Cluster (Parallel) Computing
For Large-Scale

Engineering & Science

Applications

[image: image170.wmf]Forward-Backward

Solution

Decomposition

54

MFLOPS

106

MFLOPS

59

MFLOPS

200

MFLOPS

2.7

1.8

1.5

0

20

40

60

80

100

120

140

160

1

2

3

4

Numer of Processors, Cray-2

Time,Sec

Forward-Backward

Solution

Decomposition

135

70

46

36

66

MFLOPS

127

MFLOPS

193

MFLOPS

250

MFLOPS

SHARED versus DISTRIBUTED(massively parallel or message passing)computer

(Cray 2, Cray YMP, Cray C-90) Convex, Alliant etc… (Intel, CM, nCUBE, etc… Cray T3D, IBM-SP2, Meiko

Shared Memory Computers

	Shared Memory

	Local Mem.
	Local Mem.
	Local Mem.
	Local Mem.

	Proc.1
	Proc.2
	Proc.3
	Proc.4

Wall-Clock Time (CPU Time

 WCT = CPU Time (dedicated environment)

Distributed Memory Computer

[image: image2.wmf]Local Mem.

processor 4

Local Mem.

processor 2

(or Node 2)

Local Mem.

processor 1

(or Node 1)

Local Mem.

processor 3

 Message

 Passing

Message

Passing

Wall clock time = CPU time

SIMD = Single Instruction Multiple Data

MIMD = Multiple Instruction Multiple Data

Simple Definitions of Parallel Performance

[image: image1.wmf]20

10

0

5

15

0

8

16

80

160

320

160

Future

Current

Vector

Speedup

Parallel

Speedup

Parallel-Vector Speedup

[image: image52.wmf]U

IJ

U

IJ

U

II

[image: image53.wmf]S

77

U

17

(

)

2

å

-

U

27

(

)

2

+

..

+

U

67

(

)

2

+

[image: image54.wmf]S

47

U

14

U

17

å

-

U

24

U

27

+

U

34

U

37

+

U

22

[image: image55.wmf]U

17

S

17

U

11

[image: image56.wmf]U

I

J

1

+

,

U

I

J

1

+

,

U

II

[image: image57.wmf]U

I

1

+

J

,

U

I

1

+

J

,

U

I

1

+

I

1

+

,

[image: image58.wmf]y

3

F

3

U

13

y

1

×

-

U

23

y

2

×

-

U

33

[image: image59.wmf]y

j

F

j

1

j

1

-

i

u

ij

y

i

×

å

=

-

U

jj

[image: image60.wmf]Z

4

y

4

U

44

[image: image61.wmf]Z

3

y

3

U

34

Z

4

-

U

33

[image: image62.wmf]u

ii

K

ii

1

i

1

-

k

U

ki

(

)

2

å

=

-

for

i

1

³

[image: image63.wmf]u

ij

K

ij

1

i

1

-

k

U

ki

U

kj

å

=

-

U

ii

for

i

j

1

³

,

[image: image64.wmf]u

57

k

57

u

15

u

17

×

-

u

25

u

27

×

-

u

35

u

37

×

-

u

45

u

47

×

-

u

55

 Speed up = 20 sec =5

 4 sec

 Efficiency = 5 =62.5%

 8 proc

	
	Time
	Speedup
	
	
	
	
	
	
	
	
	

	[image: image65.wmf]Z

2

y

2

U

23

Z

3

-

U

24

Z

4

-

U

22

[image: image66.wmf]Z

1

y

1

U

12

Z

2

×

-

U

13

Z

3

×

-

U

14

Z

4

×

-

U

11

[image: image67.wmf]Z

j

y

j

j

1

+

NEQ

i

U

ji

Z

i

å

=

-

U

jj

[image: image68.wmf]2

[image: image69.wmf]2

1

-

0

1

-

2

1

-

0

1

-

1

æ

ç

ç

è

ö

÷

÷

ø

[image: image70.wmf]2

1

-

2

0

0

3

2

2

-

3

0

0

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image71.wmf]2

0

0

1

-

2

3

2

0

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

ø

[image: image72.wmf]2

1

-

0

1

-

2

1

-

0

1

-

1

æ

ç

ç

è

ö

÷

÷

ø

[image: image73.wmf]1

1

2

-

0

0

1

2

-

3

0

0

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image74.wmf]2

0

0

1

-

3

2

0

0

1

-

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image75.wmf]2

1

-

0

1

-

2

1

-

0

1

-

1

æ

ç

ç

è

ö

÷

÷

ø

[image: image76.wmf]2

1

-

0

0

3

2

1

-

0

0

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image77.wmf]1

0

0

1

-

2

1

0

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image78.wmf]2

3

[image: image79.wmf]2

0

0

1

-

2

3

2

1

-

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image80.wmf]2

0

0

1

-

2

3

2

0

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

ø

[image: image81.wmf]m

12

u

12

1

-

2

m

13

u

13

0

,

m

23

u

23

2

-

3

,

[image: image82.wmf]2

0

0

1

-

3

2

1

-

0

1

-

1

æ

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

ø

[image: image83.wmf]2

0

0

1

-

3

2

0

0

1

-

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

	(Efficiency)
	(MFLOPS)
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	5
	
	
	[image: image84.wmf]m

13

u

13

u

11

0

2

0

	
	
	
	
	
	

	
	
	
	(75)
	
	
	
	
	
	
	
	
	

	
	20sec (100%)
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	[image: image85.wmf]2

1

-

0

1

-

2

1

-

0

1

-

1

æ

ç

ç

è

ö

÷

÷

ø

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	4sec (62.5%)
	1
	
	
	
	
	
	
	
	
	

	
	
	
	(15)
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	# processors

	
	
	
	1
	2
	
	4
	
	
	
	8
	
	

WHY CAN’T WE GET “ IDEAL “ SPEED UP ?

Or 100% efficiency with 8 processors??
SOME DEFFINITINS (Parallel Performance)

MFLOPS = Million of Floating point Operatios Per Second

SPEED UP = Time by 1 Processor = say 12 seconds (by 1 proc.)
 Time by n Processor 4 seconds (by 4 proc.)

 = 3

	 3

	 4

EFFICIENCY = Speed Up =say = 75%

 n- Processors

MATRIX – VECTOR MULTIPLICATION

Version 1: Dot- Product Operations (= Row- Approach)

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	2
	-1
	0
	
	
	
	1
	
	
	
	0
	

	
	-1
	2
	-1
	
	*
	
	2
	
	=
	
	0
	

	
	0
	-1
	1
	
	
	
	3
	
	
	
	1
	

	
	
	
	
	
	
	
	
	
	
	
	
	

Version 2 : Dot- Product, Level 2 “ Vector Unrolling”

Consider 2 rows at a time !

	2
	-1
	0

	-1
	2
	-1

	
	
	

	0
	-1
	1

Loop-Unrolling[2] and Vector-Unrolling[3] Technique For Vector Computers

Case example: to compute a product of a matrix [A] of size 600*600, with a vector {x} of size 600*1. The results is stored in vector {y} of size 600*1

Version 1: Dot- Product operations

[image: image86.wmf]1

0

0

1

-

2

3

2

1

-

0

1

-

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image87.wmf]1

0

0

1

-

2

1

1

-

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image88.wmf]1

0

0

1

-

2

1

0

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

ø

 Do 21 I = 1, I rows (= 600)
 Do 21 J = 1, J cols (= 600)
21 y(I) = y (I) + A (I,J) * X (J)

Version 2: Dot- Product operations, Level 2 “ Vector Unrolling”

(operate on A, stride= I rows >> 1, bad stride)

 Do 21 I = 1, I Rows, 2

 Do 21 J = 1, J cols

 y(I) = y(I)+ A(I,J) * X (J)

21 y(I+1) = y(I+1)+A(I+1,J) *X(J)

What If Row Lengths of [A] are uneven?

Assuming vector Unrolling Level 2 is used

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	[image: image89.wmf]1

0

0

1

-

2

1

0

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

	x
	x
	x
	●
	●
	o
	o
	
	[image: image90.wmf]3

2

[image: image91.wmf]1

3

	
	
	
	

	
	
	x
	x
	o
	x
	x
	o
	o
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	x
	o
	x
	o
	x
	●
	●
	
	[image: image92.wmf]m

12

u

12

u

11

×

1

-

2

2

×

1

-

	
	
	
	

	A =
	
	●
	x
	o
	x
	x
	o
	x
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	o
	x
	x
	x
	x
	x
	x
	
	[image: image93.wmf]m

23

u

23

u

22

×

2

-

3

3

2

×

1

-

	
	
	
	

	
	
	o
	●
	●
	●
	x
	x
	x
	
	
	
	
	
	

	
	
	o
	o
	o
	x
	x
	x
	x
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image: image94.wmf]m

13

u

13

u

11

×

0

2

×

0

[image: image95.wmf]Forward-Backward

Solution

Decomposition

54

MFLOPS

106

MFLOPS

59

MFLOPS

200

MFLOPS

2.7

1.8

1.5

0

20

40

60

80

100

120

140

160

1

2

3

4

Numer of Processors, Cray-2

Time,Sec

Forward-Backward

Solution

Decomposition

135

70

46

36

66

MFLOPS

127

MFLOPS

193

MFLOPS

250

MFLOPS

 Do 21 I = 1, I ROWS, 2

 I Start = ……

 I End = ……

[image: image96.wmf]0

1

2

3

4

5

6

1

2

3

4

Numer of Processors, Cray-2

Time,Sec

Forward-Backward

Solution

Decomposition

54

MFLOPS

106

MFLOPS

159

MFLOPS

200

MFLOPS

5.4

2.7

1.8

1.5

 DO 21 J= I start, Iend

 Y(I) = y(I) + A(I,J)*x(J)

21 [image: image97.wmf]U

17

S

17

U

11

Y(I+1)= y(I+1)+A(I+1,J)*x (J)

Version 3: SAXPY operations (= Columns Approach)

	
	
	[image: image98.wmf]2

1

-

0

0

3

2

1

-

0

0

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

1

0

0

1

-

2

1

0

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

×

	
	
	step1
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	2
	
	-1
	
	0
	
	
	
	
	1
	
	
	

	
	
	
	[image: image99.wmf]1

1

-

2

0

0

1

2

-

3

0

0

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

2

0

0

0

3

2

0

0

0

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

×

é

ê

ê

ê

ê

ê

ë

ù

ú

ú

ú

ú

ú

û

1

0

0

1

-

2

1

0

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

×

	
	
	
	
	
	
	
	
	
	

	
	-1
	
	2
	
	-1
	
	*
	
	
	2
	
	
	=

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	0
	
	-1
	
	1
	
	
	
	
	3
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

	
	2
	

	
	-1
	

	
	0
	

Step1: “ Partial” Answer =

[image: image100.wmf]completely updated

Not completely updated

[image: image101.wmf]Uij

Kij

1

i

1

-

k

U

ki

U

kj

å

=

-

U

ii

[image: image102.wmf]Uij

Kij

1

i

1

-

k

U

ki

U

kj

å

=

-

U

ii

	
	
