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PREFACE TO REVISED EDITION

This set of Lecture Notes on Discrete Boltzmann Equation was used by one of us (H.C.)
for a graduate course in the Mechanical Engineering Department of the University of Cali-
fornia at Berkeley, in 1980.

The kinetic theory of discrete velocity models (DVM) has advanced significantly since the
first edition of the lecture notes was written. New developments have been made in several
areas (see, e.g., surveys [46, 61, 58] and collections of papers [37, 4]). First, in the area of
mathematical theory of DVM’s, various theorems have been proven showing the convergence
properties of the DVM’s in connection with the Boltzmann equation [7, 6]. Second, along
with the growing power of computers, numerical algorithms based on DVM’s have been
developed to solve kinetic equations and are now used routinely for various applications (e.g.
(39, 52]). Finally, there have been new developments in using kinetic theory to construct
numerical methods for numerical solutions of hydrodynamic equations. The lattice gas
cellular automata (LGCA) [43, 33, 32] and lattice Boltzmann equation (LBE) [50, 31, 29, 66]
are notable kinetic methods for solving the Navier-Stokes equations. These new methods
are closely related to DVM [49] and provide alternatives in the arena of computational fluid
dynamics (CFD).

The only definitive monograph on kinetic theory of discrete velocity models was published
more than a quarter century ago (in French) [35]. Given the growing interest in DVM’s and
their connections to kinetic methods such the LBE method, we believe republication of the
Lecture Notes is appropriate because of their potential to serve as a primer and a reference
for a wider readership.

In addition to correcting typos, several changes have been made in the revised edition
of the Lecture Notes: (1) The second edition of the Notes is prepared in KTEX typesetting;
(2) Some notations and symbols have been changed, and a list of symbols is added for
convenience; (3) In various references (e.g., [44, 45, 58]), Maxwell has been credited with
creating a discrete velocity model. However, after an exhaustive search, we could not find
any supporting evidence in Maxwell’s work. Therefore, the reference to Maxwell’s work
on discrete velocity models in the Foreword to the first edition of the Notes is deleted; (4)

Sec. 4.8 is included to reflect some recent developments since the Notes were first written in

Vil



viii PREFACE TO REVISED EDITION

1980; and (5) References have been updated.

To commemorate an event which bears a historic significance to the authors, we include
a photograph of two of us (H.C. and R.G.) and Professor James E. Broadwell of Cal. Tech.,
taken during the Workshop on Large Nonlinear Systems, held in Santa Fe, New Mexico, on
October 27-29, 1986. The Workshop marked the beginning of the LGCA and LBE methods.
The proceedings of this workshop have been published in Complex Systems 1(4), 1987, and
remain an important reference in the field.

The Lecture Notes are available to the public in PDF format on our websites.

HENRI CABANNES, Sceaux, France Email: henri.cabannes@normalesup.org
URL: http://lapasserelle.com/henri_cabannes

RENEE GATIGNOL, Paris, France Email: gatignol@cicrp. jussieu.fr
URL: http://www.1lmm. jussieu.fr/MEMBRES/GATIGNOL/gatignol.html

Li-Su1 Luo, Hampton, USA Email: 1uo@nianet.org

URL: http://research.nianet.org/"1luo

From left to Right: Henri Cabannes, James E. Broadwell, and Renée Gatignol, during the Workshop

on Large Nonlinear Systems, Santa Fe, New Mexico, October 27-29, 1986.



FOREWORD TO FIRST EDITION

The following lecture notes are developed from a course I gave at the University of
California at Berkeley during the Spring Quarter, 1980.

It is a pleasure for me to thank Professor Maurice Holt and Professor Chang-Lin Tien,
Chairman of the Mechanical Engineering Department, for inviting me to be a Springer
Visiting Professor during this quarter. I also thank all the members of the department for
their friendly welcome.

These notes have been written with the very efficient help of Larry Wigton, a graduate
student in Applied Mathematics. It has been a great pleasure for me to work with him and
I thank him warmly for his help. Thanks are also due to Ms. Loris C.-H. Donahue who

typed the manuscript in its present form.
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INTRODUCTION

In the study of the kinetic theory of gases, the idea of considering models for which the
velocity distribution is discrete is due to Carleman [27]. In 1957, Carleman [27] considered
a fictitious gas for which two molecules could interchange their velocities during a colli-
sion. Carleman wrote a system of two differential equations for this gas which have several
properties similar to those of the Boltzmann equation. In particular, he established an
H-theorem.

In 1960, Gross [40] underscored the interest in discrete velocity distributions by showing
that they allow one to replace the integral-differential Boltzmann equation by a system of
coupled nonlinear partial differential equations. Gross pointed out that this same technique
has been successfully applied in the field of radiation transfer.

Simple discrete models are described by Broadwell in 1964 [10, 11]. These models are
used to solve problems in the dynamics of rarefied gases for which the Boltzmann equation
is applicable. For Couette and Rayleigh flows and for the shock structure at infinite Mach
number, these discrete models give a simple physical picture, and the quantitative results
are very close to those found by other methods.

In 1965, Gatignol studied shocks that can occur in a gas at rest using one of the models
described by Broadwell [10, 11]. Just as in gas dynamics, shocks are accompanied by a
compression and an increase in the density, and the velocity of propagation of the shock in
a gas at rest is supersonic. For a strong shock, the thickness of the shock is of the order of a
few free mean paths. In 1966, Gatignol introduced a regular plane model with 2r velocities
of the same modulus, and for » = 4 she studied the shocks which appear in a gas at rest

and demonstrated the existence of expansion waves. The relevant references are given in the



2 INTRODUCTION

monograph by Gatignol [35].

In 1966, Harris [44] considered a moderately dense gas described by a regular plane model
with six velocities. An H-theorem taking into account ternary collisions is proved, leading
to the hope of a similar theorem in classical kinetic theory. Actually, Harris proved an
H-theorem for a gas in which only binary collisions and a part of the ternary collisions can
occur. This result was generalized by Gatignol in 1969 [34] to cover the case in which both
binary and all the ternary collisions can occur. In section 3.1.3, we give a very simple proof,
for a regular plane model with four velocities and only binary collisions, that the successive
derivatives of the H-Boltzmann function alternate in sign, which was first attempted but
failed by Harris [45]. We hope this result can be extended to more general models.

In 1971, Godunov and Sultangazin [38] considered the Broadwell model with six velocities
[10]. They pointed out the relation between the kinetic equations derived from this model
and the original Boltzmann equation. Furthermore, they studied a system of modified kinetic
equations and obtained an existence theorem for the solutions of this system. These solutions
satisfy in a certain sense the appropriate Euler equations. In 1975, Gatignol obtained similar
results for the general model with a discrete velocity distribution [36].

From the point of view of statistical mechanics, in 1972, Hardy and Pomeau [43] derived
the FEuler and Navier-Stokes equations starting with the Liouville equation and using a
regular plane model with four velocities, which is the first lattice-gas cellular automaton
(LGCA) model we know of.

In the kinetic theory of gases, the method of discrete velocities has been discussed by
a number of authors, e.g., Kogan [47], Guiraud [41, 42] and Smolderen [60]. The first
systematic treatment of the subject is the monograph written by Gatignol, Théorie Cinétique
des Gaz a Répartition Discrete de Vitesses, published as the Lecture Notes in Physics, Vol.
36, by Springer in 1975 [35].

In her monograph [35] of four chapters, Gatignol begins with the presentation of the
general model of a gas with discrete velocities. Only binary collisions are considered in
general, and the original Boltzmann equation is replaced by a system of coupled nonlinear
partial differential equations. This system is shown to have interesting properties, some
of which are similar to those of the Boltzmann equation. An appropriate definition of the

summational invariants allows her to introduce independent macroscopic state variables
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analogous to the density, velocity and temperature of a classical gas (however there may
be more than (D + 2) summational invariants in D-dimensional space). She then writes
conservation equations for the macroscopic state variables which in general form a non closed
system of equations. A suitably defined H-Boltzmann function leads to an H-theorem and
to the notion of Maxwellian state. For a gas in a particular microscopic state there exists one
and only one Maxwellian state having the same macroscopic variables. Some models are then
described and the proof by Harris concerning the successive derivatives of the H-Boltzmann
function is described [45]. (Unfortunately, the proof in [45] is erroneous.)

All the results discussed above by Gatignol [35] also appear in these Notes. In fact Chap-
ters 1 to 3 are devoted to these topics. Chapter 4 of the Notes discusses recent developments
which do not appear in Gatignol’s monograph [35].

In Chapters 2 to 4 of her monograph [35], Gatignol studies the Euler equations for
the general case, and the Navier-Stokes equations for some particular models. The Euler
equations are written in a symmetric form which demonstrates their hyperbolic character.
The propagation of weak shocks is studied from two points of view: First in a medium
without dissipation by using the Euler equations and the Lax criterion [48], and second in
a medium with dissipation by applying the necessary conditions for existence of a shock
structure. The compatibility of the results of these two methods is demonstrated.

In the last Chapter of the Notes (Chapter 4), we study the initial value problem. This
problem has of course a local solution. In general, when we have a local solution we do
not know if it exists globally (that is for all time). It is generally impossible to prove the
existence of a global solution except for very simple equations. It is remarkable that global

existence can be proved for the discrete Boltzmann equation.
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Chapter 1

PRESENTATION OF THE GENERAL MODEL

In this Chapter the general model of a gas with a discrete distribution of velocities is pre-
sented. The medium is composed of identical particles which can only have velocity vectors
belonging to a finite set of b vectors. When the medium is sufficiently rarefied, only binary
collisions are considered. The original Boltzmann equation is replaced by a system of b first
order partial differential equations. Each equation in the system is linear with respect to
the derivatives of the unknown functions and quadratic with respect to the functions them-
selves. Some properties which are essential for the Boltzmann equation are established for

this system.

