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SHARED versus DISTRIBUTED(massively parallel or message passing)computer

(Cray 2, Cray YMP, Cray C-90) Convex, Alliant etc…                       (Intel, CM, nCUBE, etc… Cray T3D, IBM-SP2, Meiko 

Shared Memory Computers
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Wall-Clock Time ( CPU Time

                  WCT  = CPU Time (dedicated environment)
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SIMD    = Single Instruction Multiple Data

MIMD   = Multiple Instruction Multiple Data

Simple Definitions of Parallel Performance
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                     Speed up = 20 sec       =5   

                                          4 sec

                  Efficiency =         5          =62.5%

                                           8 proc
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WHY CAN’T WE GET “ IDEAL “ SPEED UP ?

Or   100%  efficiency with 8 processors??
SOME DEFFINITINS (Parallel Performance)

MFLOPS = Million of Floating point Operatios Per Second

SPEED UP =    Time by 1 Processor        = say  12 seconds (by 1 proc.)
                          Time by n Processor                       4 seconds (by 4 proc.)

                                                                  = 3

	 3

	 4


EFFICIENCY =     Speed Up                   =say                         =   75%

                              n- Processors  

MATRIX – VECTOR MULTIPLICATION

Version 1: Dot- Product Operations  (= Row- Approach)
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Version 2 : Dot- Product, Level 2 “ Vector Unrolling”

Consider  2 rows at a time !

	2
	-1
	0

	-1
	2
	-1

	
	
	

	0
	-1
	1


Loop-Unrolling[2] and Vector-Unrolling[3] Technique For Vector Computers

Case example: to compute a product of a matrix [A] of size 600*600, with a vector {x} of size 600*1. The results is stored in vector {y} of size 600*1

Version 1: Dot- Product operations
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                              Do 21 I = 1, I rows (= 600)
                              Do 21 J = 1, J cols  (= 600)
21                          y(I) = y (I) + A (I,J) * X (J)

Version 2: Dot- Product operations, Level 2 “ Vector Unrolling”

(operate on A, stride= I rows >> 1, bad stride)

                               Do 21 I = 1, I Rows, 2

                               Do 21 J = 1, J cols

                               y(I) = y(I)+ A(I,J) * X (J)

21                           y(I+1) = y(I+1)+A(I+1,J) *X(J)

What If Row Lengths of [A] are uneven?

Assuming vector Unrolling Level 2 is used
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          Do 21 I = 1, I ROWS, 2

          I Start = ……

          I End  = ……
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Version 3: SAXPY operations (= Columns Approach)
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Step1:     “ Partial” Answer  =   
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Step2:     Modified Answer  = 
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Step3:      Modified Answer  = 

[image: image107.wmf]0

50

100

150

200

250

convex 200

Cray-2 

Cray-2(F)

Cray-YMP

Cray-YMP(F)

Type of processor

Time, Sec

221

76

76

45

45

Forward-Backward Solution

Decoposition

28

MFLOPS

83

MFLOPS

83

MFLOPS

137

MFLOPS

137

MFLOPS


[image: image108.wmf]0

10

20

30

40

50

60

70

80

1

2

3

4

Number of Processors, Cray-2

Time, Sec

Forward-Backward Solution

Decomposition

74

37

25

19

83

MFLOPS

166

MFLOPS

249

MFLOPs

326

MFLOPS

Version 4: Saxpy+ Level 2

                  (ax+y)   “Loop-Unrolling”

                      ?!

Consider 2 Columns at a time!     

Version 3: Saxpy- operations

         Do 22  J = 1, Jcols

         Do 22  I = 1, Irows
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22              y(I) = y(I) + x(J) * A(I,J) 

can loop 22 be vectorized if change to : y(I) = y(I-1)+ x(J) * A(I,J)  ??

Version 4: Saxpy- operations , level 2 “ Loop Unrolling”

         Do 22 J = 1, Jcols, 2
         Do 22 I = 1,Irows
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22              y(I) = y(I) + x(J) * A(I,J)  + x(J+1) * A(I,J+1)
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Notes :

(1) “Loop-unrolling” technique is more powerful than “ Vector-unrolling” (on Cray-YMP, Cray-C90 Computers…)

(2) Loop-unrolling technque is suitable for SAXPY operations (partial, incomplete answers){1 “long”Fortran stmt.}
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Ex. 