	
	
	
	
	
	
	
	
	
	

	
	2
	
	
	
	
	-2
	
	
	
	0
	

	
	-1
	
	+
	
	
	4
	
	=
	
	3
	

	
	0
	
	
	
	
	-2
	
	
	
	-2
	

Step2: Modified Answer =

[image: image103.wmf]1

8

	
	[image: image104.wmf]e

[image: image105.wmf]completely updated

Not completely updated

	
	
	
	
	
	
	
	
	
	

	
	0
	
	
	
	
	0
	
	
	
	0
	

	
	3
	
	+
	
	
	-3
	
	=
	
	0
	[image: image106.wmf]U

2

1

-

2

3

2

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

ø

[U] matrix, with U

ii

 = 1

[L]

T

 matrix, with L

ii

 = 1

[D]

	
	-2
	
	
	
	
	3
	
	
	
	1
	

Step3: Modified Answer =

[image: image107.wmf]0

50

100

150

200

250

convex 200

Cray-2

Cray-2(F)

Cray-YMP

Cray-YMP(F)

Type of processor

Time, Sec

221

76

76

45

45

Forward-Backward Solution

Decoposition

28

MFLOPS

83

MFLOPS

83

MFLOPS

137

MFLOPS

137

MFLOPS

[image: image108.wmf]0

10

20

30

40

50

60

70

80

1

2

3

4

Number of Processors, Cray-2

Time, Sec

Forward-Backward Solution

Decomposition

74

37

25

19

83

MFLOPS

166

MFLOPS

249

MFLOPs

326

MFLOPS

Version 4: Saxpy+ Level 2

 (ax+y) “Loop-Unrolling”

 ?!

Consider 2 Columns at a time!

Version 3: Saxpy- operations

 Do 22 J = 1, Jcols

 Do 22 I = 1, Irows

[image: image109.wmf]0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

Numer of Cray Y-MP Processors

Time,Sec

time saved by zero

checking

MFLOPS

Number of Cray Y-MP Processors

4

8

[image: image110.wmf]0

5

10

15

20

25

30

35

40

45

50

1

2

3

4

Numer of Cray Y-MP Processors

Time,Sec

Time served by

zero checking

* 228

* 452

* 872

* 1517

* MFLOPS

4

8

2

1

22 y(I) = y(I) + x(J) * A(I,J)

can loop 22 be vectorized if change to : y(I) = y(I-1)+ x(J) * A(I,J) ??

Version 4: Saxpy- operations , level 2 “ Loop Unrolling”

 Do 22 J = 1, Jcols, 2
 Do 22 I = 1,Irows

[image: image111.wmf]U

17

S

17

U

11

[image: image112.wmf]U

27

S

27

U

12

U

17

×

å

-

æ

ç

è

ö

÷

ø

U

22

22 y(I) = y(I) + x(J) * A(I,J) + x(J+1) * A(I,J+1)

[image: image113.wmf]S

47

U

14

U

17

å

-

U

24

U

27

+

U

34

U

37

+

U

22

Notes :

(1) “Loop-unrolling” technique is more powerful than “ Vector-unrolling” (on Cray-YMP, Cray-C90 Computers…)

(2) Loop-unrolling technque is suitable for SAXPY operations (partial, incomplete answers){1 “long”Fortran stmt.}
[image: image114.wmf]Z

1

y

1

U

12

Z

2

×

-

U

13

Z

3

×

-

U

14

Z

4

×

-

U

11

Ex.

[image: image115.wmf]U

IJ

U

IJ

U

II

 {y}= {y} + x * {A}

(3) Vector-unrolling technique is suitable for Dot-Product operations

 (complete, final answers) { several “short” fortran stmts. in innermost

loop}

Ex.

 C= {A}.{B}

What if Column Heights of [A] Area Uneven ?

Assuming “ Loop Unrolling” Level 2 is used

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	[image: image116.wmf]U

I

J

1

+

,

U

I

J

1

+

,

U

II

	x
	x
	
	x
	●
	
	o
	o
	
	o
	
	[image: image117.wmf]U

I

1

+

J

,

U

I

1

+

J

,

U

I

1

+

I

1

+

,

	
	
	

	
	
	
	x
	x
	
	o
	x
	
	x
	●
	
	o
	
	
	
	
	

	
	
	
	x
	o
	
	x
	o
	
	x
	●
	
	o
	
	
	
	
	

	A =
	
	
	●
	x
	
	o
	x
	
	x
	●
	
	x
	
	
	[image: image118.jpg]

	
	

	
	
	
	●
	x
	
	x
	x
	
	x
	x
	
	x
	
	
	
	
	

	
	
	
	o
	o
	
	●
	o
	
	x
	x
	
	x
	
	
	
	
	

	
	
	
	o
	o
	
	●
	x
	
	x
	x
	
	x
	
	
	
	
	

	
	
	
	[image: image119.wmf]U

I

1

+

J

1

+

,

U

I

1

+

J

1

+

,

U

I

1

+

I

1

+

,

[image: image120.wmf]y

3

F

3

U

13

y

1

×

-

U

23

y

2

×

-

U

33

	
	[image: image121.wmf]y

j

F

j

1

j

1

-

i

u

ij

y

i

×

å

=

-

U

jj

[image: image122.wmf]Z

4

y

4

U

44

	
	[image: image123.wmf]Z

3

y

3

U

34

Z

4

-

U

33

[image: image124.jpg]

	
	
	
	
	
	
	

[image: image125.wmf]0

5

10

15

20

25

30

35

40

45

50

1

2

3

4

Numer of Cray Y-MP Processors

Time,Sec

Time served by

zero checking

* 228

* 452

* 872

* 1517

* MFLOPS

4

8

2

1

[image: image126.wmf]Z

j

y

j

j

1

+

NEQ

i

U

ji

Z

i

å

=

-

U

jj

[image: image127.wmf]1

1

2

-

0

0

1

2

-

3

0

0

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image128.wmf]u

ii

K

ii

1

i

1

-

k

U

ki

(

)

2

å

=

-

for

i

1

³

 Do 22 J = 1, Jcols, 2
 I start = …

 I end = …

[image: image129.wmf]u

ij

K

ij

1

i

1

-

k

U

ki

U

kj

å

=

-

U

ii

for

i

j

1

³

,

 Do 22 I = Istart, Iend

 y(I) = y(I)
+ x(J) * A(I,J)

[image: image130.wmf]0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

Numer of Cray Y-MP Processors

Time,Sec

time saved by zero

checking

MFLOPS

Number of Cray Y-MP Processors

4

8

+ x(J+1) * A (I, J+1)

 22 continue

MPI (Fortran): Computing pi by integrating
[image: image3.wmf])

1

(

4

)

(

2

x

x

f

+

=

[image: image4.wmf]a

2

4

6

8

10

12

14

16

0

16

16

16

16

16

16

16

16

X

f

1

h

f

i

f

i+1

)

(

2

1

1

+

+

×

=

i

i

f

f

sum

b

n = 8 intervals

[image: image131.wmf]0

10

20

30

40

50

60

70

80

1

2

3

4

Number of Processors, Cray-2

Time, Sec

Forward-Backward Solution

Decomposition

74

37

25

19

83

MFLOPS

166

MFLOPS

249

MFLOPs

326

MFLOPS

[image: image132.wmf]completely updated

Not completely updated

h = (

[image: image133.wmf]Z

2

y

2

U

23

Z

3

-

U

24

Z

4

-

U

22

DO 20 I = 1, 8, 4 (myid =
0 (I=
1, 5

1 (
2, 6

2 (
3, 7

3 (
4, 8

[image: image5.wmf](

)

16

1

5

.

0

1

8

1

=

-

=

x

 ;
[image: image6.wmf]16

9

2

9

8

1

=

÷

ø

ö

ç

è

æ

x = h*(dble(i)-0.5)

sum = sum+f(x)

20 continue

mypi = sum*h

[image: image7.wmf]16

11

,

16

3

2

3

8

1

=

÷

ø

ö

ç

è

æ

=

x

 …..
[image: image8.wmf]16

13

,

16

5

 …..
[image: image9.wmf]16

15

,

16

7

c**

c pi.f - compute pi by integrating f(x) = 4/(1 + x**2)

c

c Each node:

c 1) receives the number of rectangles used in the approximation.

c 2) calculates the areas of it's rectangles.

c 3) Synchronizes for a global summation.

c Node 0 prints the result.

c

c Variables:

c

c pi the calculated result

c n number of points of integration.

c x midpoint of each rectangle's interval

c f function to integrate

c sum,pi area of rectangles

c tmp temporary scratch space for global summation

c i do loop index

c**

 program main

 include 'mpif.h'

 double precision PI25DT

 parameter (PI25DT = 3.141592653589793238462643d0)

 double precision mypi, pi, h, sum, x, f, a

 integer n, myid, numprocs, i, rc

c function to integrate

 f(a) = 4.d0 / (1.d0 + a*a)

 call MPI_INIT(ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

 print *, 'Process ', myid, ' of ', numprocs, ' is alive'

c--

 time1=MPI_Wtime()

c--

 sizetype = 1

 sumtype = 2

 10 if (myid .eq. 0) then

 write(6,98)

 98 format('Enter the number of intervals: (0 quits)')

 read(5,99) n

 99 format(i10)

 endif

 call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

c check for quit signal

 if (n .le. 0) goto 30

c calculate the interval size

 h = 1.0d0/n

 sum = 0.0d0

 do 20 i = myid+1, n, numprocs

 x = h * (dble(i) - 0.5d0)

 sum = sum + f(x)

 20 continue

 mypi = h * sum

c collect all the partial sums

 call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,

 $ MPI_COMM_WORLD,ierr)

c node 0 prints the answer.

 if (myid .eq. 0) then

 write(6, 97) pi, abs(pi - PI25DT)

 97 format(' pi is approximately: ', F18.16,

 + ' Error is: ', F18.16)

 endif

 goto 10

 30 call MPI_FINALIZE(rc)

c--

 time2=MPI_Wtime()

 write(6,*) 'MPI elapse time= ',time2-time1

c--

 stop

 end

 program mm

 include 'mpif.h'

c NRA : number of rows in matrix A

c NCA : number of columns in matrix A

c NCB : number of columns in matrix B

 parameter (NRA = 1000)

 parameter (NCA = 1000)

 parameter (NCB = 1000)

 parameter (MASTER = 0)

 parameter (FROM_MASTER = 1)

 parameter (FROM_WORKER = 2)

 integer numtasks,taskid,numworkers,source,dest,mtype,

 & cols,avecol,extra, offset,i,j,k,ierr

 integer status(MPI_STATUS_SIZE)

 real*8 a(NRA,NCA), b(NCA,NCB), c(NRA,NCB)

 call MPI_INIT(ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, taskid, ierr)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr)

 numworkers = numtasks-1

 print *, 'task ID= ',taskid

c+++

c write(6,*) 'task id = ',taskid

c call system ('hostname') ! to find out WHICH computers run this job

c ! this command will SLOW DOWN (and make UNBALANCED

c ! workloads amongst processors)

c+++

 if(numworkers.eq.0) then

 time00 = MPI_WTIME()

