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ABSTRACT

Time dependent isotropic turbulence belongs to a class
of problems for which modeling assumptions based on Kol-
mogorov’s theory may not be appropriate: the Kolmogorov
theory defines a steady state, or perhaps more generally a
self-similar state, but during transient evolution, even the
smallest scales of motion can well be very far from steady or
self-similar. But spectral closures, which make no special as-
sumptions about either small or large scales, are appropriate
methods for such problems.

The transient evolution of turbulence driven by statis-
tically steady forcing, the transient evolution of turbulence
driven by linearly unstable large-scale modes, and the tran-
sition from one steady state to another in turbulence driven
by a statistically unsteady force are analyzed using a recently
developed spectral closure. Although DNS has an important
role in validating spectral closures, because these analyses
require considering a large number of test cases, often run
to very large numbers of time steps, direct simulation alone
is impractical.

INTRODUCTION

Recent demands on CFD have called attention to some
limitations of current RANS and LES models in ‘non-
equilibrium’ turbulent flows in which the assumption of a
local Kolmogorov steady state is inappropriate. Examples
include strongly statistically time-dependent turbulent flows
and transitional flows (Rubinstein et al., 2001).

Simplified spectral closures are one way to address these
problems: these models make no assumptions about Kol-
mogorov scaling, spectral self-similarity, or their equivalent,
assumptions which are crucial to formulating simpler mod-
els, but which inevitably limit their applicability to complex
flows. Simplified spectral closures describe interscale energy
transfer more accurately than single-point models but are
computationally more tractable than general analytical tur-
bulence closures like the Direct Interaction Approximation
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(DIA; Kraichnan, 1959) and the Lagrangian Renormalized
Approximation (LRA; Kaneda, 1981).

Since spectral closures are projection independent, they
can be also used to formulate LES subgrid models, RANS
transport models, and RANS-LES hybrids with arbitrary
resolution within a unified analytical framework. Compu-
tationally successful examples of this approach include the
LWN (local wavenumber) spectral closure model (Clark and
Zemach, 1995) and the model SCIT (Bertoglio et al., 1994).

This paper describes one such closure, the CMSB model
(Cartoon Model of Spectral Behavior; Rubinstein and Clark,
2003). This model is a generalized Heisenberg closure which
includes the effects of local interactions and allows evolution
of the turbulent time-scale. In the first respect, it resembles
the model of Canuto and Dubovikov (1996). In compari-
son to EDQNM (Orszag, 1973), it trades a much coarser
description of energy transfer for time-scale evolution. In
this respect, it is a simplification of Kraichnan’s (1971) Test
Field Model (TFM).

The model will be applied to three problems of time-
dependent isotropic turbulence: the transient evolution of
turbulence under steady forcing, transient evolution due to
large-scale linear instability, and transient evolution from
one steady state to another. These problems all exhibit
dynamically significant departures from Kolmogorov self-
similarity during important phases of evolution: in the first
two problems, a Kolmogorov steady state does not even ex-
ist initially, and the analysis is concerned only with how or
whether a Kolmogorov steady state emerges through nonlin-
ear interactions; in the third, a transient phase of nonlinear
reorganization which may depart from the Kolmogorov pic-
ture connects two different steady or self-similar states.

The first two problems are intended as a means to under-
stand spectral broadening in transitional flows, in particular,
this intention motivates the study of turbulence development
due to large-scale linear instability. The evolution due to
steady forcing has a threshold character: only after energy
builds up sufficiently in the forced scales does nonlinearity



become important. This transient evolution is strongly de-
pendent on initial conditions.

Preliminary comparisons will be given with the transient
evolution of forced DNS, although the radically different
forcing mechanisms preclude using these comparisons for
model validation, at least for now.

The third problem focuses on the nonlinear reorganiza-
tion of turbulence between different steady or self-similar
states. One example is isotropic turbulence with time-
dependent forcing: the turbulence is initially in a forced
steady state; subsequently, the force amplitude is increased
linearly until a state of self-similar growth is reached. The
rate of increase of the forcing is an important parameter in
view of the intuitive expectation that slow increase allows
a quasi-static evolution, whereas sufficiently rapid increase
will induce transient dynamic effects.

We conclude that simplified spectral closures are a natu-
ral and computationally feasible means to study these prob-
lems. The calculations can be run to extremely long times
and large numbers of alternate scenarios can be compared
with negligible computational resources. Although valida-
tion by DNS studies of some cases is of course indispens-
able, comparably comprehensive studies of these problems
by DNS alone would be infeasible.

THE CMSB MODEL

The model equations used are given here with a brief
outline of the derivation; details are given in (Rubinstein
and Clark, 2003). The CMSB model begins with a Marko-
vianized form of the DIA, but with a single Lagrangian time
scale instead of the two time-scales used in the TFM.