[image: image115.wmf]U
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                   {y}= {y} + x * {A}

(3) Vector-unrolling technique is suitable for Dot-Product operations    

 (complete, final answers) { several “short” fortran stmts. in innermost      

loop}

Ex. 

         C= {A}.{B}

What if Column Heights of [A] Area Uneven ?

Assuming “ Loop Unrolling” Level 2 is used
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  22    continue  
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x = h*(dble(i)-0.5)


sum = sum+f(x)

20 continue

mypi =  sum*h
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c**********************************************************************

c   pi.f - compute pi by integrating f(x) = 4/(1 + x**2)     

c     

c   Each node: 

c    1) receives the number of rectangles used in the approximation.

c    2) calculates the areas of it's rectangles.

c    3) Synchronizes for a global summation.

c   Node 0 prints the result.

c

c  Variables:

c

c    pi  the calculated result

c    n   number of points of integration.  

c    x           midpoint of each rectangle's interval

c    f           function to integrate

c    sum,pi      area of rectangles

c    tmp         temporary scratch space for global summation

c    i           do loop index

c****************************************************************************

      program main

      include 'mpif.h'

      double precision  PI25DT

      parameter        (PI25DT = 3.141592653589793238462643d0)

      double precision  mypi, pi, h, sum, x, f, a

      integer n, myid, numprocs, i, rc

c                                 function to integrate

      f(a) = 4.d0 / (1.d0 + a*a)

      call MPI_INIT( ierr )

      call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )

      call MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )

      print *, 'Process ', myid, ' of ', numprocs, ' is alive'

c--------------------------------------------------------------------------

       time1=MPI_Wtime()

c--------------------------------------------------------------------------

      sizetype   = 1

      sumtype    = 2

 10   if ( myid .eq. 0 ) then

         write(6,98)

 98      format('Enter the number of intervals: (0 quits)')

         read(5,99) n

 99      format(i10)

      endif

      call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

c                                 check for quit signal

      if ( n .le. 0 ) goto 30

c                                 calculate the interval size

      h = 1.0d0/n

      sum  = 0.0d0

      do 20 i = myid+1, n, numprocs

         x = h * (dble(i) - 0.5d0)

         sum = sum + f(x)

 20   continue

      mypi = h * sum

c                                 collect all the partial sums

      call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,

     $     MPI_COMM_WORLD,ierr)

c                                 node 0 prints the answer.

      if (myid .eq. 0) then

         write(6, 97) pi, abs(pi - PI25DT)

 97      format('  pi is approximately: ', F18.16,

     +          '  Error is: ', F18.16)

      endif

      goto 10

 30   call MPI_FINALIZE(rc)

c--------------------------------------------------------------------------

       time2=MPI_Wtime()

       write(6,*) 'MPI elapse time= ',time2-time1

c--------------------------------------------------------------------------

      stop

      end

      program mm

      include 'mpif.h'

c     NRA : number of rows in matrix A

c     NCA : number of columns in matrix A

c     NCB : number of columns in matrix B

      parameter (NRA = 1000)

      parameter (NCA = 1000)

      parameter (NCB = 1000)

      parameter (MASTER = 0)

      parameter (FROM_MASTER = 1)

      parameter (FROM_WORKER = 2)

      integer numtasks,taskid,numworkers,source,dest,mtype,

     &          cols,avecol,extra, offset,i,j,k,ierr

      integer status(MPI_STATUS_SIZE)

      real*8 a(NRA,NCA), b(NCA,NCB), c(NRA,NCB)

      call MPI_INIT( ierr )

      call MPI_COMM_RANK( MPI_COMM_WORLD, taskid, ierr )

      call MPI_COMM_SIZE( MPI_COMM_WORLD, numtasks, ierr )

      numworkers = numtasks-1

      print *, 'task ID= ',taskid

c+++++++++++++++++++++++++++++++++++++++++

c      write(6,*) 'task id = ',taskid

c      call system ('hostname')  ! to find out WHICH computers run this job      

c                                ! this command will SLOW DOWN (and make UNBALANCED

c                                ! workloads amongst processors)

c+++++++++++++++++++++++++++++++++++++++++

      if(numworkers.eq.0) then

      time00 =  MPI_WTIME()