1.1 Evolution Equations of Discrete (GGases

1.1.1 Binary Collisions

We establish the usual Cartesian coordinate system (z, y, z) in space. The position will be
denoted by 7 and the time by ¢. The medium is composed of identical particles, each with

mass m and a velocity belonging to the set of b vectors:

(&li=1,2,...,b)

Two particles are said to be in interaction or in collision when the distance separating
them is smaller than a certain length representing the radius of action of the intermolecular
potential. We are only interested in the velocities of the particles before the collision: &; and

€;, and after the collision: & and &. These four velocities are not arbitrary because during
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a collision, the momentum and energy must be conserved:

&+E& =& +&,
& =&+¢&

Such a collision will be denoted as (&;,&;) — (&x, &), or simply (i, j) — (k, [). Given the

(1.1.1-1)

couple (&;,&,), we must look for the velocities (&, &) which satisfy (1.1.1-1) and belong to
the given set of b vectors. This problem has to be solved in each particular case. The similar
problem of classical kinetic theory admits an infinite family of solutions depending on two

parameters.

From (1.1.1-1) we deduce:

(& +&5)° = (& +&)7
&i-& = &€,

(& — &) = (& — &)*
Consequently the sphere with diameter ||§; —&;]| is identical to that with diameter ||&; —&;]|.
The numerical density of the particles with velocity &; will be denoted as N;(r, t), r
being the position and ¢ the time. When the collision time is very short with respect to
the mean free time of flight (and is also short compared to the macroscopic time) and when
the radius of action of the inter-molecular potential is very small with respect to the mean
free path (and is also small compared to the macroscopic reference length), the number of
collisions during the time interval (¢, t + dt) and in the volume dr surrounding the point
T between particles with velocities §; and &; before collision, and yielding particles with

velocities &, and & after collision is proportional to N;N; and in fact equal to:
A N; Njdtdr,

where the coefficient Afjl is called the transition probability of the collision (&;,&;) — (&, &)-

When the particles are point masses with a finite radius of action, the particles with
velocity §; are able to meet a particle with velocity §; during the time dt which is in a
cylinder of cross sectional area denoted by S and of height ||&; — &;]|dt. If we assume that
the couple of particles with velocities §; and &; gives the couple of particles with velocities

& and & with probability

ARNN;dtdr = S||& — &/ dtN;al! Nidr,
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such that
A = S|e — gilalf,  with alf =1, (1.1.1-2)
(k1)

where the summation is only performed over possible couple (k, ). In practice we assume
that, in a collision between particles with velocities & and §&;, all possible couples after
collision are obtained with the same probability. Therefore it is enough to know the number
of couples which can be obtained after the collision to compute the coefficients afjl and Afyl

The transition probabilities Af]l are non-negative constants (the value zero being given

to all non-realizable collisions), symmetric with respect to the indices i and j, and k and :
Kl Akl _ plk
A= Al = AL (1.1.1-3)

kl

As a consequence of the discrete model, we also have a;; = ayy, which gives:

Akt = A7 (1.1.1-4)

This means that the collision (&;,&;) — (&k,&;) and the inverse collision (&, &) — (&, &)
occur with the same probability. Relation (1.1.1-4) is called the relation of micro-reversibility.

It is possible to introduce hypothesis less restricted than the micro-reversibility.

1.1.2 Kinetic Equations

In order to derive the equations which describe the evolution of the gas in the absence
of external forces, we make the hypothesis that there is no correlation between colliding
particles before they enter the interaction domain (hypothesis of molecular chaos).

The balance equation for particles with velocity &; (with density function N;) is:
ONi +&-VN; =G; — L,

where L; and G; represent respectively the lose and gain of molecules with velocity &; due
to collisions during the unit time and in the unit volume at the time ¢ and at the point
r. A molecule with velocity &; is lost when this molecule encounters another molecule with
velocity &; (j # i) and the resulting collision is nontrivial [that means (§;,&;) — (&, &)
where the couple (&, &) is different from the couple (§;,€;)]. Conversely, there is a gain of
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a particle with velocity &; when one is produced by a nontrivial collision. Thus we obtain:

b
Gi—Li=Y_> (AJNeN, — ALNN;) .
=1 (k1)

If we use the relation of micro-reversibility (1.1.1-4) and if we perform the summation over
the indices j, k, and [ instead of over the couples (k, ), we can rewrite the kinetic equations

in the following form:

1 .
OiN; +&-VN; = 5 > AM(NGN, - NiN),  fori=1,2,...,b. (1.1.2-1)
7.k,

The system of kinetic equations can be written in a compact form by introducing a

symmetric bilinear operator F. The mapping
(U, V) > F(U, V)

of R’ x R’ into R’ is defined by:
1
F(U, V) = 2 > AG UV + UV = UiV = U;Vi) (1.1.2-2)
ikl

where Fj is the i-th component of the vector F in RP.
We denote by N the vector in R” with components {/N;}, and by A the diagonal matrix
of order b with A;; = §;;€;- V. We can rewrite Eq. (1.1.2-1) as the following:

N +A-N =F(N, N). (1.1.2-3)

This equation plays the role of the Boltzmann equation and is called the discrete Boltzmann
equation. The evolution of a gas with a discrete distribution of velocities is described by a

system of coupled semi-linear partial differential equations.

1.1.3 Properties of the Collision Operator

Given two vectors in R®, namely X = (X1, X,,..., X}) and Y = (V1,Y,...,V}), we define
their scalar product by

(X, Y) = X1Yi+ XoYa + ...+ XuY5
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Given a vector ® := (¢q, da, ..., @), the scalar product (®,F(U,V)) is equal to any one of

the following expressions:

1 Z"
2 3 AUV + U - AUV + U]
1,5,k,0
1 Z"
1 > ¢ [AUYV + UVe) — AF(UV; + U V)]
L e y ; > (1.1.3-1)
=7 2 O [AU(UVL+ UVi) = AG(U; + U7
1,5,k,0
1 Z"
=1 2 o [ALUV + UV — AR (UY; + U 1) J
1,5,k,1

The first formula follows from the definition of the scalar product (and relation (1.1.1-4)),
the second is deduced from the first by exchanging indices 7 and 7, the third is deduced from
the first by exchanging the couples (7, j) and (k, [), and finally the last formula is deduced
from the third by exchanging indices k and [. Adding all the equations in (1.1.3-1) yields:

(®,F(U,V)) = 1—16 > ($it b5 — bk — &) [ALUV+ UVi) = A(UV; + U;Vi)] . (1.1.3-2)
i,7,k,l

1.2 The Macroscopic Variables

1.2.1 The Macroscopic Variables

The microscopic description of the gas is given by the knowledge of all the densities N;.
However its macroscopic behavior depends only on quantities called mean values. Because
the velocities have only b possible values, any function ¢ of the velocity can only take on
the b values ¢; = ¢(&;), i =1, 2, ..., b. In this way the function ¢ of velocity is associated

with a vector in R’. We define the mean value ¢ by:

b b
ng=>» Nig;=(N,®), with n=>» N, (1.2.1-1)
i=1 i=1
The mean ¢ has the same tensorial nature as each component ¢; of ®, with ® := (¢y, ¢a, ..., ¢).

The most interesting macroscopic variables are the mean velocity w of the gas, the
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pressure tensor P, the hydrostatic pressure p, the temperature 7', and the thermal flux q:

1< )
n ;__
zzl )
P = mZNi(ﬁi —u)® (& —u) = mZNici ® ¢,
i=1 . i=1 > (1.2.1-2)
m m
p=3 D Nil&i—w?=72> N =nksT,
=1 1=1
b b
_m 2 _m 2.
q—E;Ni(Ei_u) (Ei_u)—E;Nzcicu J

where ¢; = (&; — u) is the peculiar velocity of the i-th particle. The temperature can also

be defined as:
m |1 b 9 9
T=""12 N2 | — w2, 1.2.1-
35 | n Z:j &) -u (1.2.1-3)

where m is the mass of the particles and kg is the Boltzmann constant. When the velocities

have the same modulus [§;| = ¢, we have:

m me
T=—(*—u?)<—="Ty. 1.2.1-4
3kp (¢ —u) < 3kp M ( )

Thus the temperature is a function of the mean velocity w and the maximum value of the
temperature T, corresponds to a gas at rest.

It should be remarked that the temperature 7" defined in Eq. (1.2.1-3) is called kinetic
temperature and it differs from the thermodynamic temperature. As pointed out by Cercig-
nani [28], the definition of the temperature given in continuous kinetic theory is no longer

valid in discrete kinetic theory.

1.2.2 Transport Equations

The equation obtained by multiplying both sides of Eq. (1.1.2-1) by ¢; and summing over
the index i is called the transport equation for the macroscopic variable ¢. This is the same

as the equation obtained through scalar multiplication of both sides of Eq. (1.1.2-3) by ®:

(®,0,N) + (®,A-N) = (&, F(N,N)). (1.2.2-1)
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The right hand side can be evaluated by formula (1.1.3-2) and the left hand side can be

expressed in terms of the mean value ¢. Indeed we have:
<‘I)7 atN> = 8t<‘1)7 N> - <ati)7 N> = 8t(n$) - natqga
b
(2,AN) = 36 VN, = V-(ng€) — n€- V.
i=1
In the above equations ¢€ denotes the mean value of the vector in R® with components ¢;&;,

and &-V ¢ is the mean value of the vector with components &;-V ¢;. The transport equation

(1.2.2-1) can now be written in the form:

0,(ng) + V-(np€) —n(d,0 +€-Vo) = % > (¢i+ b5 — bk — &) AL (NN — NiN;). (1.2.2-2)

NN
1.3 The Summational Invariants

1.3.1 Summational Invariants

A summational invariant is a functional of velocity which remains constant during a collision.
As the velocities can take on only b distinct values, the summational invariants are the

elements of R for which:
Al (i + dj — ¢ — 1) =0, Vi, j, k, L (1.3.1-1)

The solutions of this system form a vector space I called the space of summational invariants.
The dimension s of F is at least 1 because the vector with equal components is a solution
of Eq. (1.3.1-1). Also s is at most equal to b because F is a subspace of R”. The following

elements of R?, which are formed by the z, y, and z components of {&;},

(gxla gm?a sy ga:b)a (gyla é-y?) sy gyb)a (é-zla §z2a ceey gzb)a

are summational invariants, and so is the element of R® with components fmé&?2.
) 2 1

It is convenient to introduce orthonormal bases for the vector spaces F and R’:

basis of F: v, ve o ve)
basis of R?: v, ve o ve weth W)

where V(U is always taken to be the vector with all components equal to 1/\/5
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The vector N can be expressed as:

s b
N=>) Vit ) bwv, (1.3.1-2)
1=1 j=s+1
where we have, of course:
a; = (N, V@), i=1,2,..., 5,
. (1.3.1-3)
bj = (N,W1), j=s+1,5+2 ...,b

Theorem 1.1 The following three statements are equivalent:
(a) ® €T,
(b) (®,F(U,V))=0,V U, VeR;
(c) (®,F(N,N)) =0, VN € R".

