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Abstract

The isotropic—nematic transition of nano-rod monolayers with fore—aft symmetry is second order, in stark contrast to the first-order phase
transition explained by Onsager [L. Onsager, Ann. (N.Y.) Acad. Sci. 51 (1949) 627] for rods in three dimensions. Here we show that the coupling
of a dipole potential to excluded volume is sufficient to re-instate a first-order phase transition of rods confined to two dimensions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In [1], Bhandar and Wiest extended the Doi—Hess—Smolu-
chowski equation for rigid rod nematics to dipolar nano-rod
dispersions. With broken fore-aft symmetry of the rods, the
possibility arises for nonzero odd moments of the orientational
probability distribution function (PDF), leading to two types of
ordered phases, polar—nematic and nonpolar—nematic, depend-
ing on dipole strength; the isotropic phase remains unstable
above a certain volume fraction or dipole strength. Several stud-
ies have addressed three-dimensional orientational behavior of
dipolar nematics using this new model [2,3,14], or its moment-
closure approximations [1,4].

We focus here on the equilibrium phase diagram for mono-
layers of dipolar Brownian rods, where the PDF is confined
to two space dimensions (2D). Maffettone and Marrucci [5]
showed numerically, and the authors [6] confirmed analytically
that 2D nematics with fore—aft symmetry do not share the On-
sager hysteresis diagram: the isotropic—nematic transition is
continuous and phases do not co-exist. Here we show the cou-
pling of dipolar and excluded-volume potentials modifies this
picture in a dramatic fashion, reinstating hysteresis and two in-
stances of bi-stable phases whose details are described below.
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2. Equilibria of coupled dipolar and excluded-volume
potentials

Let m be a unit vector for the axis of symmetry of the rod
macromolecule, and let f(m, ¢) be the orientational probabil-
ity distribution function (PDF) of the nano-rod ensemble. The
moments of f are denoted

(m) :/mf(m, 1)dm, ey

(mm) = / mm f (m, ) dm, 2)

etc. The total potential for dipolar Brownian rods in equilibrium
is given by

V(m) = —kpT[em - (m) + 2N (mm) : mm], 3)

where o measures the dipole strength, and N is the normalized
strength of the Maier—Saupe excluded-volume potential.

The rotational transport equation for the PDF is the extended
Doi-Hess—Smoluchowski equation [1,7,8]
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where % = (I — mm) - V is the rotational gradient operator,

D9 is an averaged relaxation rate, a is a particle shape para-
r2—1
r24+1°
normalized chemical potential. Steady states of (4) are of Boltz-
mann type,

meter related to the rod aspect ratio r as a = and p is the

_ L mrv
f= Z€ (6)
where Z is the normalizing coefficient. We now follow re-
cent analysis of Boltzmann distributions of Constantin et
al. [9] and extensions in [2,3]. Step 1 is to rigorously reduce
the infinite-dimensional nonlinear diffusion equation (4) to a
finite-dimensional (here 2) system of nonlinear integral equa-
tions. Then Step 2 is to use parameter continuation software
AUTO [10] to solve the equilibrium equations across the para-
meter space of dipolar and excluded volume strength. Finally,
we determine stability by convexity of the free energy at the
equilibria in question. The results are captured by Fig. 1, which
we now explain.

Letn, n; be the two orthonormal eigenvectors of the second
moment tensor (mm). Then

(m) = s1[cos@'n; + sind'ny],

1 1
(mm) _s<n1n1 21) + 2I, @)
where s is a polar order parameter which measures the aver-
age polarity in the dispersion.

For equilibria of (4), the first moment of f is in the
eigenspace of the second moment [2,11], so we choose (m)
parallel to n;. By the methods of [9] equilibria are uniquely
specified by the first two moments, which are further invariant
under rotations, so the PDF is uniquely specified by the or-
der parameters s and s. Equilibrium solutions of the PDE (4)
are thereby reduced to two nonlinear integral equations for s
and s:

2

/(Sl _ COS@)easl cosf+Ns cos26 do =0, (8)
0
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0

For any o and N, the class of nonpolar solutions with s; =0
always exist, corresponding to the previously studied isotropic—
nematic solutions with fore-aft symmetry.

First we solve the equilibrium integral equations (8), (9)
using the continuation software AUTO [10]. Then stability is
determined by examining convexity of the free energy density:

Alf]=

[ml=1

kgTln f + %}fdm. (10)

Equilibria are classified in terms of s; and s: s; > 0 im-
plies a polar phase (non-zero first moment), and s > 0 im-
plies a nematic phase (anisotropic second moment). States with
s1 = s =0 are isotropic (I), while states with s; > 0 and s =0
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Fig. 1. Equilibrium phase diagram for Brownian rods dispersions. N and «

parameterize strengths of the excluded-volume and dipolar potentials, respec-
tively.