C     Do matrix multiply

        do 11 k=1, NCB

          do 11 i=1, NRA

            c(i,k) = 0.0

            do 11 j=1, NCA

              c(i,k) = c(i,k) + a(i,j) * b(j,k)

  11   continue

       time01 =  MPI_WTIME()

        write(*,*) ' C(1,1)    : ', c(1,1)

        write(*,*) ' C(nra,ncb): ',C(nra,ncb)

        write(*,*)

        write(*,*) ' Time  me=0: ', time01 - time00

        go to 99

       endif

C *************************** master task *************************************

      if (taskid .eq. MASTER) then

      time00 =  MPI_WTIME()

C     Initialize A and B 

        do 30 i=1, NRA

          do 30 j=1, NCA

          a(i,j) = (i-1)+(j-1)

 30     continue

        do 40 i=1, NCA

          do 40 j=1, NCB

    b(i,j) = (i-1)*(j-1)

 40     continue

C     Send matrix data to the worker tasks 

        avecol = NCB/numworkers

        extra = mod(NCB, numworkers)

        offset = 1

        mtype = FROM_MASTER

        do 50 dest=1, numworkers

          if (dest .le. extra) then

            cols = avecol + 1

          else

            cols = avecol

          endif

          write(*,*)'   sending',cols,' cols to task',dest

          call MPI_SEND( offset, 1, MPI_INTEGER, dest, mtype, 

     &                   MPI_COMM_WORLD, ierr )

          call MPI_SEND( cols, 1, MPI_INTEGER, dest, mtype, 

     &                   MPI_COMM_WORLD, ierr )

          call MPI_SEND( a, NRA*NCA, MPI_DOUBLE_PRECISION, dest, mtype, 

     &                   MPI_COMM_WORLD, ierr )

          call MPI_SEND( b(1,offset), cols*NCA, MPI_DOUBLE_PRECISION,

     &                   dest, mtype, MPI_COMM_WORLD, ierr )

          offset = offset + cols

 50     continue

C     Receive results from worker tasks

        mtype = FROM_WORKER

        do 60 i=1, numworkers

          source = i

          call MPI_RECV( offset, 1, MPI_INTEGER, source,

     &                   mtype, MPI_COMM_WORLD, status, ierr )

          call MPI_RECV( cols, 1, MPI_INTEGER, source,

     &                   mtype, MPI_COMM_WORLD, status, ierr )

          call MPI_RECV( c(1,offset), cols*NRA, MPI_DOUBLE_PRECISION, 

     &                   source, mtype, MPI_COMM_WORLD, status, ierr )

 60     continue

          time01  = MPI_WTIME()

C     Print results 

c       do 90 i=1, NRA

c         do 80 j = 1, NCB

c           write(*,70)c(i,j)

c           

c 70        format(2x,f8.2,$)

c 80      continue

c         print *, ' '

c 90    continue

        write(*,*) ' C(1,1)    : ', c(1,1)

        write(*,*) ' C(nra,ncb): ',C(nra,ncb)

        write(*,*) 

        write(*,*) ' Time  me=0: ', time01 - time00

      endif

C *************************** worker task *************************************

c     if (taskid > MASTER) then

       if (taskid.gt.MASTER) then

       time11  = MPI_WTIME()

C     Receive matrix data from master task

        mtype = FROM_MASTER

        call MPI_RECV( offset, 1, MPI_INTEGER, MASTER,

     &                 mtype, MPI_COMM_WORLD, status, ierr )

        call MPI_RECV( cols, 1, MPI_INTEGER, MASTER,

     &                 mtype, MPI_COMM_WORLD, status, ierr )

        call MPI_RECV( a, NRA*NCA, MPI_DOUBLE_PRECISION, MASTER,

     &                 mtype, MPI_COMM_WORLD, status, ierr )

        call MPI_RECV( b, cols*NCA, MPI_DOUBLE_PRECISION, MASTER,

     &                 mtype, MPI_COMM_WORLD, status, ierr )

C     Do matrix multiply

        do 100 k=1, cols

          do 100 i=1, NRA

            c(i,k) = 0.0

            do 100 j=1, NCA

              c(i,k) = c(i,k) + a(i,j) * b(j,k)