Obviously (a) — (b) — (c¢). To complete the proof of the theorem we will show that

(c) — (a). Relation (1.1.3-2) can be written as:

(®,F(N,N)) = é > (i + 65 — b — d) AL (NN, — NiN;).

ikl
But:
D (9i+ 0 — bk — G)ATNLN = Y (60 + b1 — b — &) ATNiN;,
bkl ikl
so we have:
1
(®,F(N,N)) = 12 (qsz- +pj — bk — o) ALNLN,
- Z Z i + b5 — O — o) AF NN, = 0. (1.3.1-4)
(k. 1) (i, j

The last expression is a homogeneous polynomial of second degree with respect to the {N;}.
This polynomial is identically zero if and only if:
Z(¢i + 5 — ok — A1) A} = (1.3.1-5)
(i,4)
from which we deduce by multiplying by (¢ + ¢;) and summing on all the couples (k, [):

ZZA (O% + &) (i + b — bk — d1) =0, (1.3.1-6)
(i,5) (k
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or, by inverting the couples (i, j) and (k, [):

YD ARG+ )i+ — b — d) =0, (1.3.1-7)
(i) (k1)

and finally (by taking the difference between the last two expressions):

DD At b — o —d)” =0 (1.3.1-8)
(é,7) (k. 1)

The solutions of (1.3.1-8) are precisely the summational invariants.

1.3.2 Conservation Equations

When ® is an element of R? independent of time and position, the associated transport
equation (1.2.2-1) is a conservation equation if the right hand side is zero. From our previous

results this occurs if and only if ® is a summational invariant. In this case we have:
0y (®,N) + (®,A-N) =0, V& c T, (1.3.2-1)

where we have used the fact that ® is independent of time.
The number of conservation equations is equal to the dimension s of the space F. To
each summational invariant corresponds a conservation equation. If we replace ® by V¥,

equation (1.3.2-1) becomes:

s b
Oar + Y Lyi*Va;+ Y M- Vb; =0, (1.3.2-2)

i=1 Jj=s+1

where Ly; and Mj,; are the constant vectors:

b b
=S e VOvH, My =Y e WOVH. (1.3.2-3)
n=1 n=1

The s conservation equations contains b unknown functions, namely, the s functions {a;} and
the (b—s) functions {b;}. This system of equations is not closed in general because b is usually
larger than s. The time derivative 0; operates only on the a; while the space derivatives
operate on both the a; and b;. Knowledge of the a; and b;, which means knowledge of
the vector N (or of the densities {IV;}) corresponds to the microscopic description of the

gas. The quantities a; are called macroscopic state variables of the gas. In the classical
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kinetic theory the macroscopic state variables are the density p = mn, the velocity uw and
the temperature 7.
From equation (1.2.2-2) we can derive the classical conservation laws. Indeed if in equa-

tion (1.2.2-2) we take ® to be the vector with all components equal to m, we find:
op+ V-(pu) =0. (1.3.2-4)

If we next choose @ to be the vector with components mé&,; (note &,; is the projection of §;

on z-axis), we have:

ng = pu,
b
=1

0p=0 and £ Vop=0.

Therefore we have: .
V(”&) =m Z £2i&i* VN;.
i=1

On the other hand:

b
pu@u+P = PU®U+mZNi(£i_u)®(£i_u)

=1

b
= mY Ni&®g.

=1

The projection of the vector V- (pu ® u + P) on z-axis is
b
m Z £2i&i- VN
i=1

It follows that if we choose @ to be the vector with components m¢&;,, o € {z, y, 2}, in
(1.2.2-2) we will find:
Oi(pu) + V-(pu®@u + P) = 0. (1.3.2-5)
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Finally, by choosing @ to be the vector in R® with components %mf? we have:

b b
1 1
ng = E Nigm(gi —u+tu) = ™M E Ni(ei +u)?
i=1 =1

b
1
= §m;]\fi(c? +2¢;-u + u?)

= 5 —i—l u?
= 229 2,0 )
b

2

15

b
ngg = Nilm(fi —u+u)ié—u+u)= %mZNi(ci +u)?(c; + u)
i=1 1=1

b
1
= §mz N; (cie; + ciu + u’€; + 2¢;-ug))

=1
b

3 1
= q+ JPu + ipfu,Qu + m;]\fi(fi —u)-uf;.

The last term is equal to u-P because
(& —u) @ (& —u)] = (& —u)u (& — u)]

and
Z Niuu- (& —u) =

We therefore obtain the conservation law:

2 2

3 1 3 1
O <—p—|— —pu2> + V. <§pu + §pu2u +u-P+ q) = 0.

(1.3.2-6)
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Chapter 2

THE MAXWELLIAN STATE

As in classical kinetic theory, by introducing a properly defined H-Boltzmann function, we
can prove that for a gas in a uniform state, the distribution of velocities tends to a distri-
bution, called Maxwellian, in which each collision brings no contribution to the evolution
of densities. Among all distributions of velocities which correspond to given state variables,
one and only one is the Maxwellian, and the corresponding H-function is minimal. When
the velocity distribution is Maxwellian, the evolution of the gas is governed by the Euler

equations (which form a hyperbolic system) and by the associated shock equations.

2.1 The H-Boltzmann Theorem

2.1.1 H-Boltzmann Theorem
For a spatially homogeneous gas with N; = N;(t), the H-Boltzmann function
b
H =Y N;In(N;) (2.1.1-1)
i=1

is a function of time, the derivative of which is

b
dH dN;

17
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We will denote by In(IN) the vector in R® with components {In(N;)}. By using the kinetic

equations (1.1.2-1) and the formula (1.1.3-2) we can write:

dH 1
- > {1+4In(N;) + 14 1In(N;) — 1 = In(Ny) — 1 = In(Ny)} AF{(Np N, — N;N;)
i7j7k7l
1 N;N; N;N;
= = 1 I (1= L) AN N, 2.1.1-2
s Xn(Si) (- R ) e (2112

The transition probabilities Afjl and the densities NN, are non-negative. Also the func-

tion (1 — z)In(z), defined for = > 0, is non-positive (zero only if z = 1). Thus we have:

dH <0
dt —
with
dH
T 0 ifand only if NN, = N;N;.

Thus we have the following theorem:

Theorem 2.1 The H-Boltzmann function is a non-increasing function of time. As a conse-
quence the evolution of the gas is an irreversible process. The H-function cannot decrease

indefinitely as time increases because:

1 b
N;In(N;) > ——, and therefore H > —-.
e e

Therefore the function H tends to a limit value H* which corresponds to an equilibrium state

for which — = 0 and so:
dt

In(V;) + In(N;) — In(Ng) — In(N;) = 0. (2.1.1-3)

2.1.2 Maxwellian State

As in classical kinetic theory, the limiting equilibrium state in which the densities {V;}

satisfy (2.1.1-3) is called Maxwellian. The following three properties are equivalent:
(a) State is Maxwellian (so that condition (2.1.1-3) holds);
(b) F(N, N) = 0;

(c¢) (In(N), F(N, N)) = 0.
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It is easy to see that (a) — (b) — (c). The fact that (¢) — (a) is a consequence of the

H-Boltzmann theorem. Indeed we have:

N;N;
In(N), F(N In A“NN
(n(N). P (W) (1- 3% ) asmiow,

which is zero only when N;N; = N;N; which is precisely (2.1.1-3).
By (2.1.1-3) a gas in a Maxwellian state is characterized by the fact that In(IN) belongs

to IF, so that there are s coefficients ¢; such that
In(N) =, VD 4+ ¢, VO 4, VO,

The components a; and b; of the vector N can also be expressed in terms of the coefficients

¢;. If the components of V) and W) are denoted by V}w and VVl(j ), respectively, then we

have:
b s
=Y VPexp (Z cle(k)> : i=1,2,..., s,
=l R (2.1.2-1)
by = (N, W) =S~ W exp (Z cle(k)> , j=s+1,5+2, ...,0b
1=1 k=1
A Maxwellian state is completely determined by the knowledge of the a; because the
functional determinant J = az: is different from zero. Indeed:
Da. s b .
o= YO e (St ) - SN,
I=1 k=1 I=1

and

S S

b s s b s 2
xixr% =Y "N (Z %Vl(i)) (Z erz(r)> =>"N (Z %Vz(i)) >0
r =1 i=1 r=1 =1 i=1

If the densities {NV;} are all assumed to be positive then we can have equality only if

=1 r=1

i, xi‘/;(i) = 0. That means z; = 0 for all i because the vectors V(! are independent.

Thus the quadratic form

D)L

=1 r=1

is positive definite which in turn implies that the functional determinant .J is not zero.
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Theorem 2.2 If the densities N") and N corresponding to two Maxwellian states possess the
same components a; on the space I of summational invariants (this means (N(V) =N V() = 0

V i), then NV = N,

Theorem 2.2 is global and is proved in [35]. By the way, given the {a;}, the {¢;} are
uniquely determined locally, because J # 0, and hence so are the {b;} by Eqgs. (2.1.2-1).
It follows from this theorem that to each microscopic state IN, there corresponds one and

only one Maxwellian state N(® such that:
(N, VO = (NO vy vi=12 ... s

For a gas in a Maxwellian state, the {NV;} and {b;} are determined by the {a;}. This is
analogous to the classical kinetic theory in which the Maxwell distribution function depends
only on the state variables p, T' and w. If the {a;} are functions of both time and position,

we say that the Maxwellian state is locally Maxwellian.

2.1.3 Maxwellian State Associated with State Variables

Theorem 2.3 When the macroscopic variables are given, the densities { N;} of the associated

Maxwellian state are those for which the H-Boltzmann function is minimum.