C Do matrix multiply

 do 11 k=1, NCB

 do 11 i=1, NRA

 c(i,k) = 0.0

 do 11 j=1, NCA

 c(i,k) = c(i,k) + a(i,j) * b(j,k)

 11 continue

 time01 = MPI_WTIME()

 write(*,*) ' C(1,1) : ', c(1,1)

 write(*,*) ' C(nra,ncb): ',C(nra,ncb)

 write(*,*)

 write(*,*) ' Time me=0: ', time01 - time00

 go to 99

 endif

C *************************** master task *************************************

 if (taskid .eq. MASTER) then

 time00 = MPI_WTIME()

C Initialize A and B

 do 30 i=1, NRA

 do 30 j=1, NCA

 a(i,j) = (i-1)+(j-1)

 30 continue

 do 40 i=1, NCA

 do 40 j=1, NCB

 b(i,j) = (i-1)*(j-1)

 40 continue

C Send matrix data to the worker tasks

 avecol = NCB/numworkers

 extra = mod(NCB, numworkers)

 offset = 1

 mtype = FROM_MASTER

 do 50 dest=1, numworkers

 if (dest .le. extra) then

 cols = avecol + 1

 else

 cols = avecol

 endif

 write(*,*)' sending',cols,' cols to task',dest

 call MPI_SEND(offset, 1, MPI_INTEGER, dest, mtype,

 & MPI_COMM_WORLD, ierr)

 call MPI_SEND(cols, 1, MPI_INTEGER, dest, mtype,

 & MPI_COMM_WORLD, ierr)

 call MPI_SEND(a, NRA*NCA, MPI_DOUBLE_PRECISION, dest, mtype,

 & MPI_COMM_WORLD, ierr)

 call MPI_SEND(b(1,offset), cols*NCA, MPI_DOUBLE_PRECISION,

 & dest, mtype, MPI_COMM_WORLD, ierr)

 offset = offset + cols

 50 continue

C Receive results from worker tasks

 mtype = FROM_WORKER

 do 60 i=1, numworkers

 source = i

 call MPI_RECV(offset, 1, MPI_INTEGER, source,

 & mtype, MPI_COMM_WORLD, status, ierr)

 call MPI_RECV(cols, 1, MPI_INTEGER, source,

 & mtype, MPI_COMM_WORLD, status, ierr)

 call MPI_RECV(c(1,offset), cols*NRA, MPI_DOUBLE_PRECISION,

 & source, mtype, MPI_COMM_WORLD, status, ierr)

 60 continue

 time01 = MPI_WTIME()

C Print results

c do 90 i=1, NRA

c do 80 j = 1, NCB

c write(*,70)c(i,j)

c

c 70 format(2x,f8.2,$)

c 80 continue

c print *, ' '

c 90 continue

 write(*,*) ' C(1,1) : ', c(1,1)

 write(*,*) ' C(nra,ncb): ',C(nra,ncb)

 write(*,*)

 write(*,*) ' Time me=0: ', time01 - time00

 endif

C *************************** worker task *************************************

c if (taskid > MASTER) then

 if (taskid.gt.MASTER) then

 time11 = MPI_WTIME()

C Receive matrix data from master task

 mtype = FROM_MASTER

 call MPI_RECV(offset, 1, MPI_INTEGER, MASTER,

 & mtype, MPI_COMM_WORLD, status, ierr)

 call MPI_RECV(cols, 1, MPI_INTEGER, MASTER,

 & mtype, MPI_COMM_WORLD, status, ierr)

 call MPI_RECV(a, NRA*NCA, MPI_DOUBLE_PRECISION, MASTER,

 & mtype, MPI_COMM_WORLD, status, ierr)

 call MPI_RECV(b, cols*NCA, MPI_DOUBLE_PRECISION, MASTER,

 & mtype, MPI_COMM_WORLD, status, ierr)

C Do matrix multiply

 do 100 k=1, cols

 do 100 i=1, NRA

 c(i,k) = 0.0

 do 100 j=1, NCA

 c(i,k) = c(i,k) + a(i,j) * b(j,k)

 100 continue

C Send results back to master task

 mtype = FROM_WORKER

 call MPI_SEND(offset, 1, MPI_INTEGER, MASTER, mtype,

 & MPI_COMM_WORLD, ierr)

 call MPI_SEND(cols, 1, MPI_INTEGER, MASTER, mtype,

 & MPI_COMM_WORLD, ierr)

 call MPI_SEND(c, cols*NRA, MPI_DOUBLE_PRECISION, MASTER,

 & mtype, MPI_COMM_WORLD, ierr)

 time22 = MPI_WTIME()

 write(*,*) ' Time me=',taskid,': ', time22 - time11

 endif

 99 call MPI_FINALIZE(ierr)

 end

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	S11
	S12
	0
	S14
	0
	0
	0
	0
	0
	
	

	
	
	
	
	
	
	
	
	S22
	S23
	0
	0
	0
	0
	0
	0
	
	

	
	
	
	
	
	
	
	
	
	S33
	S34
	0
	S36
	0
	0
	0
	
	

	
	s
	
	=
	
	
	
	
	
	
	S44
	S45
	S46
	0
	0
	0
	
	

	
	
	
	
	
	
	
	
	
	
	
	S55
	S56
	0
	S58
	0
	
	

	
	
	
	
	
	
	
	
	sym.
	
	
	
	S66
	S67
	0
	S69
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	S77
	S78
	0
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	S88
	S89
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	S99
	
	

STORAGE SCHEMES :

· FULL

81 WORDS

· SYMMETRIC

45 WORDS

· BANDED

36 WORDS

· VARIABLE BAND

28 WORDS

· SKYLINE

25 WORDS

SPARSE

[image: image134.wmf]2

0

0

1

-

2

3

2

0

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

ø

Matrix Storage Methods

2910 Equation Stiffness Panel

[image: image10.jpg]

[image: image11.jpg]Skyline (Column) |
Dot Product
ref: SDM 30

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	S11
	S12
	0
	S14
	0
	0
	0
	0
	0
	
	

	
	
	
	
	
	
	
	
	S22
	S23
	0
	0
	0
	0
	0
	0
	
	

	
	
	
	
	
	
	
	
	
	S33
	S34
	0
	S36
	0
	0
	0
	
	

	
	s
	
	=
	
	
	
	
	
	
	S44
	S45
	S46
	0
	0
	0
	
	

	
	
	
	
	
	
	
	
	
	
	[image: image135.wmf]2

1

-

2

0

0

3

2

2

-

3

0

0

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image136.wmf]U

17

S

17

U

11

[image: image137.wmf]2

1

-

0

1

-

2

1

-

0

1

-

1

æ

ç

ç

è

ö

÷

÷

ø

	S55
	S56
	0
	S58
	0
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	S66
	S67
	[image: image138.wmf]1

0

0

1

-

2

1

0

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

0
	[image: image139.wmf]1

1

-

2

0

0

1

2

-

3

0

0

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

2

0

0

0

3

2

0

0

0

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

×

é

ê

ê

ê

ê

ê

ë

ù

ú

ú

ú

ú

ú

û

1

0

0

1

-

2

1

0

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

×

S69
	
	[image: image140.wmf]2

0

0

1

-

3

2

0

0

1

-

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

	
	
	
	
	
	
	
	
	
	
	
	
	
	S77
	S78
	0
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	S88
	S89
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	S99
	
	

	A(1)
	A(3)
	
	A(9)
	
	
	
	
	
	

	
	A(2)
	A(5)
	A(8)
	
	
	
	
	
	

	
	
	A(4)
	A(7)
	
	
	A(15)
	
	
	

	
	
	
	A(6)
	
	A(11)
	A(14)
	
	
	

	
	
	
	[image: image141.wmf]2

1

-

0

0

3

2

1

-

0

0

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image142.wmf]2

1

-

0

0

3

2

1

-

0

0

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

1

0

0

1

-

2

1

0

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

×

	[image: image143.wmf]S

77

U

17

(

)

2

å

-

U

27

(

)

2

+

..

+

U

67

(

)

2

+

	A(10)
	A(13)
	
	[image: image144.wmf]2

0

0

1

-

2

3

2

1

-

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

A(21)
	

	
	
	
	
	
	
	A(12)
	A(17)
	A(20)
	[image: image145.wmf]2

0

0

1

-

2

3

2

0

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

ø

A(25)

	
	
	
	
	
	
	
	A(16)
	A(19)
	A(24)

	
	
	
	
	
	
	
	
	A(18)
	A(23)

	
	
	
	
	
	
	
	
	
	A(22)

SKYTLINE STORAGE SCHEME FOR STIFFNESS MATRIX

	
	
	
	
	
	
	
	
	

	
	
	
	1
	
	[image: image146.wmf]2

	0
	[image: image147.wmf]2

3

	

	
	
	
	2
	
	
	1
	
	

	
	
	
	3
	
	
	1
	
	

	
	
	
	4
	
	
	3
	
	

	COLH
	
	
	5
	
	=
	1
	 =
	Column Height = "Known"

	
	
	
	6
	
	
	3
	
	

	
	
	
	7
	
	
	1
	
	

	
	
	
	8
	
	
	3
	
	

	
	
	
	9
	
	
	3
	
	

	
	
	
	
	
	[image: image148.wmf]m

12

u

12

1

-

2

m

13

u

13

0

,

m

23

u

23

2

-

3

,

[image: image149.wmf]2

0

0

1

-

3

2

1

-

0

1

-

1

æ

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

ø

	
	
	

	
	
	
	1
	
	
	1
	
	

	
	
	
	2
	
	
	2
	
	

	
	
	
	3
	
	
	4
	
	

	
	
	
	4
	
	
	6
	
	

	
	
	
	5
	
	
	10
	
	

	MAXA
	
	
	6
	
	=
	12
	=
	Location of Diagonal Terms

	
	
	
	7
	
	
	16
	
	

	
	
	
	8
	
	
	18
	
	

	
	
	
	9
	
	
	22
	
	

	
	
	
	10=N+1
	
	
	26
	
	

MAXA (1)
= 1 ALWAYS !