Next, nonlinear interactions are restricted to certain de-
generate types of local and distant interactions. This step
greatly simplifies the energy transfer model, which is analyt-
ically no more complex than the classical Heisenberg model
(Monin and Yaglom, 1975). Finally, the triad relaxation
time of the DIA is replaced by a single-mode relaxation time.

The model equations are (i) the spectral evolution equa-
tion

E(k,t) = P(k,t) — S(k,t) — 2vk>E(k,t) (1)

where E(k) is the energy spectrum, P(k) is the production
spectrum, and S(k) is the nonlinear transfer, (ii) the closure
equation for S(k)
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and (iii) the relaxation time evolution equation

6(k) =1 — n(k)0(k) — vk>0 (3)
where the turbulence frequency 7 is defined by
k
n(k) = 0'9(k)/ dp p*E(p) (4)
0

The model constants ¢ and ¢’ are determined by compari-
son with the theory of isotropic turbulence (Rubinstein and
Clark, 2003).

22

Important features of this model include treatment of
nonlocal interactions, the possibility of energy transfer from
small to large scales (‘backscatter’), and the existence of
both equipartition ensembles and Kolmogorov steady states.
The classical Heisenberg model is recovered by retaining only
the second and fourth terms in the energy transfer model
Eq. (2) and making the simple algebraic model

0(k,t) = [K*B(k,0)] /> (5)
The Heisenberg model includes nonlocal interaction effects
and admits Kolmogorov steady states, but does not al-
low backscatter or equipartition ensembles (Rubinstein and
Clark, 2003). Unlike the CMSB model, its dissipation range
predictions are unphysical (Monin and Yaglom, 1975).

TURBULENCE GENERATED BY STEADY FORCING:
TRANSIENT EVOLUTION

This section considers the evolution of a Kolmogorov
steady state under steady forcing at large scales. The goal is
to understand the dynamics through which this steady state
is established.

Suppose then that the energy production term in Eq. (1)
has the form

P(k) = ak® exp[—b(k — ko)?] (6)
and that the initial spectrum E(k,0) = 0. The results of in-
tegrating the CMSB model equations are shown in Figures 1
and 2: the evolution of energy, production, and dissipation
are shown in Figure 1, and the corresponding spectral evo-
lution is shown in Figure 2.
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Figure 1: energy (solid), dissipation (dot-dash), production
(symbols) in forced steady state closure simulation.

The single-point statistics suggest that there are three
distinct phases of evolution: (i) initial dynamically linear
evolution dominated by energy pumping by the forcing.
Nonlinearity is negligible and the energy grows linearly in
time. This phase persists until about half of the total sim-
ulation time. It is followed by (ii) a ‘transitional’ phase
beginning at about 4000 time steps marked by extremely
rapid growth of dissipation. The dissipation overshoots the
production, peaks and then relaxes; following relaxation,
there follows (iii) a steady state characterized by nearly
constant energy and balance between production and dis-
sipation. Approximantly twice as many time steps as shown
in Figure 1 are needed to achieve a robust steady state. The
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Figure 2: energy spectrum at short (solid), intermediate
(dot-dash), and long (symbols) times in forced steady state
closure simulation: numbers indicate the time steps corre-
sponding to each curve.

highly ‘elastic’ behavior exhibited in stage (ii) may be real,
but is likely to be exaggerated by this model.

Figure 2 shows the corresponding spectral evolution at
six different times, two each from each of the three phases
just noted. Corresponding to above are the spectral evo-
lution phases: (i) energy growth limited almost entirely to
the forced scales. Note that the forcing in this study peaked
at k = 5 in the units of Figure 2. (ii) nonlinear reorganiza-
tion with propagation of a wave-like spectral feature to small
scales, leading finally to (iii) a steady Kolmogorov spectrum.

These three phases are quite similar to the evolution of
decaying turbulence beginning from a Gaussian initial state
(Clark and Zemach, 1995). The end of phase (ii) seems dy-
namically similar to the ‘critical time’ observed in decaying
turbulence (Lesieur, 1990).

In practice, it would not be easy to implement statisti-
cally steady forcing of this type in DNS. At best, steady
direct forcing f; of the velocity would lead to the time-
dependent production spectrum

P(k,t) = (ui(k, ) fi(=k)) (7

In fact, forcing in DNS is itself a significant problem (Chen
et al., 1993). The goal of forcing schemes is to reach a steady
state as quickly as possible, hence the transient evolution is
generally not considered important.