Indeed we have:

H=Y Nu®,), Y NV =a, k=125
=1

=1

It follows that the /N; which minimize the H function satisfy the following equations:
(1) dH = Y3, [1 + In(N)]dN; = 0;
(2) with 30 VPN, =0, k=1,2, ..., s.

From (2) we see that dN is an arbitrary vector of the space F* orthogonal to F (F®F+ = R?).
It now follows from (1) that the vector with components 1 + In(N;) belongs to F. Because
the vector (1, 1, ..., 1) belongs to IF, we have

In(N) € F,
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and thus

S

In(N;) = Z ckVi(k),
k=1

so the densities {V;} for which dH = 0 are those of the Maxwellian state associated with
the macroscopic state variables.

It remains only to show that the extremum of the H function with conditions ;| NZ-V;(k) =
ay really is a minimum. To this end we first note that H is a convex function of the variables
{N;} because zIn(x) is a convex function. Since the N; are connected by s relations, we
can take (b — s) of them as being the independent variables say, Ngy1, Ngio, ..., Np. The

remaining {N;}, (i < s), can be expressed in the form:

b
Ni= > bN;,  i<s,

j=s+1

Let us define:

H(Noyts Noyar s No) = H(3 0 by Ny, 301 b2iNjy oo Nty <o, V)
The function H so defined is a convex function of the variables Ny 1, Ngyo, ..., Ny, because:

H(Nyi1, Nyyoy ooy Ny) 4+ H( Moy, Myis, ..., M)
= H(Y 1 bV Y1 by Ny, ooy Noga, oo, )
b b
+H(2j:s+1 blej, Zj:s-i—l ijMj, ey MS+17 Ceey Mb)

< QH((NHI + Ms+1)/27 (Ns+2 + Ms+2)/27 tee (Nb + Mb)/Q)'

Thus the extremum of the H function which is the same as the extremum of the H function

subject to the conditions ) ;_, NiVZ-(k) =a, (k=1,2, ..., s) must indeed be a minimum.

2.2 Euler Equations

2.2.1 System of Euler Equations

From the kinetic equations:

N +A-N = F(N, N),
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we obtained the transport equations, and then as a particular case, the conservation equa-

tions (1.3.2-2):

s b
Ouax + Y Lii-Vai+ Y My;-Vb; =0.
=1 Jj=s+1
There are s conservation equations (corresponding to k =1, 2, ..., s). When the velocity

distribution is Maxwellian, the densities can be expressed in terms of the {a;}, and hence the
b; = (WU) N) are also known in terms of the {a;}. In this case the conservation equations
become a closed system of s equations relating the s unknown functions a; (i =1, 2, ..., s).

The Euler equations can be written in a simple form when we take as unknown functions

not the {a;}, but the functions {¢;} determined by:
In(N) = e, VD 46,V e, V),

or

we then obtain:
ON; B
8ck o

b
(N, V) =3 " NV Z .
=1
b

<A -N, V(k)> = Z(gz VN Z A\ ) .

=1

The conservation equation for the vector V*) may therefore be written:

0 OL oM

— =0 k=12 ... 2.2.1-1
at60k+ aCk ) ) “y y Sy ( )

where

b
L=) N;=n,
z:lb
=1

Equations (2.2.1-1) are the system of Euler equations. We can see that they are sym-

metric by writing the derivatives explicitly:

L O o
= =1,2,...,s. 2.2.1-2
Z 3ckacl 8t Z ackacl VC[ 0’ k ) “ y S ( )
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2.2.2 Characteristic Velocities

The evolution of a gas in a Maxwellian state is governed by the Euler equations. Small
perturbations, acoustic waves for example, propagate with velocities £€* equal to the charac-

teristic velocities of these equations. The matrices

0’L 0’ M
I_ — M =
<8ck 8cl ) and <8ck 801 )

are symmetric and the matrix L is positive definite because as we have shown in Sec. 2.1.2:

b b
szkxlackacl ZNk (Zxﬂ/ ) > 0.

k=1 l=1

It follows that the characteristic speeds in the direction of the unit vector n, speeds which

are the eigenvalues of the matrix L~ *M - 7, or the roots of the equation:
det(¢*'L—M-n) =0, (2.2.2-1)

are all real. The elements of the matrix M - n are (0°M /0cidc;) -

2.2.3 Shock Wave Equations

Consider a physical law written in integral form:

i/ d)dr:/A-ﬁdS, (2.2.3-1)

where ¢ and A denote characteristic quanlities of the medium, the evolution of which we
are studying. The volume V' and the surface S are assumed to be material (that is they
are always composed of the same molecules which do not mix). The unit vector 7 is the
outward directed normal to S. Since S is a material surface, its local displacement velocity
is V-n, where V is the gas velocity.
From relation (2.2.3-1) we can deduce the following equation for continuously differen-
tiable functions ¢ and A:
0ip + V-(A+ V) = 0. (2.2.3-2)

When the functions ¢ and A are discontinuous across a surface ¥ (called a shock wave) which
moves with velocity € in the direction of the unit vector 7, we deduce from relation (2.2.3-1)
the shock condition:

[¢ (£ —V-n) — A-n] =0, (2.2.3-3)
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where [()] is the jump of ) across the shock wave. By setting B = A + ¢V, we can see that

the shock condition corresponding to the conservation equation:
is
66 — B-A] = 0.
Applying this result to the Euler equations, we see that the shock equations for the FEuler

equations written in the form of Eqgs. (2.2.1-1) are
[g—ig—ﬁ-%] =0, E=1,2,...,s. (2.2.3-4)
A characteristic surface moving with velocity n& will move away from the shock wave
and will be a diverging wave if the difference (£* — &) is negative when we are in front of
the shock and positive when we are behind the shock. The Lax criterion [48] states that a
shock is stable when the number of diverging waves is equal to (s — 1), and unstable when
this number differs from (s — 1).
A second criterion of stability is to consider as stable as any shock which can be obtained

as a limit of a continuous flow. To obtain a criterion from this point of view, we multiply

both sides of the kinetic equation (1.1.2-1) by 1 + In(/NV;) and sum over the index i:

% (Z N; ln(Ni)> +V. (Zgz\f ln(Ni)>
LS () Y AN - ), .

i=1 gkl
As we have seen in the proof of the H-theorem, the right hand side of this equation is negative

or zero. By invoking the same limiting process used to establish the shock equations, we

find: ,
[Z(& —& - n)N; ln(Ni)] <0, (2.2.3-6)
i=1
and a shock will be stable if through the shock the function

b

=1

is decreasing.
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STUDY OF SOME PARTICULAR MODELS

Some particular models are discussed in the literature. A model with two velocities is
presented by Carleman [27], but this model does not require conservation of momentum
during collisions. Some regular plane models with velocities of the same modulus are better,
and an example with four velocities is studied in Section 3.1. Three-dimensional models
have been introduced by Broadwell involving velocities of equal modulus. One model has
six velocities [10] and the other eight [11], and these models are discussed in Sec. 3.2 and 3.3,
respectively. As a consequence of the fact that the velocities have the same modulus, both
of Broadwell’s models suffer the inconvenience of having the temperature being a function of
the velocity. In order to allow the temperature to be an independent variable, in Section 3.4
we introduce a three-dimensional model with 14 velocities. This model is a combination of

models with six and eight velocities. Of course there are many possible generalizations.

3.1 Regular Plane Model with Four Velocities

3.1.1 Kinetic Equations

The model considered in this section is a plane model. In the zy plane, the molecules can

only have one of the following four vectors as a velocity:

5126(1, 0), 5220(0, ].), 5320(—1, 0), 5420(0, —]_)

The densities N;(z, y, t) are independent of the third space variable z. The only non-trivial

collisions are:

(&1, &) < (&2, &4).

25
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Therefore a3} = 5 and A}} = 12¢S. The kinetic equations are:

)

0Ny + 0, N, = ¢S(NyNy — NiNy),
0;No + cdy Ny = ¢S(Ny N3 — Ny N,
0, N3 — ¢y N3 = ¢S(NyNy — Ny Ny
0Ny — cd,N; = ¢S(N,N3 — N,N,

)

( )

( ) b (3.1.1-1)
( )

( )

The summational invariants are the vectors ® = (¢1, ¢o, ¢3, ¢4) in R* satisfying:

¢1+ @3 — P2 — ¢4 = 0. (3.1.1-2)

Since only ¢1, ¢ and ¢3 can be chosen arbitrarily, the dimension of F is s = 3. A basis of

I is:

1

v = 3 (1,1,1,1),
1

V@ = _— (1,0, -1,0)
\/5 ) ) ) )
1

Ve =_—1(0,1,0, -1).

V2

These vectors correspond to the conservation of mass and the components of momentum.
After the densities have been computed, we calculate the macroscopic variables using

the relations:

n = (N1+N2+N3+N4),
nu = ¢ (Ny — Ns), (3.1.1-3)
nv = c¢(Ny — Ny),

and

4

P = m) Ni(&—u)(&—u)
i=1
o [ N1+ N; 0 u? wv

= mc —mn
0 Ny + Ny wv  v?

1
p = nkgT = §mn [02 — (u2 + v2)].
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3.1.2 The Euler Equations

In the Maxwellian state the densities depend on the three functions ¢y, ¢y and cs:

)
leexp<%+%>,

\]
2
N——

(3.1.2-1)
N3 = exp a_ 2
3 9 \/§ )
1 C3
Ny=exp|———]).
T2 )
From the general theory the Euler equations are:
0 (0on onu
— | — V:l— ] =0 3.1.2-2
ot (ack> * (80k ) ’ (31.2-2)
which in our case gives:
3n+3nu+3nv_0 )
ot Oz oy
8nu+8 ( + u® — v?) 5 19.3
ot oz " 2 ' ( (3.1.2-3)
onv 0 [ (A —u?+v?)
e LA
ot oy 2 )

When the gas is at rest (i.e., u = v = 0), the characteristic speeds in all directions have

the same values, namely 0, £¢//2.