MAXA (I+1)
= MAXA(I) + COLH(I) + 1

[image: image150.wmf]2

0

0

1

-

3

2

0

0

1

-

1

3

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

THUS:

SIJ = A[MAXA(J) + J – I]

Example:
S55= A[MAXA(5) + 5 - 5] = A [10]

S69= A[MAXA(9) + 9 - 6] = A [25]

How To Find The Column Height of Each Column

Example:

[image: image12.wmf]2

2

2

1

3

4

6

9

 5

8

4

7

1

2

7

8

10

9

3

4

6

5

11

12

NEL= Number of

Elements = 4

NNODES = Number

of Nodes = 9

3

2

1

	
	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	
	

	
	
	
	
	Tx
	
	1
	1
	1
	0
	0
	0
	0
	0
	0
	
	

	
	
	
	
	Ty
	
	1
	1
	1
	0
	0
	0
	0
	0
	0
	
	

	
	
	
	
	Tz
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	

	
	ID
	
	=
	Rx
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	

	
	
	
	
	Ry
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	

	
	
	
	
	Rz
	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Convention :

1 If the Degree of Freedom (DOF) is fixed

0 If the DOF is free to move

	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	
	

	
	
	
	
	
	0
	0
	0
	1
	3
	5
	7
	9
	11
	
	Tx

	
	
	
	
	
	0
	0
	0
	2
	4
	6
	8
	10
	12
	
	Ty

	
	
	
	
	
	0
	0
	0
	0
	0
	0
	0
	0
	0
	
	Tz

	
	ID
	
	=
	
	0
	0
	0
	0
	0
	0
	0
	0
	0
	
	Rx

	
	
	
	
	
	0
	0
	0
	0
	0
	0
	0
	0
	0
	
	Ry

	
	
	
	
	
	0
	0
	0
	0
	0
	0
	0
	0
	0
	
	Rz

The following are element connectivities:

LM(1)= nodes 5,2,1,4 = (3,4,0,0,0,0,1,2)

LM(2)= nodes 6,3,2,5 = (5,6,0,0,0,0,3,4)

LM(3)= nodes 8,5,4,7 = (9,10,3,4,1,2,7,8)

LM(4)= nodes 9,6,5,8 = (11,12,5,6,3,4,9,10)

	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	
	
	
	
	1
	1
	1
	1
	1
	
	
	
	
	
	
	
	

	
	
	
	
	2
	1
	1
	1
	1
	
	
	
	
	
	
	
	

	
	
	
	
	3
	1
	1
	1 2
	1 2
	2
	2
	
	
	
	
	
	

	
	
	
	
	4
	1
	1
	1 2
	1 2
	2
	2
	
	
	
	
	
	

	
	
	
	
	5
	
	
	2
	2
	2
	2
	
	
	
	
	
	

	
	
	
	
	6
	
	
	2
	2
	2
	2
	
	
	
	
	
	

	
	S
	
	=
	7
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	8
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	9
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	10
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	11
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	12
	
	
	
	
	
	
	
	
	
	
	
	

Thus, the column height for each column is given as:

	
	
	
	
	
	
	
	

	
	
	1
	
	
	[image: image151.wmf]m

13

u

13

u

11

0

2

0

	0
	[image: image152.wmf]2

1

-

0

1

-

2

1

-

0

1

-

1

æ

ç

ç

è

ö

÷

÷

ø

	
	
	2
	
	
	
	1
	

	
	
	3
	
	
	
	2
	

	
	
	4
	
	
	
	3
	

	
	
	5
	
	
	
	2
	

	COLH
	
	6
	
	=
	
	3
	

	
	
	7
	
	
	
	6
	

	
	
	8
	
	
	
	7
	

	
	
	9
	
	
	
	8
	

	
	
	10
	
	
	
	9
	

	
	
	11
	
	
	
	8
	

	
	
	12
	
	
	
	9
	

The following is a skeletal Fortran statements to compute the column height of each column:

DO 1 I = 1, NEL

C… For I = 1, the smallest DOF = 1, hence

	
	[image: image153.wmf]1

0

0

1

-

2

3

2

1

-

0

1

-

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

[image: image154.wmf]1

0

0

1

-

2

1

1

-

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

3
	[image: image155.wmf]1

0

0

1

-

2

1

0

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

ø

	[image: image156.wmf]1

0

0

1

-

2

1

0

0

2

-

3

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

3-1
	
	[image: image157.wmf]3

2

[image: image158.wmf]1

3

2

	COLH
	4
	=
	4-1
	=
	3

	
	1
	
	1-1
	
	0

	
	2
	
	2-1
	
	1

	
	
	
	
	
	

	
	
	
	
	
	

C…For element I= 2, the smallest DOF = 3, hence

	
	[image: image159.wmf]U

2

1

-

2

3

2

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

ø

[U] matrix, with U

ii

 = 1

[L]

T

 matrix, with L

ii

 = 1

[D]

[image: image160.wmf]m

12

u

12

u

11

×

1

-

2

2

×

1

-

5
	[image: image161.wmf]u

57

k

57

u

15

u

17

×

-

u

25

u

27

×

-

u

35

u

37

×

-

u

45

u

47

×

-

u

55

	[image: image162.wmf]m

23

u

23

u

22

×

2

-

3

3

2

×

1

-

5-3
	
	[image: image163.wmf]m

13

u

13

u

11

×

0

2

×

0

[image: image164.wmf]Uij

Kij

1

i

1

-

k

U

ki

U

kj

å

=

-

U

ii

2
	

	COLH
	6
	=
	6-3
	=
	3
	

	
	3
	
	3-3
	
	[image: image165.wmf]1

8

0
	2

	
	4
	
	4-3
	
	[image: image166.wmf]e

1
	3

C…For element I= 3, the smallest DOF = 1, hence

	
	[image: image167.wmf]0

1

2

3

4

5

6

1

2

3

4

Numer of Processors, Cray-2

Time,Sec

Forward-Backward

Solution

Decomposition

54

MFLOPS

106

MFLOPS

159

MFLOPS

200

MFLOPS

5.4

2.7

1.8

1.5

[image: image168.wmf]0

50

100

150

200

250

convex 200

Cray-2

Cray-2(F)

Cray-YMP

Cray-YMP(F)

Type of processor

Time, Sec

221

76

76

45

45

Forward-Backward Solution

Decoposition

28

MFLOPS

83

MFLOPS

83

MFLOPS

137

MFLOPS

137

MFLOPS

9
	[image: image169.jpg]

	8

	
	10
	
	9

	
	3
	
	2

	COLH
	4
	=
	3

	
	1
	
	0

	
	2
	
	1

	
	7
	
	6

	
	8
	
	7

C…For element I= 4, the smallest DOF = 3, hence

	
	11
	
	8
	

	
	12
	
	9
	

	
	5
	
	2
	

	COLH
	6
	=
	3
	

	
	3
	
	0
	2

	
	4
	
	1
	3

	
	9
	
	6
	8

	
	10
	
	7
	9

	
	
	
	
	

1
continue

SEQUENTIAL CHOLESKI METHOD

	
	
	
	?
	
	

	
	S
	
	

Z
	=
	
 F

Step 1. Factorization

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	T
	
	
	
	

	
	S
	
	=
	
	L
	
	
	
	U
	
	=
	
	U
	
	
	
	U
	

Hence

	
	
	T
	
	
	
	
	
	
	

	
	U
	
	
	
	U
	
	Z
	
	= F

Step 2. Forward Substitution, Solve For y

	
	
	T
	
	
	
	
	
	
	

	
	U
	
	
	
	 Y
	
	
	=
	 F

Step3. Backward Substitution, Solve For Z

	
	
	
	
	
	

	
	U
	
	

 Z
	

 =
	

 Y

TO FIND FACTORIZED MATRIX [U]

Example known
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	s11
	s12
	s13
	
	
	
	U11
	0
	0
	
	
	
	U11
	U12
	U13
	

	
	s21
	s22
	s23
	
	=
	
	U12
	U22
	0
	
	
	
	0
	U22
	U23
	

	
	s31
	s32
	s33
	
	
	
	U13
	U23
	U33
	
	
	
	0
	0
	U33
	

Thus:

	
	
	
	
	
	
	

	s11
	=
	U112
	U11
	=
	 SQRT (S11)
	1st

	s12
	=
	U11 U12
	U12
	=
	s12/ U11
	2nd

	s13
	=
	U11 U13
	U13
	=
	s13/ U11
	4th

	s22
	=
	U122 + U222
	U22
	=
	SQRT(S22-U122)
	3rd

	s23
	=
	U12 U13+U22 U23
	U23
	=
	(S23-U12U13)/U22
	5th

	s33
	=
	U132 + U232 + U332
	U33
	=
	SQRT(S33-U132-U232)
	6th

	
	
	
	
	
	
	

Notes:

 [U] overwrite [S] !

 Column Oriented Approach

PV- Solve (INCORE Version)

In the sequential Choleski method, a symmetric, Positive definite

stiffness matrix, [K] , can be decomposed as

[K] = [U]T[U] (1)

with the coefficients of the upper-triangular matrix, [U]:

Uij = 0 for i > j (2)

[image: image13.wmf]11

11

K

u

=

[image: image14.wmf]11

1

1

u

K

u

j

j

=

 for

j (1
 (3)

 (4)

 (5)

 (8)

	
	
	
	
	
	
	I=4

	
	
	J=7

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	S11
	S12
	S13
	S14
	S15
	S16
	S17
	S18
	S19
	
	
	

	
	
	
	
	S22
	S23
	S24
	S25
	S26
	S27
	S28
	S29
	
	
	

	
	
	
	
	
	S33
	S34
	S35
	S36
	S37
	S38
	S39
	
	

	Row I -1 =3

	
	
	
	
	
	
	S44
	S45
	S46
	S47
	S48
	S49
	
	
	Row I = 4

	[S]
	=
	
	
	
	
	
	S55
	S56
	S57
	S58
	S59
	
	
	

	
	
	
	sym
	
	
	
	
	S66
	S67
	S68
	S69
	
	
	

	
	
	
	
	
	
	
	
	
	S77
	S78
	S79
	
	

	Row J = 7

	
	
	
	
	
	
	
	
	
	
	S88
	S89
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	S99
	
	
	

[image: image15.wmf]U

47

S

47

1

I

1

-

K

U

14

U

17

U

24

U

27

+

U

34

U

37

+

(

)

å

=

-

U

44

U77 =?

U11 = SQRT (S11) col #

Do 1 J = 2,n (say J = 7th Column)

Do 2 I = Top Row of Col J , Row J (say I = 4th Row)

Do 3 k = Top Row of Col I , Row I –1

Compute (UKI U KJ
Compute SIJ - (UKI U KJ
 .

 .

continue

continue

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	x
	x
	x
	

	
	
	
	
	
	
	x
	x
	x
	

	
	
	
	
	
	
	x
	x
	x
	

	A
	=
	
	
	
	
	x
	x
	x
	

	
	
	
	
	
	
	x
	x
	x
	

	
	
	
	
	
	
	x
	x
	x
	

	
	
	
	
	
	
	x
	x
	x
	

	
	
	
	
	
	
	x
	x
	x
	

	
	
	
	
	
	
	
	U8,10
	U8,14
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

Information required
Factorized ith row

Ex: i= 8

Information required Factorized ith column Ex: i = 7

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	x
	x
	x
	x
	x
	x
	U17
	
	

	
	
	
	
	
	x
	x
	x
	x
	x
	U27
	
	

	
	
	
	
	
	x
	x
	x
	x
	x
	
	
	

	A
	=
	
	
	
	
	
	x
	x
	x
	U47
	
	

	
	
	
	
	
	
	
	x
	x
	x
	
	
	

	
	
	
	
	
	
	
	
	x
	x
	
	
	

	
	
	
	
	
	
	
	
	
	x
	U77
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	J=7

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	x
	x
	x
	x
	x
	x
	S17
	x
	x
	
	
	

	
	
	
	
	x
	x
	x
	x
	x
	S27
	x
	x
	
	
	

	
	
	
	
	
	x
	x
	x
	x
	S37
	x
	x
	
	
	

	
	
	
	
	
	
	x
	x
	x
	S47
	x
	x
	
	
	

	[S]
	=
	
	
	
	
	
	x
	x
	S57
	x
	x
	
	
	

	
	
	
	sym
	
	
	
	
	x
	S67
	x
	x
	
	
	

	
	
	
	
	
	
	
	
	
	S77
	x
	x
	
	

	Row J = 7

	
	
	
	
	
	
	
	
	
	
	x
	x
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	x
	
	
	

Options for Syncronization

Option A: Make “one” synchronization check

 Is column # 6 done?