Nevertheless, as a preliminary comparison, we show re-
sults comparable to Figures 1 and 2 in a 1283 simulation
using a spectral code developed by L.-P. Wang (Luo et al.,
2002). The forcing was modified so that only the energy in
the largest wavenumber shell was constant.

Figure 3 shows that the dissipation very closely follows
the energy evolution with only a very small time lag, in
striking contrast to the result in Figure 1. This fact reflects
the implicit coupling of all scales in this forcing scheme in
which energy removed by any nonlinear interaction from the
forced scales is immediately replaced at the next time-step.
The corresponding spectral evolution in Figure 4 also con-
trasts with Figure 2: the energy spectrum fills up by simple
growth at each scale.

Again, this forcing scheme is not intended as a realistic
model of any dynamic process. In studies in progress, we are
using direct random forcing of the largest scales to validate
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Figure 3: energy (solid), dissipation (dot-dash), in forced
DNS.
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Figure 4: energy spectra at equal time intervals in forced
DNS.

our closure models; in DNS practice, this scheme is imprac-
tical because of the large number of time-steps required to
reach a steady state.

TURBULENCE GENERATED BY LARGE-SCALE LINEAR
INSTABILITY: TRANSIENT EVOLUTION

Perhaps a more realistic model of spectral broadening in
transitional flows is turbulence driven by linearly unstable
large-scale modes. To study this problem, set the production
term in Eq. (1) to

P(k) = a(k)E(k) (8)
where in this study,
a(k) = a'k? exp[—b'(k — ko)?] (9)

Figure 5 shows the evolution of production, dissipation, and
kinetic energy.

Evidently, following an initial transient, this system ex-
hibits simple exponential growth. The spectral evolution in
Figure 6 shows that the spectrum continues to fill smaller
scales, indicating that nonlinearity is certainly active, but
there is no tendency to establish Kolmogorov scaling.

This negative conclusion nevertheless reveals that bound-
ary layer transition, for example, does not occur through the
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Figure 5: energy (solid), dissipation (dot-dash), production
(symbols) in simulation of turbulence driven by large-scale
linear instability.
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Figure 6: energy (solid), dissipation (dot-dash), production
(symbols) in simulation of turbulence driven by large-scale
linear instability.

simple buildup of small scales by nonlinearity. Energy must
be extracted from the mean flow by entirely different mech-
anisms.

TURBULENCE DRIVEN BY TIME-DEPENDENT FORC-
ING

In this study, the production spectrum is time dependent:
we consider a ramp increase in forcing of the form

1 t <to

L4r(t—to) t>to (10)

P(k,t) = P(k) {
where the steady part P(k) is given by Eq. (6).
Simulations were begun from rest (E(k,0) = 0) as be-
fore. Figure 7 shows evolution of the energy, production,
dissipation, and the ratio P/e for a low ramp rate » = 0.5
in Eq. (10). The ramp begins at time step 16000, at which
an approximately steady state exists. Production and dissi-
pation appear to evolve together, and the energy spectra in
Figure 8 appear essentially self-similar.
For a higher ramp rate, » = 8.0 in Eq. (10), Figure 9
shows a more noticeable lag between the increase in produc-
tion and the increase in dissipation. Nevertheless, a state
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Figure 7: energy (solid), dissipation (dot-dash), production
(symbols), and ratio P/e (line plus symbols) in unsteady
forcing with low ramp rate.
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Figure 8: energy spectrum at three times following ramp in
forcing, low ramp rate.

800
600

10.0

9.0

400
8.0

N
o

| LN EEARS RAAL

200

energy
w » (2]
o o o
dissipation, production

n
o

=
=}

o b b b b b b b b
&
o

L 1 L L 1 L L 1
10000 20000 30000
time step

Figure 9: energy (solid), dissipation (dot-dash), production
(symbols), and ratio P/e (line plus symbols) in unsteady
forcing with high ramp rate.

of self-similar evolution appears to be established by 20000
time steps. In both the low and high ramp rate cases, the



ratio P/e relaxes to a value of about 1.17, however in more
careful computations done for much longer times, we find
that production and dissipation eventually equilibrate.

The spectral evolution in Figure 10 shows, perhaps sur-
prisingly, that the inertial range adjusts to the change in
forcing more or less instantaneously, and that departures
from self-similarity are pronounced only at large scales. This
possibility reflects the role of distant interactions, which can
cause rapid response at small scales to changes in much
larger scales. Distant interactions are certainly required to
bring about a balance of production and dissipation, even
when the production is increasing. It will be important to
confirm these results with DNS, and to compare with the
results predicted by closures like those of Kovasznay and
Leith (Monin and Yaglom, 1975), which only model local
interactions.
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Figure 10: energy spectrum at three times following ramp
in forcing, high ramp rate.
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