3.1.3 The H-Boltzmann Function

The first derivative of the H-Boltzmann function is negative. It is interesting to note that
for the regular plane four velocities model, it is true that the successive derivatives of the

H-Boltzmann function alternate in sign [45]:
d*H
—1)" ——= >0, k=1,2,.... 3.1.3-1
(P > (3131)
As a consequence of the first Euler equation, when the densities are independent of the space
variables, the total density n is a constant. Letting n; = N;/n and 7 = ¢Snt, we can write

the kinetic equations (3.1.1-1) as:

dni
dr

= N 1Mj43 — NiNi42, 1= ]_, 2, 3, 4, with (Tll +no + ng + TL4) = 1. (313—2)
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In the above equation we are considering ny = n; when k£ = [ (mod 4). From equations

(3.1.3-2) we deduce:
dkni
dr*

The H-Boltzmann function is:

dn;
= (=1)kt1 2 =1, 2, 3, 4. 3.1.3-3
( ) dT, Z b ) b ( )

4 4
H= Z N;In(N;) = nln(n) +n Z niln(n;),
i=1 =1

and because n is a positive constant, the derivatives with respect to ¢t of H have the same

sign as the derivatives with respect to 7 of:

h(t) = Z ni(7) In(n;(1)). (3.1.3-4)

By taking successive derivatives we obtain:

4
dh dn;
= E h’l(’]’l/z)di = (n1n3 — n2n4) In <n2n4) S 0,
T
=1

dr nins

2h 4 Pn; 1 [(dn;\?
~ = E In(n;)——r + —
dr? — {n(n)d72 +nz- <dT> }
dh 1 [dn;\?>
= Y A A=
dr +Z n; (d’/‘)

dk+2h dk—l—lh dkA
drkt2  — drktl + drk’

4
with A := ZAi'
i=1

The initial values of the densities {V;} are positive, and so is the initial value of A and the
2

derivative —
d

T2
To complete the proof of inequalities (3.1.3-1) it suffices to show that:
d* A;
== >0. 3.1.3-5
(1> (3.1.35)

This will certainly be true if we can show:

dF A;
(_1)kW > A; VEk, (3.1.3-6)

because A; > 0. The above inequality can be proved by induction.

For k = 1 we have:

i —n—,.{?<d7> *Aiz}—f“i{“n—im}-
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Equation (3.1.3-2) can be written as:

dnz-
n; + E = Ny+1Niy3 + ni(ni,l +n; + ni+1) Z 0, (313—7)

dk
which proves inequality (3.1.3-6) for £ = 1. To compute y

1

. we differentiate the product
-

n;A; in two different ways. First we use formula (3.1.3-3) and then we use Leibniz rule:

k AL k ) 2 ) 2
d*(n; A;) _ d* (dn; _ (—2)F dn,;
drk drk \ dr dr

=0

dr* Kdrk—i dri 'k
where CJ := k!/j!(k — 7)! is the binomial coefficient. Comparing the last two equations
yields:
d*A; 1 dni\* | N, g A dn
—F == — 2R (2 —1)Cl———" 7. 1.3
(=1) drk nz{ <d7’> +;( )deﬂ dr (3.1.3-8)

We have shown inequality (3.1.3-6) holds for £ = 1, assume that it holds for (k — 1), then
the above equality leads to:

k—1

dk A, 1 dn;
k ? k [
(=1) Tk > Ai{2 +Ed7 chi}

1 dn;

= A1+ —1D)=(n :
{ * )”i(n+d7>}
A;. (3.1.3-9)

v

This completes the proof of inequality (3.1.3-6), and hence forth inequality (3.1.3-1).
The densities { V;(¢) } are monotonic functions of time, and if the initial state is Maxwellian

so that (71713 — Nefy) = 0, then the {N;(¢)} are constants.

3.2 Regular Space Model with Six Velocities

3.2.1 Kinetic Equations

The regular space models are related to the regular polyhedrons. There are only five regular

convex polyhedrons, the simplest of which is the cube. The simplest models for discrete
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velocity distributions are related to the symmetries of the cube. In this section we assume
that the velocities &; are the six vectors joining the center of the cube to the centers of the

faces. These velocities are:
5120(17 0? 0)7 5226(0, 17 0)7 5320(07 07 1)7

and €i+3 = —£i, 1= ]_, 2, 3.
The densities { N;(z,y, z,t)} now depend on all the space variables. The only nontrivial

collisions are:
(&1, &1) < (&2, &5) «— (&3, o)
Therefore:

1
25 36 _ 36 _
Qg = Qg = Qo5 = 3

w

2
A% = A8 = A = ZoS

Putting Ny = N, if k =1 (mod 6), the kinetic equations are:

2
ON; + & - VN; = % (NisiNisa + NijoNiss — 2NiNiys),  i=1,2,...,6. (3.2.1-1)

The summational invariants are the vectors ® in R® satisfying the equations:

1+ s — P2 — @5 = 0,
O+ Q4 — 3 — P = 0.

(3.2.1-2)

Thus, four of the components ¢; can be chosen arbitrarily, which means that the dimension

of the space F is s = 4.

3.2.2 The Euler Equations

We will limit ourselves to the case where the densities {/V;} are independent of y and z, and
where the densities Ny, N5, N3 and Ng are equal. In this case, we have s = 2, and from the

kinetic equations we can obtain for example the following two conservation equations:

8,5(N1 + N4 - 2N2) + c&v(Nl — N4) = 0,
8t(N1 — N4) + Cam(Nl + N4) =0.

(3.2.2-1)
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The macroscopic variables are:

n:N1—|—N4—|—4N2,
nu = ¢(Ny — Ny).

(3.2.2-2)

When the gas is in a Maxwellian state:
NNy — N3 =0. (3.2.2-3)

We can express N1, Ny and Ny in terms of n and u. In particular:

n u?
M+ Ni= g (—1 +24/1 4 35) , (3.2.2-4)

which enables us to write the Euler equations in the form:

on  Onu

T e Y

(3.2.2-5)

L N

If we return to the general case considered in Section 3.2.1, it can be seen that the

characteristic speeds have the same values in all directions, namely 0, +c/+/3.

3.3 Regular Space Model with Eight Velocities

In this Section we assume that the velocities {€;} are the eight vectors joining the center of

a cube with its vertices [11]. The components of the velocities are:
SIZC(_L L, 1)7 5226(17 L, 1)7 5320(_17 -1, 1)7 5420(17 -1, 1)7
and & = &y_;, 1 =5, 6, 7, 8. The nontrivial collisions are of two types:

(&1, &s) <— (&2, &7) «— (&3, &6) > (€4, &5),

and

(517 54) — (527 €3)7 (517 56) — (527 55)7 R (33_1)
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There are six collisions of the first type and six of the second type. We also have:

A=af= =,
aﬁ:afg:...:%,
=A==
AZ A% /3.

The first of the eight kinetic equations is:

O¢N1 — €Oy Ny + cOyN; + 0, N,
V3
2
+v/2¢S (NyN3 4+ N3N 4+ NsNy — Ny (Ny + Ng + N7)). (3.3-2)

cS (N2N7 + N3N6 + N4N5 - 2N1Ng)

The dimension of the space F is s = 4.

When the densities are independent of z and satisfy the relation N;,, = N,, then this
case is similar to the regular plane model except that the velocities are now parallel to the
angle bisectors of the coordinate axes instead of being parallel to the axes themselves as in
Section 3.1.

The Euler equations for this simple case are:

on  Onu  Onv )
ot 0Oz oy

onu  Onc®>  Onuv

ot N oz N dy =0 (3.3-3)
onv  Onuv  Onc® 0
ot ox oy )

3.4 A Space Model with 14 Velocities

In the models studied in the three previous sections, all the velocities {€;} have the same
modulus. As a consequence, the temperature is not an independent macroscopic variable,
but is a function of the mean velocity. To obtain a model in which the temperature, the mean

velocity and the density are independent macroscopic variables, it is necessary to assume
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that the molecules can have velocities which are not all of the same modulus. One possible
way to satisfy this condition is to superimpose the last two models, and to consider a model
with 14 velocities: six with modulus ¢, and eight with modulus v/3c. We will denote the
six velocities with the modulus ¢ by {¢;} and their corresponding densities by {M;}. The
eight velocities with modulus v/3¢ and their densities will be denoted by {&;} and {N;},

respectively. In this model there are 27 possible collisions:

6 collisions like (&1, &) +— (&9, &7),
6 collisions like (&1, &) < (&9, &),
3 collisions like (C1,y €1) < (Co, C5),
12 collisions like (&1, ¢1) +— (&2, C4)-

The last collisions are between molecules having velocities of different moduli. In order to
obtain a gas with temperature as an independent variable it is necessary to have collisions
of this type, for otherwise the model would represent two gases moving independently. For
the four types of collisions listed above, the probabilities and transition probabilities are

respectively:
Kl 1 1 1

probabilities a;7 1 5 3 %
transition probabilities Afjl @cs V2¢S %cS @cS.
We can see that the dimension of the space F is s = 5, and that the summational invariants
are m, mg&; and %m&?, as in classical kinetic theory. Therefore we can hope to have a good
model.
To obtain the kinetic equations we have to add terms to the equations already written
which represent the collisions of mixed type such as (&1, 1) <— (&2, ¢4). To the right hand

side of Eq. (3.3-2) we must add:
2¢S(NoMy + N3My + NsMs — Ny (M + Ms + Ms)), (3.4-1)
and the first of equations (3.2.1-1) (i = 1) has to be replaced by
O, M, + cd, M, = §CS(M2M5 + M3 Mg — 2M, M)
+cS((Ny 4 Ny + Ng + Ng) My — (N1 + N3 + N5 + N7 )My).

We can see that if the gas is at rest in a Maxwellian state:
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then the characteristic speeds are independent of the direction of propagation and have

values:

. (12Ny + M)

This is a function of the temperature because we can show that:

1 8N,
kpT = =mc (14— ) 3.4-3
Bl = 3me ( +4N0+3M0> (843)



Chapter 4

GLOBAL SOLUTION OF THE DISCRETE BOLTZMANN
EQUATION

In the discrete kinetic theory the initial value problem has a local solution. When the local
solution is bounded by a number which depends only on the initial values, the solution
exists globally. The first global existence theorem of this type was obtained by Nishida and
Mimura [55] for a Broadwell gas (three dimensional model with six velocities) [10] with four
of the six densities equal. In the following work a similar theorem is proved for a more
complex model: a three dimensional model with fourteen velocities obtained by joining the
center of a cube first to the center of each face, then to each vertex. The theorem is proved
first when the initial densities are small, then, following a method proposed by Tartar and
Crandall [62, 63], when the densities are at first periodic and finally when they are bounded.