 If “ yes” then compute U17, U27,, … U77

 If “no” then wait!!

Option B:Make “ A Lot” synchronization check

Is Col#1 done?
Is Col#2 done?

[image: image16.wmf](

)

22

17

12

27

27

U

U

U

S

U

å

-

=

.

.

.

Is col#4 done?

[image: image17.wmf](

)

22

37

34

27

24

17

14

47

47

)

(

U

U

U

U

U

U

U

S

U

å

+

+

-

=

.

.

Is Col#6 done?

[image: image18.wmf]å

+

+

+

-

=

))

....

(

(

2

67

2

27

2

17

77

77

U

U

U

S

SQRT

U

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	x
	x
	x
	x
	x
	x
	S17
	x
	x
	
	
	

	
	
	
	
	x
	x
	x
	x
	x
	S27
	x
	x
	
	
	

	
	
	
	
	
	x
	x
	x
	x
	S37
	x
	x
	
	
	Is Col # 3 done?

	
	
	
	
	
	
	x
	x
	x
	S47
	x
	x
	
	
	

	[S]
	=
	
	
	
	
	
	x
	x
	S57
	x
	x
	
	
	

	
	
	
	sym
	
	
	
	
	x
	S67
	x
	x
	
	
	Is Col # 6 done?

	
	
	
	
	
	
	
	
	
	S77
	x
	x
	
	
	

	
	
	
	
	
	
	
	
	
	
	x
	x
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	x
	
	
	

Option C: Make “ A few” synchronization check

· If Col # 3 was done (by I th processor), then the Jth processor can proceed to compute U17, U27, and U37

· If Col # 6 was done (by K th processor), then the Jth processor can proceed to compute U47, U57, U67 and U77

· Then “ Broadcast” Col # 7 was done to all other processors

Version 1 Basic (Column oriented) Choleski

 U11 = SQRT (S11)

 DO 1 J = 2, N (say J=7th Column)

 DO 2 I = top row of Col J, Row J (say I = 4th Row)

 Sum 1 = 0

 DO 3 K = Top Row of Col I ,Row I-1

 3 Sum 1 = Sum 1 + UKI * UKJ

 UIJ = SIJ – SUM1

If (I.EQ.J) Then

 UII = SQRT(UIJ)

Else

[image: image19.wmf]U

IJ

U

IJ

U

II

Endif

 2 continue

 1 continue

Version 2 Basic Choleski (Avoid If Statements)

U11= SQRT (S11)

DO 1 J = 2, N (say J=7th Col)

DO 2 I = Top Row of Col J, Row J-1

Sum1 = 0

DO 3 K = Top Row of Col I, Row I-1

3
Sum 1 = Sum1 + UKI * UKJ

[image: image20.wmf]U

IJ

S

IJ

Sum1

-

U

II

2
Continue

C… Now, Treat the case I = J separately

Sum1 = 0

DO 33 K = Top Row of Col I , Row I-1

33
Sum1 = Sum 1 + UKI * UKI

UII = SQRT (SII –Sum1)

1
Continue

	
	
	
	Col 1 Done
	
	
	
	
	
	
	
	
	

	
	
	
	
	Processor1
	
	
	
	
	
	
	
	

	
	
	
	
	
	Processor2
	
	
	
	
	
	
	

	
	
	
	
	
	
	Processor3
	
	
	
	
	
	

	
	
	
	
	
	
	
	Processor4
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	P1
	P2
	P3
	P4
	

	
	
	
	x
	x
	x
	x
	x
	x
	X
	x
	x
	

	
	
	
	
	x
	x
	x
	x
	x
	X
	x
	x
	

	
	
	
	
	
	x
	x
	x
	x
	X
	x
	x
	

	
	
	
	
	
	
	x
	x
	x
	X
	x
	x
	

	[S]
	=
	
	
	
	
	
	x
	x
	X
	x
	x
	

	
	
	
	sym
	
	
	
	
	x
	X
	x
	x
	

	
	
	
	
	
	
	
	
	
	X
	x
	x
	

	
	
	
	
	
	
	
	
	
	
	x
	x
	

	
	
	
	
	
	
	
	
	
	
	
	x
	

Parallel and Basic Vector Choleski Code

Version 3 Parallel and Basic Vector Choleski Code

All columns are declared as not ready yet

U11 = SQRT(S11)

Broadcast to all processors that Col # 1 was done already

Parallel DO 1 J = 2, N

 DO 2 I = Top row of Col J, Row J-1

Is Col. # I done? (If not, then wait here !)

Sum1 = 0

Do 3 K = Top Row of Col I, Row I-1

3
Sum1 = Sum1 + UKI * UKI

[image: image21.wmf]U

IJ

S

IJ

Sum1

-

U

II

2
continue

processors # 2,3,4 go back loop 2

processor #1 Exit loop 2

C… Now, Treat the case I= J separately

. Sum1 = 0

. Do 4 K= Top row of col J , row J-1

. 4 Sum1 = Sum1 + UKI * UKI

UII = SQRT(SII – Sum1)

Broadcast to all processors that Col I (= ColJ) was done

1
Continue

[image: image22.wmf]x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

[S] =

Col J/2

Col J-1

Col J=7

.. Col J/2=3 Done?

.. Col (J-1)=6 Done?

SYM

Parallel (with a few synchronization check)

and Vector Choleski Code

Version 4 Parallel (with a few synchronization check) and Vector Choleski Code

UII = SQRT(S11)

Broadcast Col # 1 was done

Parallel DO 1 J = 2, N (sayJ = 7th col.)
Is Col # (J/2) Done ? wait?

Do 2 I = Top row of Col J, Row
[image: image23.wmf]J

1

-

2

Do 3 K = Top row of Col I, Row (I-1)

3 Sum1 = Sum1 + UKI* UKJ

2
UIJ = (SIJ – Sum1)/ UII

Is Col # (J-1) done? wait?

Do 22 I =Row
[image: image24.wmf]J

1

-

2

 +1 , Row (J-1)

Do 33 K= Top row of Col I, Row (I-1)

33 Sum1 = Sum1 + UKI* UKJ
22
UIJ= (SIJ- Sum1)/UII

…. Now, treat the case I = J separately

 .

 .

 .

UII = SQRT (SII- Sum1)

Broadcast Col I (=Col J) was done

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	J=6
	J=7
	
	
	
	
	

	
	
	
	x
	x
	x
	
	x
	x
	
	x
	S17
	
	x
	x
	
	

	
	
	
	
	x
	x
	
	x
	x
	
	x
	S27
	
	x
	x
	
	

	
	
	
	
	
	x
	
	x
	x
	
	x
	S37
	
	x
	x
	
	

	
	
	
	
	
	
	
	x
	x
	
	x
	S47
	
	x
	x
	
	

	[S]
	=
	
	
	
	
	
	
	x
	
	x
	S57
	
	x
	x
	
	

	
	
	
	sym
	
	
	
	
	
	
	x
	S67
	
	x
	x
	
	

	
	
	
	
	
	
	
	
	
	
	
	S77
	
	x
	x
	
	ROW J = 7

	
	
	
	
	
	
	
	
	
	
	
	
	
	x
	x
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	x
	
	

Option For Synchronization

Option A. Make “One” synchronization check

Is Column # 6 done?

If “ yes” then compute U17, U27, …U77

If “ no” then wait !!

Option B. Make “ A lot” synchronization check

Is Col# 1 done?

Is Col# 2 done?

Is Col#4 done? U47 =

Is Col#6 done?
 U77 =

	
	
	
	
	
	
	
	
	
	
	J=6
	J=7
	
	
	
	
	

	
	
	
	x
	x
	x
	
	x
	x
	
	x
	S17
	
	x
	x
	
	

	
	
	
	
	x
	x
	
	x
	x
	
	x
	S27
	
	x
	x
	
	

	
	
	
	
	
	x
	
	x
	x
	
	x
	S37
	
	x
	x
	
	…Is Col#3 done?

	
	
	
	
	
	
	
	x
	x
	
	x
	S47
	
	x
	x
	
	

	[S]
	=
	
	
	
	
	
	
	x
	
	x
	S57
	
	x
	x
	
	

	
	
	
	sym
	
	
	
	
	
	
	x
	
S67
	
	x
	x
	
	..Is Col# 6 done?

	
	
	
	
	
	
	
	
	
	
	
	S77
	
	x
	x
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	x
	x
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	x
	
	

Option C. Make “ a few” syncronization check

· If col #3 was done (by Ith processor), then the Jth processor can proceed to compute U17, U27 and U37
· If col #6 was done (by Kth processor), then the Jth processor can proceed to compute U47, U57, U67 and U77

· Then “ broadcast” col #7 was done to all other processor

Version 4.2 Parallel and Vector Unrolling Choleski Method

Presched Do 10 I = 1, NEQ

Void X(I) All column are not ready

10
End Preshed Do

Barrier

U11= SQRT (S11) Broadcast that column#1 was done

Produce X(1) = U11
End barrier

Presched Do 1 J = 2, NEQ, 2

Copy x(J-1) into TEMP (
Is column*(J-1) done?