  100   continue

C     Send results back to master task

        mtype = FROM_WORKER

        call MPI_SEND( offset, 1, MPI_INTEGER, MASTER, mtype, 

     &                 MPI_COMM_WORLD, ierr )

        call MPI_SEND( cols, 1, MPI_INTEGER, MASTER, mtype, 

     &                 MPI_COMM_WORLD, ierr )

        call MPI_SEND( c, cols*NRA, MPI_DOUBLE_PRECISION, MASTER,

     &                  mtype, MPI_COMM_WORLD, ierr )

       time22 =  MPI_WTIME()

       write(*,*) ' Time  me=',taskid,': ', time22 - time11

      endif

 99   call MPI_FINALIZE(ierr)

      end
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Matrix Storage Methods

2910 Equation Stiffness Panel
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THUS:

SIJ = A[ MAXA(J) + J – I ]

Example:
S55= A[ MAXA(5) + 5 - 5 ]  = A [10]



S69= A[ MAXA(9) + 9 - 6 ]  = A [25]
  

How To Find The Column Height of Each Column

Example:
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Convention :

1 If the Degree of Freedom (DOF) is fixed

0 If the DOF is free to move

	
	
	
	
	 
	1
	2
	3
	4
	5
	6
	7
	8
	9
	 
	

	
	
	
	
	 
	0
	0
	0
	1
	3
	5
	7
	9
	11
	 
	Tx

	
	
	
	
	 
	0
	0
	0
	2
	4
	6
	8
	10
	12
	 
	Ty

	 
	
	 
	
	 
	0
	0
	0
	0
	0
	0
	0
	0
	0
	 
	Tz

	 
	ID
	 
	=
	 
	0
	0
	0
	0
	0
	0
	0
	0
	0
	 
	Rx

	
	
	
	
	 
	0
	0
	0
	0
	0
	0
	0
	0
	0
	 
	Ry

	
	
	
	
	 
	0
	0
	0
	0
	0
	0
	0
	0
	0
	 
	Rz


The following are element connectivities:

LM(1)= nodes 5,2,1,4  = (3,4,0,0,0,0,1,2)

LM(2)= nodes 6,3,2,5  = (5,6,0,0,0,0,3,4)

LM(3)= nodes 8,5,4,7  = (9,10,3,4,1,2,7,8)

LM(4)= nodes 9,6,5,8  = (11,12,5,6,3,4,9,10)
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	2
	1
	1
	1
	1
	 
	 
	 
	 
	 
	 
	 
	 

	
	
	
	
	3
	1
	1
	1    2
	1    2
	2
	2
	
	 
	 
	 
	 
	 

	
	
	
	
	4
	1
	1
	1    2
	1    2
	2
	2
	 
	 
	 
	 
	 
	 

	
	
	
	
	5
	 
	 
	2
	2
	2
	2
	
	 
	 
	 
	 
	 

	 
	
	 
	
	6
	 
	 
	2
	2
	2
	2
	
	 
	 
	 
	 
	 

	 
	S
	 
	=
	7
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	
	
	
	
	8
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	
	
	
	
	9
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	
	
	
	
	10
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	
	
	
	
	11
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	
	
	
	
	12
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 


Thus, the column height for each column is given as:
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The following is a skeletal Fortran statements to compute the column height of each column:



DO 1 I = 1, NEL

C… For I = 1, the smallest DOF = 1, hence
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C…For element I= 2, the smallest DOF = 3, hence
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[U] matrix, with U

ii

 = 1

[L]

T

 matrix, with L
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C…For element I= 3, the smallest DOF = 1, hence
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C…For element I= 4, the smallest DOF = 3, hence
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1
continue

SEQUENTIAL CHOLESKI METHOD

	 
	
	 
	?
	