As a starting point certain properties of the local solution are shown to be satisfied.

4.1 Introduction

The discretization of the velocity space in the kinetic theory of gases allows the replacement
of the Boltzmann equation, an integro-differential equation, by a system of semi-linear par-
tial differential equations [35]. For this system, called the discrete Boltzmann equation, the
initial value problem has a local solution when the initial values are bounded and differen-
tiable. Among the models with discrete repartition of velocities, one of the simplest is the
Broadwell model [10] for which the velocities are obtained by joining the center of a cube
at the origin of the velocity space to the center of the faces. Using this model and assuming

a one-dimensional motion parallel to one of the velocities and equality of the densities of

35
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the four velocities orthogonal to that direction, Nishida and Mimura [55] have proved the
global existence of the solution of the initial value problem, if the initial values are small in
a certain sense. For a similar model, Tartar and Crandall [62, 63] have proved the global
existence of the solution which the initial values are no longer small, but first periodic, and
then only bounded. The method of Nishida and Mimura [55] to prove the global existence
consists of proving that the local solution is bounded by a constant which depends only
on the initial values. The bound is obtained by integration of conservation equations over
triangles, an edge of each corresponding to the axis of abscissae (initial time), the other
edges being characteristics of the discrete Boltzmann equation. The purpose of the present
work is to extend the proof and conclusions first of Nishida and Mimura [55], then of Tartar
and Crandall [62, 63], to more complex models. The model considered in this Chapter is a
three-dimensional model with fourteen velocities obtained by joining the center of a cube at
the origin of the velocity space to the centers of the faces and to the vertices [12]. Section 4.2
is devoted to a summary of the properties of the local solution. The subsequent sections are
concerned with the global existence theorem when the initial densities, given and depending
only on one of the space variables, are small (Sec. 4.3), periodic (Sec. 4.4) and bounded

(Sec. 4.5).

4.2 Properties of the Local Solution

The discrete Boltzmann equation is written, in the general case, in the form [35]:

1
OiN:+ & VN, = > AR(NeN, - NiN;),  fori=1,2,...,b. (4.2-1)

3kl

The unknown functions { N;(x, t)} denote the densities of different velocities &;, represented

by b constant vectors &;, &, ..., &. The coefficients A},

the transition probabilities, are
non-negative constants; « is the position vector, with components z, y, z, in a Cartesian
rectangular system Ozxyz; t is the time. The Cauchy problem consists of finding a solution

of system (4.2-1) which, at the initial time, takes given values
Ni(z, 0) = Nyp(z), i=1,2,...,b. (4.2-2)

Theorem 4.1 If the functions { N;y(x)} are continuous and differentiable, there exists a positive

constant Jy such that, in the interval 0 < ¢ < §j, the problem consisting of Eqgs. (4.2-1) and
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(4.2-2) has one unique solution.

This theorem assures the existence and uniqueness of a local solution, some properties
of which can be studied by a method of successive approximations. We can put:

n n ]‘ n n n n
AN+ & VN = 5% AGIVIN = NN,
J kL (4.2-3)

N (2, 0) = Ny(),

)

Ni(l)(ma 0) = Nio(z), (4.2-4)
where Ni(n) denotes nth iterative solution of N;. We deduce from (4.2-3)

)

N (@, 1) = No(@ — &it) + /t W (@ — &s) ds, (4.2-5)
0

where hgn) is the right hand side of equation (4.2-3). Considering in the four dimensional
space the point A = (x4,t4) and the points B; = (x4 — &;ta, 0), we denote by (D,) the
smallest convex domain of the hyper-plane ¢ = 0 containing all the points B;. From the

formula (4.2-5) we deduce

Theorem 4.2 The values of the functions { N;(x, t)} at the point A depend only on the initial
values {N;jo(x)} in the domain (D,).

Theorem 4.3 If the initial densities are independent of one of the space variables, the solution

of the problem (4.2-1) and (4.2-2) is also independent of this space variable.

Theorem 4.4 If the initial densities are periodic functions, with a period zo, the solution of

the problem (4.2-1) and (4.2-2) is also periodic in @ with the period .

The proofs of these theorems are trivial. A more important result is the following theo-

rem.

Theorem 4.5 If the initial densities satisfy the inequalities 0 < N;o(x) < Ky, the solution
of the problem (4.2-1) and (4.2-2) satisfies the inequalities N;(x, t) > 0 for all x € R® and

0<t<dg.
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To prove this problem we introduce the functions

Ni(ma t) = ektNi(ma t)

for all z € R® and 0 < ¢ < 4y, in which \ is a positive constant. From equation (4.2-1) we

deduce
O, + 6 VN =N 4 50 3 AN - K, (42
i ty,k,l
Ni(z, t) = Nio(x — &t) +/ hi(e — &is,t — s) ds,
- I NU . . (4.2-7)
h; = 56 ZAijN’le + N; (A ) Z AijNi) .
ikl .k, 1

We denote A = 3b%sup AfJ. In the local solution the densities are bounded by a bound B.
ikl
If we choose A > AB, h; is positive at the initial time, and, by formula (4.2-7), the densities

and the h; are always positive.

Theorem 4.6 If the initial values are continuous and differentiable functions satisfying the
inequalities 0 < Njo(x) < Ky, then the unique solution of the problem (4.2-1) and (4.2-2) exists
forx € R® and 0 <t < 6y = (AK,) L.

To prove this last theorem we remark, as a consequence of the positivity of the densities,
that the solution of the problem (4.2-1) and (4.2-2) can be majorized by the solution M; of
the associated problem:

8, M; + ~-VM~—EZA’”MM M;(z, 0) = K, (4.2-8)
tiVLg £z z—2 ig PPk IVEL i\, — 0- LT
Jik,l
From Theorem 4.3, the functions M;(x, t) are independent of the space variables, and equa-
tions (4.2-8) are not partial differential equations but pure differential equations, the solution

of which can next be majorized by the new associated problem

dL; 1
== sup A (Li+Ly+...+L)°,  Lj0) = K. (4.2-9)
dt 2k,

All the equations (4.2-9) are the same, and all the functions L;(t) are equal. We have,

therefore
K,

Ni(z, t) < Li(t) = T AR

(4.2-10)
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For certain particular models, it is possible to show that, in the domain £ € R? and
the interval 0 < ¢ < dy and under certain conditions on the initial values, the local solution
satisfies the inequalities 0 < N;(x, t) < K, where K depends only on the initial values. We
can consider the instant ¢ = dy as initial and repeat the argument, so the solution exists for
do <t < 8+ 0, with § = (AK)™!. For t = t; = & + J, we always have 0 < N;(z, t) < K,
This proves the global existence of the solution.

The simplest case in which we have such a bound K is the two-dimensional regular four

velocities model, for which the discrete Boltzmann equation is
AN; + ¢ cos ((Qi _ 1)%) O,N; = ¢S(Nis1Niys — NiNipo),  i=1,2,3, 4. (4.2-11)

where ¢ is a constant velocity, S a constant denoting the collisional cross section, and

Niy4 = Nj; we deduce from equation (4.2-11):

(0r 4 ¢02) (N1 + Ny) (4.2-12)
(0p — c0y)(Ny + N3) = 0,
Ni(@, t) + N(®, t) = Nig(z — ct) + Nag(w — et) < 2K, (4.2-13)

Ny(z, t) + N3(x, t) = Noo(x + ct) + Nag(x + ct) < 2K
As the densities are positive, they are bounded by K = 2K, and the solution exists globally.
In the next section we will prove the existence of a bound K, for the three dimensional model

with fourteen velocities, described in the introduction.

4.3 Global Solution for Small Initial Values

The model considered is obtained by joining the center of a cube to the vertices and to the
centers of the faces. The velocities are denoted by ¢; (i =1,2,...,8)and §; (j =1,2, ...,

6), and their components in the directions Oz, Oy, and Oz are
& =c(—1,1,1), &=c(1,1,1), &=c(-1,—-1,1), & =c(1, -1, 1),

Cl == C(l, 0, 0), CQ == C(O, 1, 0), Cg = C(O, 0, 1),

and 6975 = _Sz (Z = 1, 2, 3, 4), and Cj+3 = _C] (] = 1, 2, 3)
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The velocity moduli are: [|¢;|| = ¢ and [|&|| = v3¢. The number density of molecules
with velocity §; is denoted by [V;, that of molecules with velocity ¢; by M;. The nontrivial
collisions, of which the post-collision velocities after differ from the pre-collision velocities,

are 27 in number:

6 collisions like the type &1, &s

&, &
Cla C4
&, G

(

6 collisions like the type (
3 collisions like the type (
12 collisions like the type (
In a collision we assume that a given pair of velocities give all the the possible pairs with
the same probabilities, so for each of the above types the values of the probabilities are
respectively 1/4, 1/2, 1/3 and 1/2; the corresponding transition probabilities are equal to
the product of the above probability by the collisional cross section S and by the modulus
of the relative velocity of the molecules before (or after) the collision [35], so for the above
types of collision we obtain respectively, v/3¢S/2, v2¢S, 2¢S/3, and v/6¢S/2. The kinetic
equations (4.2-1) are obtained by writing for each density N; (or M;) the balance of gains
and losses in molecules of velocities {§;} (or {¢;}) during a collision. We obtain for example

the two following equations

atNl +c (—ale + ale + GZNI)

3
= gCS(NZNY + N3N6 + N4N5 - 3N1Ng)
+\/§CS(N2N3 + N3N5 + N5N2 - N1N4 - N1N6 — N1N7)

6
QgﬂMMﬁMMﬁAM@JW%—MM—MMﬂ (4.3-1)

3
0tM1 + Cali = §CS(M2M5 + M3M6 — 2M1M4)

6
+§CS(N2M4 + N4M4 + N6M4 + N8M4

— N My — NsMy — NsMy — NoMy). (4.3-2)

By an appropriate permutation of the indexes, we obtain additional seven equations
similar to equation (4.3-1) and five equations similar to equation (4.3-2). The system of 14
equations so obtained is the discrete Boltzmann equation for the model considered. When

the initial densities are independent of y and z, which we assume, so are the densities.
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Therefore we look for the solution N;(x, t) and M;(z, t) which satisfies the initial conditions:

Ni(a:, 0) = Nio(iv), 1= 1, 2, Ceey 8,

(4.3-3)
M;(z, 0) = Mjy(), j=1,2,...,6.

