriate

methods for such problems.

The transient evolution of turbulence driven by statis-

tically steady forcing, the transient evolution of turbulence

driven by linearly unstable large-scale modes, and the tran-

sition from one steady state to another in turbulence driven

by a statistically unsteady force are analyzed using a recently

developed spectral closure. Although DNS has an important

role in validating spectral closures, because these analyses

require considering a large number of test cases, often run

to very large numbers of time steps, direct simulation alone

is impractical.

INTRODUCTION

Recent demands on CFD have called attention to some

limitations of current RANS and LES models in `non-

equilibrium' turbulent 
ows in which the assumption of a

local Kolmogorov steady state is inappropriate. Examples

include strongly statistically time-dependent turbulent 
ows

and transitional 
ows (Rubinstein et al., 2001).

Simpli�ed spectral closures are one way to address these

problems: these models make no assumptions about Kol-

mogorov scaling, spectral self-similarity, or their equivalent,

assumptions which are crucial to formulating simpler mod-

els, but which inevitably limit their applicability to complex


ows. Simpli�ed spectral closures describe interscale energy

transfer more accurately than single-point models but are

computationally more tractable than general analytical tur-

bulence closures like the Direct Interaction Approximation

(DIA; Kraichnan, 1959) and the Lagrangian Renormalized

Approximation (LRA; Kaneda, 1981).

Since spectral closures are projection independent, they

can be also used to formulate LES subgrid models, RANS

transport models, and RANS-LES hybrids with arbitrary

resolution within a uni�ed analytical framework. Compu-

tationally successful examples of this approach include the

LWN (local wavenumber) spectral closure model (Clark and

Zemach, 1995) and the model SCIT (Bertoglio et al., 1994).

This paper describes one such closure, the CMSB model

(Cartoon Model of Spectral Behavior; Rubinstein and Clark,

2003). This model is a generalized Heisenberg closure which

includes the e�ects of local interactions and allows evolution

of the turbulent time-scale. In the �rst respect, it resembles

the model of Canuto and Dubovikov (1996). In compari-

son to EDQNM (Orszag, 1973), it trades a much coarser

description of energy transfer for time-scale evolution. In

this respect, it is a simpli�cation of Kraichnan's (1971) Test

Field Model (TFM).

The model will be applied to three problems of time-

dependent isotropic turbulence: the transient evolution of

turbulence under steady forcing, transient evolution due to

large-scale linear instability, and transient evolution from

one steady state to another. These problems all exhibit

dynamically signi�cant departures from Kolmogorov self-

similarity during important phases of evolution: in the �rst

two problems, a Kolmogorov steady state does not even ex-

ist initially, and the analysis is concerned only with how or

whether a Kolmogorov steady state emerges through nonlin-

ear interactions; in the third, a transient phase of nonlinear

reorganization which may depart from the Kolmogorov pic-

ture connects two di�erent steady or self-similar states.

The �rst two problems are intended as a means to under-

stand spectral broadening in transitional 
ows, in particular,

this intention motivates the study of turbulence development

due to large-scale linear instability. The evolution due to

steady forcing has a threshold character: only after energy

builds up su�ciently in the forced scales does nonlinearity
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become important. This transient evolution is strongly de-

pendent on initial conditions.

Preliminary comparisons will be given with the transient

evolution of forced DNS, although the radically di�erent

forcing mechanisms preclude using these comparisons for

model validation, at least for now.

The third problem focuses on the nonlinear reorganiza-

tion of turbulence between di�erent steady or self-similar

states. One example is isotropic turbulence with time-

dependent forcing: the turbulence is initially in a forced

steady state; subsequently, the force amplitude is increased

linearly until a state of self-similar growth is reached. The

rate of increase of the forcing is an important parameter in

view of the intuitive expectation that slow increase allows

a quasi-static evolution, whereas su�ciently rapid increase

will induce transient dynamic e�ects.

We conclude that simpli�ed spectral closures are a natu-

ral and computationally feasible means to study these prob-

lems. The calculations can be run to extremely long times

and large numbers of alternate scenarios can be compared

with negligible computational resources. Although valida-

tion by DNS studies of some cases is of course indispens-

able, comparably comprehensive studies of these problems

by DNS alone would be infeasible.

THE CMSB MODEL

The model equations used are given here with a brief

outline of the derivation; details are given in (Rubinstein

and Clark, 2003). The CMSB model begins with a Marko-

vianized form of the DIA, but with a single Lagrangian time

scale instead of the two time-scales used in the TFM.