	

	 
	S
	 
	 

Z
	=
	
 F


Step 1. Factorization

	 
	
	 
	
	 
	
	 
	
	 
	
	 
	
	 
	
	T
	
	 
	
	 

	 
	S
	 
	=
	 
	L
	 
	
	 
	U
	 
	=
	 
	U
	 
	
	 
	U
	 


Hence

	 
	
	T
	
	 
	
	 
	
	
	

	 
	U
	 
	
	 
	U
	 
	Z
	      
	=    F




Step 2. Forward Substitution, Solve For    y


	 
	
	T
	
	
	
	
	
	
	

	 
	U
	 
	
	
	   Y
	
	
	=
	   F


   

Step3. Backward Substitution, Solve For    Z

	 
	
	 
	
	
	

	 
	U
	 
	  

    Z
	  

       =
	 

 Y


TO FIND FACTORIZED MATRIX   [U]

Example           known
	 
	
	
	
	 
	
	 
	
	
	
	 
	
	 
	
	
	
	 

	 
	s11
	s12
	s13
	 
	
	 
	U11
	0
	0
	 
	
	 
	U11
	U12
	U13
	 

	 
	s21
	s22
	s23
	 
	=
	 
	U12
	U22
	0
	 
	
	 
	0
	U22
	U23
	 

	 
	s31
	s32
	s33
	 
	
	 
	U13
	U23
	U33
	 
	
	 
	0
	0
	U33
	 


Thus:

	
	
	
	
	
	
	

	s11
	=
	U112
	U11
	=
	 SQRT (S11)
	1st

	s12
	=
	U11 U12
	U12
	=
	s12/ U11
	2nd

	s13
	=
	U11 U13
	U13
	=
	s13/ U11
	4th

	s22
	=
	U122 + U222
	U22
	=
	SQRT(S22-U122)
	3rd

	s23
	=
	U12 U13+U22 U23 
	U23
	=
	(S23-U12U13)/U22
	5th

	s33
	=
	U132 + U232 + U332
	U33
	=
	SQRT(S33-U132-U232)
	6th

	 
	 
	 
	 
	 
	 
	 


Notes:    

                        [U] overwrite [S]           !

                Column Oriented Approach

PV- Solve (INCORE Version)

In the sequential Choleski method, a symmetric, Positive definite 

stiffness matrix,    [K] , can be decomposed as


[K] = [U]T[U]                                                            (1)

with the coefficients of the upper-triangular matrix, [U]:


Uij = 0 for  i > j                                                           (2)


[image: image13.wmf]11

11

K

u

=

  
[image: image14.wmf]11

1

1

u

K

u

j

j

=

  for

j ( 1              
   (3)                                                          
           

                                                                                             (4)
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	I=4


	
	
	J=7


	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	 
	
	
	
	
	
	
	
	
	
	 
	
	

	
	
	 
	S11
	S12 
	S13
	S14
	S15
	S16
	S17
	S18
	S19
	 
	
	

	
	
	 
	
	S22
	S23
	S24
	S25
	S26
	S27
	S28
	S29
	 
	
	

	
	
	 
	
	
	S33
	S34
	S35
	S36
	S37
	S38
	S39
	 
	

	Row I -1 =3

	
	
	 
	
	
	
	S44
	S45
	S46
	S47
	S48
	S49
	 
	
	Row I = 4

	[S]
	=
	 
	
	
	
	
	S55
	S56
	S57
	S58
	S59
	 
	
	

	
	
	 
	sym
	
	
	
	
	S66
	S67
	S68
	S69
	 
	
	

	
	
	 
	
	
	
	
	
	
	S77
	S78
	S79
	 
	

	Row J = 7

	
	
	 
	
	
	
	
	
	
	
	S88
	S89
	 
	
	

	
	
	 
	
	
	
	
	
	
	
	
	S99
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U77 =?

U11 = SQRT (S11)                 col #

Do 1 J = 2,n                                                       (say J = 7th Column)

Do 2 I = Top Row of Col J , Row J                  (say I = 4th Row )


Do 3 k = Top Row of Col I , Row I –1

Compute ( UKI U KJ
Compute SIJ - ( UKI U KJ
          .