We assume that the initial densities are differentiable and satisfy the following conditions,

in which K and «q are two positive constants

0< No(@) <Ky, 0< M(e) < Ko, (4.3-4)
[ S Nala) + X M)} Sz = (439

Theorem 4.7 When the conditions (4.3-4) are satisfied, and when « is less than 3/8, the
solution of the Cauchy problem defined by the discrete Boltzmann equation corresponding to the

14 velocities model and by the conditions (4.3-3) exists for all & and for all positive t.

The local solution exists in the interval 0 < ¢t < & = (AKy) ™", where A = 1961/2¢S. To
prove the global existence it is sufficient to prove the existence of a positive bound K, so

that for all  and for 0 < ¢t < dy, we have
Ni(z, t) < K, M;(z, t) < K. (4.3-6)

To prove the existence of such a bound we consider the sums of the densities of the

velocities having the same components on the x-axis, we put

Ai = Ny + Ny + Ng + Ng + My, (with +¢ z-component),
Ay = Ny + N3 + N5 + N7 + My, (with —¢ x-component), (4.3-7)
2A3 = My + M3 + M5 + M. (with 0 z-component).

From the kinetic equations (4.3-1), (4.3-2), and the other similar ones, we deduce:

atAi +§za:vA7, = fl(xa t)a 1= ]-7 27 37

9 (4.3-8)
fi=fo=—f3= 505(M2M5 + M3Mg — 2M, M,y),

where & = ¢, & = —c and & = 0. As the initial densities are positive or zero, so are the
densities A; and a bound for the functions A;(z, t) is a bound for the densities. Equations

(4.3-8) can be integrated in the form

Ay, £) = Ailz — &2, 0) + /t flo—&s, t—s)ds, i=1,2,3 (4.3-9)
0
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The functions A;(x — &;t, 0) are bounded by 5K, and if we denote by K a bound for the
densities in the domain z € R, 0 < t < dy, then the integrals are bounded by one of the

following expressions:

2 t

chK/ (My + M3)(x — &;s, t — s)ds, i=1, 2, (4.3-10)

4 Ot

chK/ M (z, t — s)ds. (4.3-11)
0

Following the method of Nishida and Mimura [55], it is possible to majorize the integrals

given in (4.3-10) and (4.3-11) by integrating the conservation equations
Op(A; + As) + &0, 4 =0,  i=1,2, (4.3-12)

over triangles AA; Az of the x-t plane. The points A and A; have as coordinates (z, t) and

(x — &t, 0), respectively. We have also as a consequence of relations (4.3-12):
3t(A1 + A2 + 2A3) + Cam (Al - AZ) = 0, (43—13)
which we integrate over the triangle AA; A5. Stokes’ theorem gives

¢ t
2/ (Ay + A3)(z — cs, t—s)cd8+2/ (Ay + A3)(x +cs, t — s)eds
0 0

x+ct
_ / {Ai(, 0) + Aa(w, 0) + Ay(a, 0)} dr < 52 (4.3-14)
x—ct

¢ t
/ Ai(x, t —s)cds + / As(x —cs, t —s)cds
0 0

t

= [ {Ai(z, 0) + As(x, 0)} dz < % (4.3-15)
r—ct
From formula (4.3-14) we deduce that the integral (4.3-10) is less than 2q K, and from
formula (4.3-15) that the integral (4.3-11) is less than $apK. As a consequence, the formulae
(4.3-9) gives
2
sup A;(x, t) < 5Ky + gaoK, i=1,2,
z,t

f (4.3-16)
sup Ag(l', t) < 2K0 + gOZOK,
T, t
or
8
K <2supA; < 10K, + gaoK, (4.3-17)
z,t
10K, 3
K< —— if ap < = 4.3-18
_1_%a07 1a0_87 ( )

which proves Theorem 4.7
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4.4 Global Solution for Periodic Initial Values

The global existence theorem proved in the previous Section assumes that the initial mass in
a tube of cross-section S is sufficiently small. For a plane regular model with four velocities,
Crandall and Tartar [62], using the H-Boltzmann theorem, have been able to drop this
assumption when the initial densities {Ny(x)} depend only on x and are periodic. The
demonstration of Tartar and Crandall is valid for all models for which the results of the
previous section are valid: existence of a bound of the local solution.

The initial densities being independent of y and z, so are the densities { N;(x, )} which
are periodic in z; we will denote the period by . We have therefore to solve the following
problem

O, N; + &0, N; = ZA“ NiN, — N;N;),  for i=1,2,...,b,  (4.4-1)
] k.1
Ni(z, 0) = Njp(z), (4.4-2)
with 0 < Ny (z) < Ky, and Ny(z + @) = Nip(x).
By multiplying the two sides of Eq. (4.4-1) by (1 + In N;) and by adding the equations

obtained for all values of 7, we obtain

b

> (0 + &0,) (NiIn N;) ZA <Nsz> (NN, — N;N;). (4.4-3)

i=1 sz

The right hand side is negative or zero, so therefore is the left hand side, and so is its integral

over an arbitrary interval, in particular over a period. But

9 (Nl ;) dir = —/N In N; dz, / O (NN de = N N7 =0, (4.40)
o Ot o Ox 0
We conclude that
% (Zle N;In Ni> dz < 0. (4.4-5)
0

The sum of the second part in the right-hand side of equations (4.4-1) is zero, and the
formulae (4.4-4) are always true if we replace N;In N; by N;; thus we have

% Ow (S0, NG, ) do =0, (4.4-6)

and
d [ [
— ; ; ; < 0. 4
i |, {Z,ZlNzln(Nz/Ko)} dz <0 (4.4-7)
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The function
I(t) = / {S0, N n(Ni/Ko) } da (4.4-8)
0
is decreasing and negative for ¢ = 0, so for all positive values of the time, I(¢) is negative.

From the inequality
2
z|lnz| <zlnx+ -, (4.4-9)
e

we deduce that

b
w 2
3 / Ny In(N:/Ko)| de < 2be Ky < by, (4.4-10)
.7 0 &

This last inequality allows us to over-estimate the integral

b z+cT
J = Z/ § Ni(z, t) dz, (4.4-11)
i=1 v T¢

in which the interval of integration 2¢T is positive and less than the period w. To obtain

such a bound we divide the integral J into two parts, .J; and J5:

J1 . 0 S Nl(fL', t) S ngm,

J2 : K()em S NZ(]I, t),

where m is a positive number. Of course .J; is smaller than b2¢T Kye™, and for J, we have

N
N, < Zln—2 = — 4.4-12
- x Ak ( )
and therefore
b
Jy < — Z/ dz < —WKO, (4.4-13)
1 2cT
J < bwK, (aem + —> , with o = -« (4.4-14)
m w

When «, positive, is fixed, the function of m, ae™ + - has a minimum equal to (m+1)/m?

on the infinite interval m > 0, reached for ae™ = m~2. The function

4m?
m—+1

— (14+m+2lnm), m > 0, (4.4-15)

has a minimum for m = 1, and this minimum is zero; therefore for a < e (or m > 0.47767)

m+l_ 4 4
m2 —14+m+2lnm 1—Ina

(4.4-16)
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As m is arbitrary we choose the value which corresponds to the minimum (the root of the
equation am?e™ — 1 = 0) and we obtain
b

Ni(z, t)dz < , = —. 4.4-17
vl (z, t) du l-Iha “ w ( )

/WT 4wbK, 2¢T
i=1
Returning to the 14 velocities model, we denote by N;(z, t) the densities (i varies from

1 to 14), and we consider the functions {N;(z, t)} which satisfy the following conditions

N;(x, t1) = N;(x, t1), x—X| < T,
v (z, t1) = Ni(z, t) | | (4.418)
Ni(z, t1) =0, |z — X| > T.
For all positive values ¢; of the time, the functions {Nj(z, t,)} satisfy the relation
e S 56w S K,
/ (Zﬁl Ni(z, tl)) Sdr <oq = lwliﬁ (4.4-19)
If we choose
2cT 448
< exp (1 - —wSKo> , (4.4-20)
w 3

the quantity a4 is less than 3/8 and we can apply Theorem 4.7: the functions N, (x, t) exist
for all values of x € R and t > ¢;. In the triangle with vertices (X, t; +T') and (X £ ¢T, t;)
the solution NN (x, t) coincides with the solution of the kinetic equations which takes the
values N;(z, t1) for t = t;: as X is arbitrary, this proves the existence of the solution for
t; <t <ty +T. The inequality (4.4-19) is still valid for ¢, = t; + T, hence existence also
holds for ¢t; + T < t < t; + 2T'; the argument can be repeated, and as ¢, is arbitrary and can
be chosen less than dy, the global existence follows.

Using now the inequality (4.3-18) we have (see the details of the proof in Ref. [14]):

10K
sup N;(z, t) < g L reR, tH<t<t;+T, (4.4-21)
;p,t 1 - §C¥1
K, = sup N;(z, t), reR (4.4-22)
z,t

As the inequality (4.4-19) is valid for arbitrary positive values of ¢;, we can also write

10 "
sup N;(z, t) < < ) Ky, VYzeR ti+(n—1)T <t <t +nT. (4.4-23)

8
T, t 1—%Sag

3
Ni(z, t) < Kye, Vi eR, (4.4-24)

with appropriate choice of Ky and A. The inequality (4.4-23) is obtained from (4.4-21)

iteratively for intervals (n — 1)T < ¢t — t; < nT. Consequently the suppression of the
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condition ¢y < 3/8 and its replacement by the condition of periodicity of the initial values
has as a consequence that we cannot conclude that the densities are bounded; however it is

possible to majorize them by an exponential function.