Table 1

With reference to the equilibrium phase diagram of Fig. 1, a catalog of all co-
existing equilibria in each regions 1-5, both stable (superscript s) and unstable
(superscript u). Regions 4 and 5 possess bi-stable phases

Region Type of solutions

1 1§

2 I, N-NP*$

3a I', N-NP", N-P*

3b I, N-PS

4 I', N-NP5, N-P%, N-P"
5 I’, N-PS, N-P"

do not exist. Anisotropic states satisfying: s =0, s > 0 are
called nematic—nonpolar (N-NP); s; > 0, s > 0 are called
nematic—polar (N-P). The phase diagram of stable equilibria
vs dipolar strength o and excluded volume strength N is given
in Table 1, where stable (unstable) phases are labeled by an “s”
(“v”) superscript.

The set of stable solutions divides the domain into 5 re-
gions, distinguished by the distinct type and number of stable
phases. Table 1 gives the collection of stable and unstable equi-
libria. The boundaries between regions 1-5 correspond to phase
transitions, where either the number or stability of equilibria
change.

The new phenomena arise in regions 4 and 5. Region 5 is the
analog of three-dimensional Onsager-like, bi-stable isotropic
and polar nematic phases, whereas region 4 corresponds to bi-
stable nematic phases, one polar and another nonpolar.

Regions 1 and 2, where the dipolar strength is low, corre-
spond to persistence of the nonpolar phase diagram of Maffet-
tone et al. [12] and the authors [6], where 51 is always zero. In
region 3, the only stable phase is polar-nematic s > 0, s > 0.

3. Onsager-like monolayer equilibrium phase diagrams

For different o = const slices, Figs. 2, 3, phase transitions
(where loss or gain of stable phases occur) are recognized and
classified in terms of specific bifurcations. In the dynamical
systems literature, these are called “bifurcation diagrams”. The
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Fig. 2. Branches of equilibria, characterized by polar (s1) and nematic (s) or-
der parameters, versus excluded-volume potential strength N for a relatively
strong dipolar potential strength o = 2.5. Solid (dashed) curves denote stable
(unstable) equilibria. Three distinct branches of equilibria (s1, s) arise: a stable
nematic—polar (N-P) phase (s; > 0, s > 0) for all N; an unstable isotropic I
phase (s; =s = 0) for all N; and an unstable nematic—nonpolar (N-NP) branch
(s1=0,s >0) for N > 2.

point bifurcations (B P, L P) in Fig. 3 correspond to the inter-
section of o = const lines with the boundaries between Regions
in 1. BP is a turning point bifurcation (on one side the equi-
libria no longer exist, on the other side stable and unstable
branches co-exist), while L P is a standard instability bifur-
cation where a branch of equilibria transitions from stable to
unstable.

Fig. 2 is the bifurcation diagram for o = 2.5, which is above
the critical dipolar strength o = 2. Isotropic and purely nematic
branches exist, but they are unstable, yielding to a unique sta-
ble polar—nematic equilibrium for all N. Thus, a sufficiently
strong dipolar potential always yields an ordered polar—nematic
phase, and there are no phase transitions versus concentration
for strongly dipolar rod dispersions.

Fig. 3 is the bifurcation diagram for « = 1.8. The stable
nematic branch arises at N = 2 as a nonpolar (s; = 0) equilib-
rium, but then soon thereafter becomes unstable at N, = 2.01.
The nonpolar—nematic branch is stable only in a narrow range
between N = 2 and N, = 2.01, corresponding in Fig. 1 to
region 4. For N just past N, there is a first-order phase tran-
sition to a stable polar—nematic branch. If one then lowers
N while on the polar—nematic branch, it persists all the way
down to N; = 1.61, which is a turning point bifurcation be-
low which the phase does not exist. Thus the classical Onsager
hysteresis diagram is recovered! Bi-stable isotropic and polar—
nematic phases exist between N = 1.61 and N = 2, while
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Fig. 3. Branches of equilibria, characterized by polar (s1) and nematic (s) or-
der parameters, versus excluded-volume potential strength N for a moderate
dipolar potential strength, & = 1.8. Solid (dashed) curves denote stable (unsta-
ble) equilibria. In addition to the isotropic—nematic transition at N =2, two
bifurcations (phase transitions) are identified: at N =2.01 (labeled BP), where
a new polar—nematic branch emerges from the purely nematic branch; and at
N =1.61 (labeled LP), which is a turning point of the N-P branch.

bi-stable nematic—polar and nematic—nonpolar phases exist be-
tween N =2 and N, =2.01. Below N = 1.61, the unique sta-
ble phase is isotropic, and above N, = 2.01, the unique stable
phase is polar—nematic.

4. Conclusion

We have rigorously characterized all equilibria of dipolar
Brownian rod monolayers with excluded-volume interactions
in terms of classical Boltzmann distributions, following On-
sager [13] and Constantin et al. [9]. The salient physical phe-
nomenon is the recovery of bi-stable phases and hysteresis in
monolayers due to broken fore-aft symmetry of the rods, which
are completely suppressed in monolayers of nonpolar Brownian
rods.
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