Next, nonlinear interactions are restricted to certain de-

generate types of local and distant interactions. This step

greatly simpli�es the energy transfer model, which is analyt-

ically no more complex than the classical Heisenberg model

(Monin and Yaglom, 1975). Finally, the triad relaxation

time of the DIA is replaced by a single-mode relaxation time.

The model equations are (i) the spectral evolution equa-

tion
_E(k; t) = P (k; t)� S(k; t) � 2�k2E(k; t) (1)

where E(k) is the energy spectrum, P (k) is the production

spectrum, and S(k) is the nonlinear transfer, (ii) the closure

equation for S(k)
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and (iii) the relaxation time evolution equation

_�(k) = 1� �(k)�(k) � �k2� (3)

where the turbulence frequency � is de�ned by

�(k) = c0�(k)

Z k

0

dp p2E(p) (4)

The model constants c and c0 are determined by compari-

son with the theory of isotropic turbulence (Rubinstein and

Clark, 2003).

Important features of this model include treatment of

nonlocal interactions, the possibility of energy transfer from

small to large scales (`backscatter'), and the existence of

both equipartition ensembles and Kolmogorov steady states.

The classical Heisenberg model is recovered by retaining only

the second and fourth terms in the energy transfer model

Eq. (2) and making the simple algebraic model

�(k; t) = [k3E(k; t)]�1=2 (5)

The Heisenberg model includes nonlocal interaction e�ects

and admits Kolmogorov steady states, but does not al-

low backscatter or equipartition ensembles (Rubinstein and

Clark, 2003). Unlike the CMSB model, its dissipation range

predictions are unphysical (Monin and Yaglom, 1975).

TURBULENCE GENERATED BY STEADY FORCING:

TRANSIENT EVOLUTION

This section considers the evolution of a Kolmogorov

steady state under steady forcing at large scales. The goal is

to understand the dynamics through which this steady state

is established.

Suppose then that the energy production term in Eq. (1)

has the form

P (k) = ak2 exp[�b(k � k0)
2] (6)

and that the initial spectrum E(k; 0) = 0. The results of in-

tegrating the CMSB model equations are shown in Figures 1

and 2: the evolution of energy, production, and dissipation

are shown in Figure 1, and the corresponding spectral evo-

lution is shown in Figure 2.
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Figure 1: energy (solid), dissipation (dot-dash), production

(symbols) in forced steady state closure simulation.

The single-point statistics suggest that there are three

distinct phases of evolution: (i) initial dynamically linear

evolution dominated by energy pumping by the forcing.

Nonlinearity is negligible and the energy grows linearly in

time. This phase persists until about half of the total sim-

ulation time. It is followed by (ii) a `transitional' phase

beginning at about 4000 time steps marked by extremely

rapid growth of dissipation. The dissipation overshoots the

production, peaks and then relaxes; following relaxation,

there follows (iii) a steady state characterized by nearly

constant energy and balance between production and dis-

sipation. Approximantly twice as many time steps as shown

in Figure 1 are needed to achieve a robust steady state. The
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Figure 2: energy spectrum at short (solid), intermediate

(dot-dash), and long (symbols) times in forced steady state

closure simulation: numbers indicate the time steps corre-

sponding to each curve.

highly `elastic' behavior exhibited in stage (ii) may be real,

but is likely to be exaggerated by this model.

Figure 2 shows the corresponding spectral evolution at

six di�erent times, two each from each of the three phases

just noted. Corresponding to above are the spectral evo-

lution phases: (i) energy growth limited almost entirely to

the forced scales. Note that the forcing in this study peaked

at k = 5 in the units of Figure 2. (ii) nonlinear reorganiza-

tion with propagation of a wave-like spectral feature to small

scales, leading �nally to (iii) a steady Kolmogorov spectrum.

These three phases are quite similar to the evolution of

decaying turbulence beginning from a Gaussian initial state

(Clark and Zemach, 1995). The end of phase (ii) seems dy-

namically similar to the `critical time' observed in decaying

turbulence (Lesieur, 1990).

In practice, it would not be easy to implement statisti-

cally steady forcing of this type in DNS. At best, steady

direct forcing fi of the velocity would lead to the time-

dependent production spectrum

P (k; t) = hui(k; t)fi(�k)i (7)

In fact, forcing in DNS is itself a signi�cant problem (Chen

et al., 1993). The goal of forcing schemes is to reach a steady

state as quickly as possible, hence the transient evolution is

generally not considered important.