Do 2 I = Top row of column J, row J-1, 2

Sum1 = 0=Sum2 = Sum3 = Sum4

Do 3 K = Top row of column I, row #I-1

Sum1 = Sum1+UKI * UKJ and Sum2 = Sum2+UKI*UK,J+1

3
Sum3 = Sum3+UK,I+1 * UKJ and Sum4 = Sum4+UK,I+1*UK,J+1

UIJ = KIJ-Sum 1 and UI,J+1 = KI,J+1- Sum2

UI+1,J = KI+1,J-Sum3 and UI+1,J+1 = KI+1,J+1- Sum4

Do 33 K = Top row of column I, row I-1 Treat 2 diagonal & Compute Sum1, Sum2, Sum3 1 extra term separately

33
(Similar to loop 3)

UJJ = SQRT (KJJ-Sum1)

Produce X(J) = UJJ (Broadcast column #J done

UJ,J+1 = (KJ,J+1 – Sum2)/UJJ

UJ+1,J+1 = SQRT(KJ+1,J+1 – Sum3-UJ,J+1* UJ,J+1)

Produce x(J+1) = UJ+1,J+1 (Broadcast column#J+1 done

End Presched Do

Version 5 Parallel Vector “ Skyline” Choleski Code

“Exactly” same as version 4 , except :

UKI

 A[MAXA(I)+I-K]

UKJ

 A[MAXA(J)+J-K]

UIJ A[MAXA(J)+J-I]

SIJ A[MAXA(J)+J-I]

UII A[MAXA(I)]

UII A[MAXA(I)]

Note: In actual coding, the decomposed matrix U will overwrite the original stiffness matrix S. For clarity, however, these 2 matrices have been shown under different names

Forward Substitution
To solve [U]T{y} = {F} for {y}

Example :

	
	
	
	
	
	
	
	
	

	
	U11
	0
	0
	
	
	y1
	
	F1

	
	U12
	U22
	0
	
	
	y2
	=
	F2

	
	U13
	U23
	U33
	
	
	y3
	
	F3

 U11y1 = F1 y1 = F1/U11

U12y1+U22y2 = F2 y2 = F2 –U12 y1/U22

 multipliers

Similarly

In general :

Version 1 Basic scheme

DO 1 J = 1, NEQ

Sum1 = 0

DO 2 I = 1, J-1

2
Sum1 = Sum1 + U(I,J)*y(I)

 y(J) = (y(J) – Sum1)/U(J,J)

1
continue

Version 2 Skyline scheme

DO 1 J= 1, NEQ

Sum1= 0

c…
DO 2 I = Top row of column J, next to diagonal term, +1

DO 2 I = colh(J), 1 , -1

2
Sum1 = Sum1 + U[MAXA(J)+I]* y (J-I)

1
y(J) = (y(J) – Sum1)/U(MAXA (J))

	
	
	
	
	
	
	J th Column
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	x
	x
	0
	x
	0
	0
	

	
	
	
	
	x
	x
	x
	x
	0
	

	U
	=
	
	
	
	x
	x
	x
	0
	

	
	
	
	
x
	x
	x
	x
	x
	x
	

	
	
	
	
sym
	
	
	
	x
	x
	

	
	
	
	
	
	
	
	
	x
	

	
	
	
	
	
	
	
	
	
	

Version 3 Skyline and Vector- Unrolling scheme

Assuming NEQ = Number of equations = odd number

J th Column

 &(J+1)th column have same column height

	
	
	
	
	
	
	
	
	
	

	
	
	
	x
	x
	0
	x
	
	0
	

	
	
	
	x
	x
	x
	x
	
	x
	

	U
	=
	
	0
	x
	x
	x
	
	x
	

	
	
	
	x
	x
	x
	x
	
	x
	

	
	
	
	0
	x
	x
	x
	
	x
	

 Extra term = U (MAXA(J+1)+1)

C… treat column 1 separately

 y(1) = y(1)/ U (MAXA(1))

 Do 1 J = 2, NEQ , 2

 Sum1 = 0

 Sum2 = 0

 Do 2 I = Colh(J),1, -1

 Sum 1= Sum1 + U(MAXA(J)+I)*y(J-I)

 Sum2 = Sum2 + U(MAXA(J+1)+1+I)*y(J-I)

2 continue

 y(J) = (y(J)-Sum1)/U(MAXA(J))

 y(J+1) = [y(J+1)- Sum2- U(MAXA(J+1)+1) * y(J)] / U[MAXA(J+1)]

1 continue

Backward Substitution

 To solve [U]{Z} = {y}

Example:

	
	
	
	
	
	
	
	
	
	

	
	U11
	U12
	U13
	U14
	
	
	Z1
	
	y1

	
	0
	U22
	U23
	U24
	
	
	Z2
	=
	y2

	
	0
	0
	U33
	U34
	
	
	Z3
	
	y3

	
	0
	0
	0
	U44
	
	
	Z4
	
	y4

U44 Z4 = y4 , hence

U33 Z3 +U34 Z4 = y3 , hence

Similarly:

In general:

Note

 Once Z4 is known , we can update the right hand side vector {y} as following :

y3 = y3 – U34Z4

y2 = y2 – U24Z4

y1 = y1 – U14Z4

Version 1 Basic Scheme

In practice, the solution vector {Z} will overwrite the right hand side vector {y}

DO 1 J = NEQ , 1, -1 (say, J = 4)

Y(J) = y(J) / U(J,J)

Do 2 I = J-1, top row of column J, -1

2
y(I) = y(I) – U(I,J)* y(J)

1
continue

Version 2 Loop Unrolling Scheme

Do 1 J = NEQ , 1 , -2

y(J) = y(J)/U(J,J)

y(J-1) = [y(J-1)- U(J-1,J) * y(J)] / U(J-1,J-1)

Do 2 I = J-colh(J), J-2, +1

C… Do 2 I = J-1, top row of column J, -1

2 y(I) = y(I) –U(I,J) *y(J) – U(I,J-1) * y(J-1)

1 continue

Applications

(SDM 30th , Mobile, Alabama, April 89 by Storaasli, Nguyen and co-workers)

1. N = 10,000 and BW = 800

	
	
	
	

	No. Processors
	Cray-2 Time
	Speedup
	MFLOPS

	
	(seconds)
	
	

	1
	74
	1.00
	83

	2
	37
	2.00
	166

	3
	25
	2.96
	249

	4
	19
	3.89
	326

2.N =54,870, BW = 381 and Max BW = 894

space shuttle solid rocket booster (SRB) problem

	1
	135
	1.00
	66

	2
	70
	1.93
	127

	3
	46
	2.93
	193

	4
	36
	3.75
	250

[image: image25.jpg]

Figure 1. Variable bandwidth row storage of panel stiffness method

[image: image26.jpg]

Figure 2. Skyline column storage of panel stiffness matrix

[image: image27.jpg]

Figure 3. Skyline storage for stiffness matrix before and after decomposition

Figure 4. Computation time reduction for test problemwith 10,000equations and 800 bandwidth.

Figure 5. Time comparison for one processor with 10,000equations and 800 bandwidth

 (F denotes Force used)

Figure 6. Computation time reduction for 3000 equation cube.

Figure7. Computation time reduction for Space Shuttle Solid Rocket Booster with 54,870 equations.

Parallel Vector Variable Bandwidth Choleski Factorization

To solve [K]{Z} = {F}

Let [K] = [U]T[U]

[U]T[U]{Z} = {F}

[U]T {Y} = {F}…… Forward Do 2 k =top row# of ith column,i-NP,
[image: image28.wmf]D

 =2

unroll#

[U]{Z} = {Y}……….Backward

Do 3 j = I, k+ row length k

 #rows unrolled

 Row I-NP

 Row I

[image: image29.wmf]U

57

k

57

U

15

U

17

-

U

25

U

27

×

-

U

35

U

37

×

-

U

45

U

47

×

-

U

55

Unrolled, say, level 2 Fig. 6 Information required to update row I.

 Assuming bandwidth is full

 Do 1 i = row#1 , row#n

 Do 2 k =top row #of ith column , i-1

C
 compute multiplication factor, xmult

 xmult = U (k,i)

cgauss xmult = U(k,k) * U(k,i) replaces above statement

 Do 3 j = i,k+ row length of row k

C calculate the numerator of Eq. 5

U(i,j) =K(i,j) – xmult * U(k,j)

3 continue

2 continue

C calculate final value of U(i,i) as in Eq. 4

U(i,i) = SQRT(U(i,i))

Cgauss remove above statement

C Do loop 4 divides the numerator of Eq.5by Uii
Xinv = 1/U(i,i)

Do 4 j = I+1 ,I + row length of row I

U(I,j) = U(I,j) * xinv

4 continue

1 continue

Fig. 4 Sequential Choleski variable-band skeleton code for matrix factorization.

Loop- Unrolling Technique to Enchance Sequential Choleski Code

In Fig. 6, for example, once the first four rows of the factored matrix, [U], have been completely updated, row 5 can be updated according to the numerator of Eq.5

U5j = k5j -U15 *U1j
 -U25 *U2j
 -U35 *U3j
 -U45 *U4j

DO 1 I= row# 1, row#n

DO 2 k=top row#of Ith column, I-1, 4

DO 3 j=I ,k + row length of row k

C Eq. 6(numerator of Eq. 5)code follows

U(i,j) = k(i,j) –U(k,I) *U(k,j)

 –U(k+1,I) *U(k+1,j)

 –U(k+2,I) *U(k+2,j)

 –U(k+3,I) *U(k+3,j)

3 Continue

2 Continue

c repeat loop 2 to update ith row by extra k values

c for Do 2 k = 1, 10,4, extra k values are 9,10

 U(i,i) = SQRT(U(i,i))

 Xinv = 1/ U(i,i)

 DO 4 j = I+1, I + row length of row i

 U(i,j) = U(i,j)*xinv

4 continue

1 continue

 Fig. 5 Choleski factorization code:

level 4 unrolling

	
	
	
	
	
	
	
	
	
	
	
	Row
	
	Processor

	
	
	
	
	
	
	
	
	
	
	
	No.
	
	No.

	
	
	
	
	
	
	
	
	
	
	
	1
	
	1

	
	
	
	
	
	
	
	
	
	
	
	2
	
	2

	
	
	
	
	
	
	
	
	
	
	
	3
	
	3

	
	
	
	
	
	
	
	
	
	
	
	4
	
	4

	
	
	
	
	
	
	
	
	
	
	
	5
	
	1

	
	
	
	
	
	
	
	
	
	
	
	6
	
	 2 completely

	
	
	
	
	
	
	
	
	
	
	
	7
	
	 3 factorized

	
	
	
	
	
	
	
	
	
	
	
	8
	
	 4 region

	
	
	
	
	
	
	
	
	
	
	
	9
	
	1

	A =
	
	
	
	
	
	
	
	
	
	
	10
	
	2

	
	
	
	
	
	
	
	
	
	
	
	11
	
	3

	
	
	
	
	
	
	
	
	
	
	
	12
	
	4

	
	
	
	
	
	
	
	
	
	
	
	13
	
	1

	
	
	
	
	
	
	
	
	
	
	
	14
	
	2

	
	
	
	
	
	
	
	
	
	
	
	15
	
	3

	
	
	
	
	
	
	
	
	
	
	
	16
	
	4

	
	
	
	
	
	
	
	
	
	
	
	17
	
	1

	
	
	
	
	
	
	
	
	
	
	
	18
	
	2

	
	 i-NP+1=19
	
	
	
	
	
	
	
	
	
	19
	
	 3 sequential

	
	
	
	
	
	
	
	
	
	
	
	20
	
	 4 region

	
	
	
	
	
	
	
	
	
	
	
	21
	
	1

	
	 i=22
	
	
	
	
	
	
	
	
	
	22
	
	2

	
	
	
	
	
	
	
	
	
	
	
	23
	
	3

	
	
	
	
	
	
	
	
	
	
	
	24
	
	4

	
	
	
	
	
	
	
	
	
	
	
	25
	
	1

	
	
	
	
	
	
	
	
	
	
	
	26
	
	2

	
	
	
	
	
	
	
	
	
	
	
	27
	
	3

	
	
	
	
	
	
	
	
	
	
	
	28
	
	4

	
	
	
	
	
	
	
	
	
	
	
	29
	
	1

Assuming NP = 4 processors

U(1,1) =SQRT (k(1,1))

Divide row#1 by U(1,1)

Declare row#1 finished

Produce X(1) = U(1,1)

Presched DO 1 i = row #2, row# n

 DO 2 k = top row# of the ith column , I-NP, 4

C skip DO 3 if all multipliers are zero

 DO 3 j = i, k + row length of row k

 U(i,j) =k(i,j) - U(k,i)* U(k,j)

 - U(k+1,i)* U(k+1,j) In parallel
 - U(k+2,i)* U(k+2,j)

 - U(k+3,i)* U(k+3,j)

3 continue

2 continue

 Copy X(i-1) into temp

 DO 4 k = max(top row # of ith column, I- NP+1), I-1 In Sequential
 DO 5 j = i, k + row length of row k (see black region

 U(i,j) = U(i,j)-U(k,i)*U(k,j) ,Fig 6)

5 continue

4 continue

 U(i,i) = SQRT(U(i,i))

 Xinv = 1/U(i,i)

 DO 6 j= I+1, I+ row length of row I

 U(i,j) = U(i,j)* xinv

6 continue

C broadcast to all processors that row i is finished

 Produce X(i) = U(i,i)

1 End Presched DO

Parallel vector Choleski skelaton code with loop unrolling level 4

APPLICATION

Fig. 3 Effect of more processors on analysis time (high-Speed Research Aircraft).