4.5 Global Solution for Bounded Initial Values

When the initial densities {V;o(x)} satisfy only the conditions 0 < Njy(z) < K, it is possible
to define new initial values { Njy(z)} periodic, with period w, continuously differentiable and

satisfying the conditions

Nio(z) = Nip(z), for [z — X| < T < % (4.5-1)
The functions { Nj(z,t)} corresponding to these initial values exist in an arbitrary large area
of the z-t plane and coincide with the solution corresponding to the initial values { Ny ()}
in the triangle with vertices (X, ¢) and (X £¢T, 0) on the X-(x —t) plane. As X is arbitrary
the solution N;(z, t) exists for x € R, 0 < ¢ < T'; but as T is also arbitrary, it exists for all

x and all positive t. Thus we have

Theorem 4.8 If the initial densities are continuous, differentiable and bounded, the solution of

the initial value problem, for the fourteen velocity model, exists globally.

4.6 Case of the Plane Regular Model

Another model for which a global existence can be proved is the plane regular model with
2r velocities &, the components of the velocity being

2k —1 2k —1
U = CCOS 7)), v, =csin 7|, w;=0. (4.6-1)
2r 2r

Denoting by N, the density of molecules with velocity &, and considering that N; = N; for

j =1 (mod 2r), we can write the kinetic equation in the following form [13]:
atNk+€kVNk:fka k':]_,2,...,27",

ktr 4.6-2
fv = 25 { Z (NiNyyr — Nka+r)} ; ( )

r
I=k+1
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where ¢ and S are two positive constants.

We are always looking for the solutions Ni(x, t) satisfying the initial conditions

Ni(z, 0) = Nyo(z), k=1,2,...,2r (4.6-3)

with
0 < Nyo(z) < K. (4.6-4)
_:O {37 Nio(2)} Sdz = ay, (4.6-5)

where Ky and «q are two positive constants, the same as in Section 4.3.

Theorem 4.9 When the the conditions (4.6-4) and (4.6-5) are satisfied and if 2ay < 1, (4.6-2)

and (4.6-3) exists for all , and all positive t.

Of course from Theorem 4.3 the densities depend only on x and ¢, and the local solution
exists in the domain (A): z € R, 0 < ¢ < Jy. To prove the global existence, it is sufficient
to prove that in (A) the densities {Ny(x, t)} are bounded by a number K independent of

do. Equation (4.6-2) can be integrated in the form

t
Ni(x, t) = Nio(x — ugt) + / Jr(z —ugs, t — s)ds. (4.6-6)
0
Putting
m+r m+r
Ap(z, 1) = Y Nfx,t),  Bu(z,t)= > wN(z,t), (4.6-7)
l=m+1 [=m+1

and denoting by K the upper bound of the densities { Ny(x, t)} in the domain (A), we can

majorized the second member of equation (4.6-6) by:
9 t
Ko+ —CSK/ Ap(x — ugs, t — s)ds, (4.6-8)
r 0

where A, can be replaced by (A,,—N¢)if m < k < m+r, or by (A, — Ny, ) if m—1r < k < m.
The integral as in Section 4.3 can be majorized by integration of the following conservation

equations

Oy A + 0, B, =0 (4.6-9)

on the triangles of the z-t plane with vertices A := (z,t) and A4; := (z — w;t, 0):

/ / (0; Ay, + 8, By dazdt = 0. (4.6-10)
AA;A;
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Then Stokes’ theorem gives us

t t
/ (wjAy — Bp)(x — uis, t — s)ds + / (Bp — ujAp)(x —ujs, t —s)ds
0 0

r—ujt
:/ Ap(z, 0)dz < % (4.6-11)
r—u;t

By choosing u; = u, and u; = u, and u; = u; and u; = ug, we deduce, respectively, the

following two inequalities:
t
/ (ujAp — Bp)(x — uis, t — s)ds < ay, (4.6-12)
0
t
/ (Bp — ujAp)(x —ujs, t — s)ds < ay. (4.6-13)
0

Now if r is even, i.e. r = 2¢q, uy is never zero and we have furthermore B, > 0, B3, < 0
and |ug| > u,, therefore
. ™ .

upAy — By > ugAy = csin (—) Ag, if ug >0,

2r/ (4.6-14)

Bsy — upAsq > ugAsy = csin <2—> Asg, if uy < 0.

r

It is also always possible to choose m (m = ¢ if ux > 0, and m = 3¢ if u; < 0) so that the

integral in the formula (4.6-8) can be majorized by

2 Q)

—cSK———— < 2Kay,. 4.6-15
r ot s sin(m/2r) — o ( )
If ris odd, m = 1 + 2q, uy, is zero for k =1+ ¢ and k = 2 4+ 3¢q. For u; # 0, we obtain the

majorization (4.6-15) and for £ =1 4 ¢ we have

urAy, — By = —Bj, > csin (;7) (Ap — Ny, (4.6-16)

and we also obtain the bound given by (4.6-15) if in the formula we replace A4,, by (A,, —

Niyr). Finally we can write

N = sup Ni(z,t) < Ko+ 20K, (4.6-17)
(z,t)e(A)
Ko
K < if 2 1 4.6-18
ST 2q, M0 h (4.6-18)

which proves the global existence of the solution of the initial value problem, when «y is

small enough. Then we can prove the global existence for periodic initial values and for
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bounded initial values as in Sections 4.4 and 4.5. The result is valid for all finite values of r,
when r increases indefinitely the densities { Ni(x, ¢)} are to be replaced by a unique density
N(z, 0, t) which depends on the abscissa x, on the direction € of the velocity €, and on the
time ¢. The limiting forms of equations (4.6-1) and (4.6-2) are

ON + ccos 0, N = % /27r {N(¢)N(p+7) — NOYN(O +7)}dp, (4.6-19)
N(z, 6, 0) = Ny(z, 6). (4.6-20)

The equation (4.6-19) is called the semi-discrete Boltzmann equation (SDBE), because the

velocities are discretized in modulus, not in direction.

4.7 Conclusion

The existence of global solution for the initial value problem has been proved when the
initial densities are given on the entire real axis. The same conditions in the existence
of global solution also appear in the shock tube problem when the tube is unbounded in
both directions. It is possible to prove the global existence of the solution in the case of
a tube which is either semi-infinite or bounded at both ends [14]. Also it is possible to
consider models with a larger number of velocities. Based on the model with 14 velocities
we can construct a model with 20 velocities by adding velocities equal to twice the median
velocities (velocities {¢;}); in this model the velocities have 3 different moduli, and there are
42 nontrivial collisions. Then by addition of velocities equal to twice the diagonal velocities
(velocities {€;}) we obtain a model with 28 velocities, and 4 different moduli in which there
are 66 nontrivial collisions. For these models, probably, the global existence of the initial
value problem can be proved. The process can be repeated indefinitely, we obtain models
with (14n — 6), 14n, or (14n + 6) velocities. In the case of 14n velocities, for example, the
number of nontrivial collisions is [27n + 12(n — 1)], and as this number increases with n,
we can expect to have a better approximation of the exact Boltzmann equation. It would
be interesting to extend the results to the semi-discrete Boltzmann equation, i.e., Eq. (4.6-
19), which is an integro-partial differential equation, and for this reason more similar to the

original Boltzmann equation, but for the moment this is an open problem.
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4.8 Some Recent Developments

Since 1980, when the Lecture Notes were written, much work has been done and published
on the subject of global solutions of the discrete Boltzmann equation. This Section provides
a brief summary of some recent results.

First, Cornille [30] and Bobylev [5] obtained analytic solutions for the Broadwell model
with six velocities [10]. Based on Cornille’s work [30], Cabannes and Tiem obtained exact
solutions for models with speeds of different moduli [26]. Cabannes and Duruisseau obtained
similar exact solutions by using symbolic computational software MACSYMA [22].

Second, much progress has been made since the first result by Nishida and Mimura [55]
on the existence of global solutions of the Broadwell model, with sufficiently small initial
data, when time goes to infinity. Bony considered the existence of global solutions for the
general model in one dimension [8, 9]. For the Broadwell model with bounded initial data,
Tartar proved existence of global solutions [62, 63], and Cabannes extended this result to
more general models [13, 14, 15, 17]. Balabane [2] and Cabannes [16] studied the Carleman
model [27] and the Broadwell model [10], respectively, with partially negative initial data.
Beale and Alves studied the behavior of global solutions as time goes to infinity for the
Broadwell model [3] and a model with 14 velocities [1], respectively. Cabannes studied the
same problem for models including triple collisions [18].

Third, in his Ph.D. thesis [53], Mischler first studied the convergence of the solutions
of the discrete velocity models to the solutions of the corresponding Boltzmann equations
when the number of the discrete velocities is infinite, 7.e., when the discrete velocity set is
a D-dimensional lattice space. Mischler’s study marks the starting point of many subse-
quent works [7, 54, 57, 56, 51]. A key point in the proof of convergence is to understand
distributions of lattice points on a given sphere, and the only regular distributions of lattice
points on a sphere are those related to the five regular polyhedrons. However, Palczewski
and Schneider have shown that it is necessary, and possible, to define distributions which
are “almost” regular, and the number of points is as large as one wants [56].

Finally, Cabannes et al. have been able to obtain exact solutions for the semi-continuous
Boltzmann equation (SCBE) [64, 26, 24, 25, 23]. When the functions of velocities have period

7 in @, where 6 is the polar angle of the velocity in a plane [cf. Eq. (4.6-19)], Sibgatullin
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and Cabannes obtained the general solution of the SCBE in parametric form [59]. Based
on the knowledge of the general solutions of SCBE, it is also possible to investigate the
existence of “eternal” solutions, i.e., solutions which exist for all times, future and the past.
It is conjectured that the only eternal solutions of the original Boltzmann equation are the
solutions of Maxwell. This conjecture is known as the conjecture of the positive eternal
solutions. The conjecture has not been proved except for some simple model equations,
and so far the best result for the general case is due to Villani [65]. The conjecture has
been proved by Cabannes [19, 20, 21] for the case of SCBE when the initial data, hence the
solutions, have a period 7 in #. The proof is based on the knowledge of the general solution

in parametric form [59].
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