          .

continue

continue

	
	
	 
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	x
	x
	x
	 

	
	
	 
	
	
	
	x
	x
	x
	 

	
	
	 
	
	
	
	x
	x
	x
	 

	A
	=
	 
	
	
	
	x
	x
	x
	 

	
	
	 
	
	
	
	x
	x
	x
	 

	
	
	 
	
	
	
	x
	x
	x
	 

	
	
	 
	
	
	
	x
	x
	x
	 

	
	
	 
	
	
	
	x
	x
	x
	 

	
	
	 
	
	
	
	
	U8,10
	U8,14
	 

	
	
	 
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	 


Information required
Factorized ith row

Ex: i= 8


Information required          Factorized ith column    Ex: i = 7

	
	
	 
	
	
	
	
	
	
	
	
	
	 

	
	
	 
	
	x
	x
	x
	x
	x
	x
	U17
	
	 

	
	
	 
	
	
	x
	x
	x
	x
	x
	U27
	
	 

	
	
	 
	
	
	x
	x
	x
	x
	x
	
	
	 

	A
	=
	 
	
	
	
	
	x
	x
	x
	U47
	
	 

	
	
	 
	
	
	
	
	x
	x
	x
	
	
	 

	
	
	 
	
	
	
	
	
	x
	x
	
	
	 

	
	
	 
	
	
	
	
	
	
	x
	U77
	
	 

	
	
	 
	
	
	
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	
	
	
	 

	
	
	 
	
	
	
	
	
	
	
	
	
	 


	
	
	
	
	
	
	
	
	
	J=7
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	x
	x
	x
	x
	x
	S17
	x
	x
	 
	
	

	
	
	 
	
	x
	x
	x
	x
	x
	S27
	x
	x
	 
	
	

	
	
	 
	
	
	x
	x
	x
	x
	S37
	x
	x
	 
	
	

	
	
	 
	
	
	
	x
	x
	x
	S47
	x
	x
	 
	
	

	[S]
	=
	 
	
	
	
	
	x
	x
	S57
	x
	x
	 
	
	

	
	
	 
	sym
	
	
	
	
	x
	S67
	x
	x
	 
	
	

	
	
	 
	
	
	
	
	
	
	S77
	x
	x
	 
	

	Row J = 7

	
	
	 
	
	
	
	
	
	
	
	x
	x
	 
	
	

	
	
	 
	
	
	
	
	
	
	
	
	x
	 
	
	


Options for Syncronization

Option A: Make “one” synchronization check

                 Is column # 6 done?

                 If “ yes” then compute U17, U27,, … U77

                         If “no” then wait!!

Option B:Make “ A Lot” synchronization check

Is Col#1 done?             
Is Col#2 done? 
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Is col#4 done? 
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Is Col#6 done? 
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	S17
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	x
	x
	x
	S27
	x
	x
	 
	
	

	
	
	 
	
	
	x
	x
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	S37
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	Is Col # 3 done?

	
	
	 
	
	
	
	x
	x
	x
	S47
	x
	x
	 
	
	

	[S]
	=
	 
	
	
	
	
	x
	x
	S57
	x
	x
	 
	
	

	
	
	 
	sym
	
	
	
	
	x
	S67
	x
	x
	 
	
	Is Col # 6 done?

	
	
	 
	
	
	
	
	
	
	S77
	x
	x
	 
	
	

	
	
	 
	
	
	
	
	
	
	
	x
	x
	 
	
	

	
	
	 
	
	
	
	
	
	
	
	
	x
	 
	
	


Option C: Make “ A few” synchronization check

· If Col # 3 was done (by I th processor), then the Jth processor can proceed to compute U17, U27, and U37 

· If Col # 6 was done (by K th processor), then the Jth processor can proceed to compute U47, U57, U67 and U77

· Then “ Broadcast” Col # 7 was done to all other processors

Version 1 Basic (Column oriented) Choleski

       U11 = SQRT (S11)

       DO 1 J = 2, N                                            (say J=7th Column)

       DO 2 I = top row of Col J, Row J             (say I = 4th Row)

       Sum 1 = 0

       DO 3  K = Top Row of Col I ,Row I-1            

 3     Sum 1 = Sum 1 + UKI * UKJ                            

       UIJ =  SIJ – SUM1


If    (I.EQ.J) Then  

       UII = SQRT(UIJ)

Else
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Endif

  2     continue                                                          

  1     continue                                                          

Version 2 Basic Choleski (Avoid If Statements)

U11= SQRT (S11)

DO 1   J = 2, N                                                   (say J=7th Col)

    
DO 2  I = Top Row of Col J, Row J-1

Sum1 = 0


DO 3 K = Top Row of Col I, Row I-1

3
Sum 1 = Sum1 + UKI * UKJ
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2
Continue

C…   Now, Treat the case I = J separately


Sum1 = 0


DO 33 K = Top Row of Col I , Row I-1

33
Sum1 = Sum 1 + UKI * UKI


UII = SQRT (SII –Sum1)