 Table 1 Matrix decomposition time (MFLOPS) for aircraft on Cray Y-MP:

16,146 equations, bandwidth=600 max, 321 average,

5,579,839 nonzeros (after factorization), 499,505 nonzeros (before factorization)

	
	
	

	processor
	Sec (MFLOPS
	Sec (MFLOPS) with zero-checking

	
	
	

	1
	8.58(228)
	6.31(203)

	2
	4.50(441)
	3.46(399)

	4
	2.41(822)
	1.39(730)

	8
	1.54(1284)
	1.29(1071)

Fig. 9 Effect of more processors on analysis time (Space Shuttle SRB)

Table 2 Matrix decomposition time (MFLOPS) (shuttle SRB on Cray Y-MP)

54,370 equations, bandwidth=900 max, 383 average,

21,090,396 nonzeros (after factorization), 1,310,973 nonzeros (before factorization)

	
	
	

	processor
	Sec (MFLOPS
	Sec (MFLOPS) with zero-checking

	
	
	

	1
	40.26(228)
	40.97(224)

	2
	20.27(452)
	19.32(425)

	4
	10.50(872)
	10.00(821)

	8
	6.04(1517)
	3.79(1444)

[image: image30.jpg]

[k]{x} = {f}
 (14)

	
	
	
	
	

	
	-2
	-1
	0
	

	
	-1
	2
	-1
	

	
	0
	-1
	1
	

 where [k] = (15)

	1

	0

	0

and {f} = (16)

the solution of equation 14-16 is:

	
	
	1

	{x}
	=
	1

	
	
	1

 (17)

A-1 Choleski Method

The stiffness matrix [k} of equation 15 can be converted into a Choleski upper triangular matrix, [U], by appropriate row operations:

[K1] = [K] =
[image: image31.wmf]2

1

-

0

1

-

2

1

-

0

1

-

1

æ

ç

ç

è

ö

÷

÷

ø

 [K2] =
[image: image32.wmf]2

0

0

1

-

2

3

2

1

-

0

1

-

1

æ

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

ø

 [K3] =

 [K4] =
[image: image33.wmf]2

0

0

1

-

2

3

2

0

0

2

-

3

1

3

æ

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

ø

 [K5] =
where

Row 1 of [K2] = Row 1 of [K] /
[image: image34.wmf]K1

1

1

,

(

)

Row 2 of [K2] = Row 1 of [K2] / + Row 2 of [K1]

Row 2 of [K3] = Row 2 of [K2] /
[image: image35.wmf]K2

2

2

,

(

)

Row 3 of [K4] = Row 2 of [K3]* + Row 3 of [K3]

Row 3 of [K5] = Row 3 of [K4] /
[image: image36.wmf]K4

3

3

,

(

)

The multiplier constants, mij, used in the forward substitution (or updating the right-hand side vector of Eq.14) are the same as terms in the factorized upper-triangular matrix such that

New (row2) = old (row2)-new (row1)*m12 , Hence m12=
[image: image37.wmf]1

-

2

A.2 Gauss Elimination Method

As in the Choleski Method in Section A.1, the stiffness matrix,[K] of Eq. 15 can be converted into a Gauss upper-triangular matrix by appropriate row operations.

[K1] = [K] =
[image: image38.wmf]2

1

-

0

1

-

2

1

-

0

1

-

1

æ

ç

ç

è

ö

÷

÷

ø

 [K2] = [K3] =

In this version of the Gauss elimination method, the multipliers mij can be obtained from the factored matrix, [U], as:

[image: image39.wmf]m

12

u

12

u

11

1

-

2

[image: image40.wmf]m

23

u

23

u

22

1

-

3

2

2

-

3

An alternative version of Gauss elimination where the final diagonal elements become 1 follows:

[K1] = [K] =

 [K2] = [K3] =

 [K4] = [K5] =

Since the final diagonal terms become one, in the computer code, the main diagonal of the factored matrix is used to store the diagonal terms before scaling.

For example, U11=2; U22 = ; and U33 = , The multiplier mij is obtained from the factored matrix, [U], as:

A. 1 Choleski

[K] = = *

 multipliers

 [U] T * [U]

Forward Phase [U]T {y} = {b}

A. 2 Gauss

[K] = = *

 multipliers

 [L] * [U]

Forward Phase [L] {y} = {b}

 multipliers

** or, alternatively [K] = = *

A.3 LDLT Algorithm (or UTDU)

[K] =
[image: image41.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

1

1

0

1

2

1

0

1

2

=

 =

Notes

(1) LDLT is essentially the same as the 2nd version (see A.2) of Gauss

(2) Computer implementation of LDLT

Do 11 I = 1, N

 Do 22 K = 1, I-1

 xmult=u()/D(I)=u(K,I)/u(K,K)

 Do 33 J = I, N (or I+Irowlength)

 u(I,J) = u(I,J)-xmult*Kth Row

33
 Continue

 u(K,I) = xmult

22
 Continue

11
Continue

For I = 1 (Temporary no change in 1st row

For I = 2 , Hence K = 1 (1

[image: image42.wmf]2

1

)

2

,

1

(

11

-

=

=

u

u

xmult

u2,2 = u2,2 – (xmult)(u1,2) = 2-(-1/2)(-1) = 3/2

u2,3 = u2,3 – (xmult)(u1,3) = -1-(-1/2)(0) = -1

u(1,2) = xmult = -1/2

For I=3 , Hence K= 1 (2

[image: image43.wmf]0

2

0

)

3

,

1

(

1

,

1

=

=

=

u

u

xmult

u3,3 = u3,3 – (xmult=0)*(u1,3=0) = 1

u(1,3)=0

Now K = 2

[image: image44.wmf]3

2

2

3

1

)

3

,

2

(

2

,

2

-

=

-

=

=

u

u

xmult

u3,3 = u3,3 – (xmult = -2/3)(u2,3 = -1) = 1/3

u(2,3) = xmult = -2/3

----------------- QED

Hence:

PARALLEL-VECTOR OUT-OF CORE

EQUATION SOLVER FOR

COMPUTIONAL MECHANICS

QIN*, J., Agarwal*, T.K., Storaasli+,o.o.

Nguyen*,D.T., and Baddourah1, M.A.

Center for

Multi-disciplinary Parallel-Vector Computation

Civil Engineering Department

Old dominion University, Norfolk, Virginia 23529

+NASA Langley Research Center

Computational Mechanics Branch

Hampton, Virginia 23665

1Lockedheed Engineering and Science Co.

Hampton, Virginia 23665

2nd Symposium

on

Parallel Computational Method

for

Large-Scale Structural Analysis and Design

February 24-25, 1993,

Marriott Hotel, Norfolk, Virginia

Sponsor

NASA Langley Research Center

Hampton, Virginia

Parallel Vector Variable Bandwidth Choleski Factorization

To solve [K]{Z} = {F}

Let [K] = [U]T[U]

[U]T[U]{Z} = {F}

[U]T {Y} = {F}…… Forward Do 2 k =top row# of ith column,i-NP,
[image: image45.wmf]D

 =2

unroll#

[U]{Z} = {Y}……….Backward

Do 3 j = I, k+ row length k

 #rows unrolled

 Row I-NP

 Row I

[image: image46.wmf]U

57

k

57

U

15

U

17

-

U

25

U

27

×

-

U

35

U

37

×

-

U

45

U

47

×

-

U

55

Unrolled, say, level 2 Fig. 6 Information required to update row I.

 Assuming bandwidth is full

Storage Strategy (PV-00C)

[image: image47.wmf]Rec. 1

Rec. 2

=> => => => =>

Rec. 6

Rec. 7

=> => => => =>

Rec. 200

File # ID

Buffer out

Buffer in

In-core

Start

Rec. 1

Rec. 3

Rec. 5

Rec. 7

Rec. 9

Incore Memory reserved to buffer

In "old" record, which are required

by current, Factorized record

Ilocate

Icstore = No. records stay in the core memory

Nloop = No. blocks in a record

a block = 8 rows = loop (For unrolling purpose)

I.M.R. = Max. (Maxbw2, Available)

NP = No. Processors
Typical Use of BUFFER IN and BUFFER OUT Statements

 DO 1000 I = 9, n

 if (I – ((I-1) / (nloop*loop))* (nloop*loop).eq. NP) then

 call setpos (Id,ilocate) Ical1

 call buffer in (a(start), a (start+ length-1))

 endif

C…. Update the I th row of A

 …..

 …..

C…. The I-th row of A has been updated

 If (I-((I-1)/(nloop*loop))* (nloop*loop).eq.NP) then

 call setpos (id, ilocate1)

 call buffer out (a(start1),a(start1 + length1-1))

 endif

1000 continue

Assuming : I = 16 (and I = 17)

 Loop = 8

 Nloop = 2 ; NP =1 16 rows per record

Thus : Ical1 = 16 (and Ical = 1)

APPLICATION

Characteristic of Finite Element Models

	
	
	
	

	
	HSRA
	Refined HSRA
	SRB

	Max. Bandwidth
	600
	702
	900

	Ave. Brandwidth
	321
	451
	383

	Matrix Terms
	5,207,547
	7,312,860
	21,090,396

	Non-zero Terms
	499,505
	373,782
	1,310,973

	No. Operations
	171,425,520
	
	9.2*109

	No. Equations
	16,146
	16152
	54,870

Note:

 “Same” problem + different reordering method “different” problem

(w.r.t. Equation Solver)

[image: image48.jpg]

[image: image49.jpg]

Table 5. Performance time (tsecnd) of Pvsolve-ooc on Cray Y-MP

	
	
	
	

	No. of Processors
	HSRA
	Refined HRSA
	SRB

	1
	6.98
	15.50 (15.99*)
	31.26

	2
	3.50
	7.80 (8.44*).
	15.53

	4
	1.85
	3.94 (4.66*)
	7.80

	8
	1.01(2.31*)
	2.04 (3.15*)
	4.21

*Elapsed Time

CONCLUSIONS

· general purpose, modular PV- OOC solver has been developed on shared memory type computers.