Nevertheless, as a preliminary comparison, we show re-

sults comparable to Figures 1 and 2 in a 1283 simulation

using a spectral code developed by L.-P. Wang (Luo et al.,

2002). The forcing was modi�ed so that only the energy in

the largest wavenumber shell was constant.

Figure 3 shows that the dissipation very closely follows

the energy evolution with only a very small time lag, in

striking contrast to the result in Figure 1. This fact re
ects

the implicit coupling of all scales in this forcing scheme in

which energy removed by any nonlinear interaction from the

forced scales is immediately replaced at the next time-step.

The corresponding spectral evolution in Figure 4 also con-

trasts with Figure 2: the energy spectrum �lls up by simple

growth at each scale.

Again, this forcing scheme is not intended as a realistic

model of any dynamic process. In studies in progress, we are

using direct random forcing of the largest scales to validate
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Figure 3: energy (solid), dissipation (dot-dash), in forced

DNS.

k

E
(k

)

10 20 30 40

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Figure 4: energy spectra at equal time intervals in forced

DNS.

our closure models; in DNS practice, this scheme is imprac-

tical because of the large number of time-steps required to

reach a steady state.

TURBULENCE GENERATED BY LARGE-SCALE LINEAR

INSTABILITY: TRANSIENT EVOLUTION

Perhaps a more realistic model of spectral broadening in

transitional 
ows is turbulence driven by linearly unstable

large-scale modes. To study this problem, set the production

term in Eq. (1) to

P (k) = �(k)E(k) (8)

where in this study,

�(k) = a0k2 exp[�b0(k � k0)
2] (9)

Figure 5 shows the evolution of production, dissipation, and

kinetic energy.

Evidently, following an initial transient, this system ex-

hibits simple exponential growth. The spectral evolution in

Figure 6 shows that the spectrum continues to �ll smaller

scales, indicating that nonlinearity is certainly active, but

there is no tendency to establish Kolmogorov scaling.

This negative conclusion nevertheless reveals that bound-

ary layer transition, for example, does not occur through the
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Figure 5: energy (solid), dissipation (dot-dash), production

(symbols) in simulation of turbulence driven by large-scale

linear instability.
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Figure 6: energy (solid), dissipation (dot-dash), production

(symbols) in simulation of turbulence driven by large-scale

linear instability.

simple buildup of small scales by nonlinearity. Energy must

be extracted from the mean 
ow by entirely di�erent mech-

anisms.

TURBULENCE DRIVEN BY TIME-DEPENDENT FORC-

ING

In this study, the production spectrum is time dependent:

we consider a ramp increase in forcing of the form

P (k; t) = P (k)

�
1 t � t0
1 + r(t � t0) t � t0

(10)

where the steady part P (k) is given by Eq. (6).

Simulations were begun from rest (E(k; 0) = 0) as be-

fore. Figure 7 shows evolution of the energy, production,

dissipation, and the ratio P=� for a low ramp rate r = 0:5

in Eq. (10). The ramp begins at time step 16000, at which

an approximately steady state exists. Production and dissi-

pation appear to evolve together, and the energy spectra in

Figure 8 appear essentially self-similar.

For a higher ramp rate, r = 8:0 in Eq. (10), Figure 9

shows a more noticeable lag between the increase in produc-

tion and the increase in dissipation. Nevertheless, a state
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Figure 7: energy (solid), dissipation (dot-dash), production

(symbols), and ratio P=� (line plus symbols) in unsteady

forcing with low ramp rate.
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Figure 9: energy (solid), dissipation (dot-dash), production

(symbols), and ratio P=� (line plus symbols) in unsteady

forcing with high ramp rate.

of self-similar evolution appears to be established by 20000

time steps. In both the low and high ramp rate cases, the
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ratio P=� relaxes to a value of about 1.17, however in more

careful computations done for much longer times, we �nd

that production and dissipation eventually equilibrate.

The spectral evolution in Figure 10 shows, perhaps sur-

prisingly, that the inertial range adjusts to the change in

forcing more or less instantaneously, and that departures

from self-similarity are pronounced only at large scales. This

possibility re
ects the role of distant interactions, which can

cause rapid response at small scales to changes in much

larger scales. Distant interactions are certainly required to

bring about a balance of production and dissipation, even

when the production is increasing. It will be important to

con�rm these results with DNS, and to compare with the

results predicted by closures like those of Kov�asznay and

Leith (Monin and Yaglom, 1975), which only model local

interactions.
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Figure 10: energy spectrum at three times following ramp

in forcing, high ramp rate.
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