· I.M.R. = Max. (Maxbw2, Available)

· Utilize Buffer In & Out

· Performance of PV-OOC on NASA Focused problems(HSRA and SRB) seems to be good

Notes: “newer” version of PV-OOC is being developed

 I.M.R. = Max. (16* Maxbw, Available)

 timing (tsecnd, Cray Y-MP) for (artificial) HSRA model:

	
	
	

	Incore
	Maxbw2
	16*Maxbw

	8.5 sec
	8.6 sec
	12.8 sec

AN OUT-OF-CORE EQUATION SOLVER

FOR COMPUTATIONAL MECHANICS ON SUPERCOMPUTERS

Y.Hu*,J. Qin*, D.T. Nguyen*, and W.K. Belvin+
*Center for Multi-disciplinary Parallel-Vector Computation

135 KDH Building

Old Dominion University, Norfolk, VA 23529 (USA)

+NASA Langley Research Center, Spacecraft Dynamics Branch,

Mail Stop 230, Hampton, VA 23681 (USA)

IV OUT-OF CORE VECTOR EQUATION SOLVER (VERSION 3)

	
	
	
	
	
	
	
	
	
	

	 Record 1 (Multiple of 8 rows)
	2
	3
	4
	5
	6
	7 Assumed to be largest record
	8
	9 (Multiple of 8 rows)
	10 (Left over)

Figure 1: Solid State Disk (SSD) Storage for the Coefficient Stiffness Matrix[A]
	
	
	
	
	
	
	
	
	
	

	 (IM) words

	
	
	(6* neq) words to store column heights; diagonal location etc...
	
	

	
	(6*neq) words
	

	
	
	
	Block 1 (Each block can hold 1 largest record, say record 7,and may have some small left-over, unused memory)
	Block 2
	
	
	
	(IM for [A]) words
	

	
	
	
	Block 3
	
	
	
	
	

Figure 2: Incore Memory Storage Management

(Assumed to be partitioned into 3 blocks)

[image: image50.wmf]Row I-NP

Row I

Not completely updated

completely updated

Figure 3: Information required to update row i (incore version)

[image: image51.wmf]Block 1,record1

Buffer IN

These 3 blocks are currently

residing inthe incore memory

Block 2, record 2

Block 3, record 3

Block 1, record 4

Block 2, record 5

Block 3, record 6

Block 1 (currently update),record7

Block 2, record 8

Block 3, record 9

Record 1

2

3

4

5

6

7

(Largest) record

8

9

10

maxbw

neq x maxbw

Figure 4: Out-Of-Core Choleski Factorization

Version 3 OOC performance

$$$$ vector Out –of Core Solver (LDL) $$$$

+++ by O.D.U. Parallel Center May 1991 ++++

****** BE SURE THAT : *****************

** incore > = m*neq + 24 * (5+ maxbw)
!**

** m = 6 for eqution solver
!**

** m = 7 for eigen solver

!**

**If use SSD then disksize .ne. 0

!**

**and reserve-disksize-words on SSD
!**

**disksize >= neq*(5+ maxbw)

!**

** + neq (lanmax + 1)

!**

----- The input parameters are : -----

neq, maxbw, incore, ntblk, disksize, m, neig, lanmax, jqread

16146, 499505, 2000000, 3, 9000000, 6, 0, 1, 2

Real Problem: neq = 16146ncof = 499505

IFLAG = 1 No. of procs. = 1

CPU for Qread = 2.189999999999E-6

get_ma,neq,ncof,maxbw,maxuma,disksize,isegread

16146 , 499505 , 2*0 , 9000000 , 9535318

NEQ = 16146 MaXBW = 600 NTERMS = 5207547

The Actual Incore,isegread = 2000000, 9535318

Original nblk=neq/8 = 2019

In transq: isummax = 97787

Iter#,nblk, iii ,neqbk,ntblk,neqq,incore,ntblkq=

3 , 13 , 131 , 634347 ,3 ,3150 , 1903043 , 394

CPU For getting K = 5.0343924000001E-2

******i1,i2,i3,i4,i5,i6,i7,i8 ************

16151 , 32298 , 48444 , 64590 , 64655 , 80801 , 96947 , 1999988

In-Core Memory used = 1999988

Iter#,nblk,i11,neqbk,ntblk,neqq,incore,ntblkq=

3,13,131,634347,3,3150,1903043,394

NBLKO = 13 and NBLK = 13

===Using Cray Y-MP C90 Computer ====

Non-Zeros after Factorization = 3716388

Factorization CPU (me) = 6.957708318, 1

Forward CPU = 4.3623425999982E-2

Forward Mflops = 447.1076618331

Backward CPU = 7.4812769999994E-2

Backward Mflops = 260.7090741327

Total CPU = 7.07359014

Total WCT = 40.73067534

Neq=16146neqbk=634347ntblk=3 nblk=13 avg.band=322 maxbw=600 nroll= 8

$$$$ vector Out –of Core Solver (LDL) $$$$

+++ by O.D.U. Parallel Center May 1991 ++++

****** BE SURE THAT : *****************

** incore > = m*neq + 24 * (5+ maxbw)
!**

** m = 6 for eqution solver
!**

** m = 7 for eigen solver

!**

**If use SSD then disksize .ne. 0

!**

**and reserve-disksize-words on SSD
!**

**disksize >= neq*(5+ maxbw)

!**

** + neq (lanmax + 1)

!**

----- The input parameters are : -----

neq, maxbw, incore, ntblk, disksize, m, neig, lanmax, jqread

16146 , 499505 , 2000000 , 3 , 9000000 , 6 , 0 , 1 , 2

Real Problem: neq = 16146ncof = 499505

IFLAG = 1 No. of procs. = 1

CPU for Qread = 2.189999999999E-6

get_ma,neq,ncof,maxbw,maxuma,disksize,isegread

16146,499505,2*0,9000000,9535318

NEQ = 16146 MaXBW = 600 NTERMS = 5207547

The Actual Incore,isegread = 2000000, 9535318

Original nblk=neq/8 = 2019

In transq: isummax = 97787

Iter#,nblk, iii ,negbk,ntblk,neqq,incoire,nstblkq=

2*1, 16146,5207547, 1,16146,8893028,1

CPU For getting K = 4.784964E-2

******i1,i2,i3,i4,i5,i6,i7,i8 ************

16151 , 32298 , 48444 , 64590 , 64595 , 80741 , 96887 , 5304434

In-Core Memory used = 5304434

Iter#,nblk,i11,negbk,ntblk,negg,incore,ntblkg=

2*1, 16146,5207547, 1,16146,8893028,1

NBLKO = 1 and NBLK = 1

===Using Cray Y-MP C90 Computer ====

KA1, KA2, NTEERMQ,ME = 1, 16146,3716388,1

Non-Zeros after Factorization = 3716388

Factorization CPU (me) = 6.898511052, 1

Forward CPU = 4.3623425999982E-2

Forward Mflops = 450.2729497396

Backward CPU = 7.4812769999994E-2

Backward Mflops = 262.4350406816

Total CPU = 7.016362956

Total WCT = 39.649387302

Neq=16146neqbk=634347ntblk=1 nblk=1 avg.band=322 maxbw=600 nroll= 8

Sum. = 301.2883232344

Max. = 0.4474361431831 at # 1341 D.O.F

| | Ax – b | | / | | b | | = 1.70011553331156E-8

 P1

Sequential Computer

(Vax, “old”, IBM

Solve An

Engr. Problem

Will take

100 seconds

300*106 operations

MFLOPS = 300*106 operations

 106 * 100 sec

MFLOPS = 3

P1..P2…P4…P8

Parallel Computer

(Cray-YMP)

Solve An

Engr.Problem

Will take (1 processor)

 20 seconds

300*106 operations

MFLOPS = 300*106 oper = 15

 106 * 20 sec

Will take (8 processors)

4 seconds

300*106 operations

MFLOPS = = 300*106 oper = 75

 106 * 4 sec

2 rows are grouped together�& needs to add "extra" ● (zeroes)�so that these 2 rows will have same starting and ending points

Same final answer

Every 2 Columns are

grouped together .� -> Need to add " extra" zeroes (●) so that these 2 columns will have same starting & ending points

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

3

2

1

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

Current rows to be factorized

� EMBED Visio.Drawing.6 ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Mathcad ���

� EMBED Visio.Drawing.6 ���

Loop 33

� EMBED Visio.Drawing.6 ���

Loop 33

Loop 33

u(K,J)

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

Speedup

Time

PAGE
1

_1051734282.bin

_1052329998.unknown

_1052335564.bin

_1052434947.vsd

_1052437486.vsd

_1052508153.vsd

_1052520138.unknown

_1052520141.unknown

_1052762123.bin

_1052515162.vsd

_1052515836.unknown

_1052508431.bin

_1052435994.vsd

_1052431683.bin

_1052432062.bin

_1052432581.bin

_1052433168.unknown

_1052434659.vsd

_1052432113.bin

_1052432382.bin

_1052431968.bin

_1052393612.bin

_1052393904.vsd

_1052394203.bin

_1052431106.vsd

_1052393809.vsd

_1052336769.bin

_1052393512.bin

_1052336461.vsd

_1052332961.bin

_1052335308.unknown

_1052335453.unknown

_1052335405.bin

_1052335281.unknown

_1052331383.unknown

_1052331462.unknown

_1052330041.unknown

_1051756926.bin

_1051758685.bin

_1051877151.vsd

_1052329281.vsd

_1052329645.unknown

_1052329853.unknown

_1052329582.unknown

_1052306681.vsd

_1052307843.unknown

_1051877202.vsd

_1051760050.bin

_1051790632.bin

_1051797258.bin

_1051812305.vsd

_1051797132.bin

_1051760064.bin

_1051759017.bin

_1051759735.bin

_1051758945.bin

_1051758059.bin

_1051758279.bin

_1051758527.bin

_1051758193.bin

_1051757461.bin

_1051757665.bin

_1051757087.bin

_1051735688.bin

_1051740785.bin

_1051756449.bin

_1051739834.bin

_1051740726.bin

_1051739705.bin

_1051734771.bin

_1051735102.bin

_1051734567.bin

_1051646987.bin

_1051733818.bin

_1051734126.bin

_1051669949.bin

_1051716390.bin

_1051722239.bin

_1051730239.bin

_1051730578.bin

_1051729358.bin

_1051721558.bin

_1051716137.bin

_1051649694.bin

_1051652585.bin

_1051652830.bin

_1051649343.bin

_1051632880.bin

_1051646678.bin

_1051646978.bin

_1051633278.bin

_1051634991.bin

_1051631551.bin

_1051631766.bin

_1051388638.vsd