1
Continue

	
	
	
	Col 1 Done
	
	
	
	
	
	
	
	
	

	
	
	
	
	Processor1
	
	
	
	
	
	
	
	

	
	
	
	
	
	Processor2
	
	
	
	
	
	
	

	
	
	
	
	
	
	Processor3
	
	
	
	
	
	

	
	
	
	
	
	
	
	Processor4
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	 
	
	
	
	
	
	P1
	P2
	P3
	P4
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	[S]
	=
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	sym
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	x
	x
	 

	
	
	 
	
	
	
	
	
	
	
	
	x
	 


Parallel and Basic Vector Choleski Code

Version 3 Parallel and Basic Vector Choleski Code 

All columns are declared as not ready yet

U11 = SQRT(S11)

Broadcast to all processors that Col # 1 was done already

Parallel DO 1 J = 2, N

             DO 2 I = Top row of Col J, Row J-1

Is Col. # I done? (If not, then wait here !)



Sum1 = 0


Do 3 K = Top Row of Col I, Row I-1

3
Sum1 = Sum1 + UKI * UKI
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2
continue                                                              

processors # 2,3,4 go back loop 2

processor  #1 Exit loop 2

C… Now, Treat the case I= J separately

. Sum1 = 0

. Do 4 K= Top row of col J , row J-1

. 4  Sum1 = Sum1 + UKI * UKI

UII = SQRT(SII – Sum1)

Broadcast to all processors that Col I ( = ColJ ) was done 

1
Continue
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[S] =

Col J/2
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Col J=7

.. Col J/2=3 Done?

.. Col (J-1)=6 Done?

SYM


Parallel (with a few synchronization check)

and Vector Choleski Code

Version 4   Parallel (with a few synchronization check) and Vector Choleski Code

UII = SQRT(S11)

Broadcast  Col # 1 was done

Parallel DO 1 J = 2, N                                             (sayJ = 7th col.)
Is Col #  (J/2) Done ? wait?



Do 2 I  = Top row of Col J, Row   
[image: image23.wmf]J
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Do 3 K = Top row of Col I, Row  (I-1)


3    Sum1 = Sum1 + UKI* UKJ

2
UIJ = (SIJ – Sum1)/ UII

Is Col # (J-1) done? wait?


Do 22 I =Row   
[image: image24.wmf]J
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    +1 , Row (J-1)


Do 33 K= Top row of Col I, Row (I-1)

33 Sum1 = Sum1 + UKI* UKJ
22
UIJ= (SIJ- Sum1)/UII

….     Now, treat the case I = J separately

     .

     .

     . 

UII = SQRT (SII- Sum1)

Broadcast Col I (=Col J) was done
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Option For Synchronization

Option A. Make “One” synchronization check 



Is Column # 6 done?



If “ yes” then compute U17, U27, …U77



If “ no” then wait !!

Option B. Make “ A lot” synchronization check




Is Col# 1 done?


Is Col# 2 done?        


Is Col#4 done?              U47 =



Is Col#6 done?  
         U77 = 
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	…Is Col#3 done?
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Option C. Make “ a few” syncronization check

· If col #3 was done (by Ith processor), then the Jth processor can proceed to compute U17, U27 and U37
· If col #6 was done (by Kth processor), then the Jth processor can proceed to compute U47, U57, U67 and U77 

· Then “ broadcast” col #7 was done to all other processor

Version 4.2 Parallel and Vector Unrolling Choleski Method

Presched Do 10 I = 1, NEQ

Void  X(I)                                     All column are not ready

10
End Preshed Do


Barrier

U11= SQRT (S11)                           Broadcast that column#1 was done

Produce X(1) = U11
End barrier

Presched Do 1 J = 2, NEQ, 2

Copy x(J-1) into TEMP    (
Is column*(J-1) done?

Do 2 I = Top row of column J, row J-1, 2

Sum1 = 0=Sum2 = Sum3 = Sum4

Do 3 K = Top row of column I, row #I-1

Sum1 = Sum1+UKI * UKJ and Sum2 = Sum2+UKI*UK,J+1

3
Sum3 = Sum3+UK,I+1 * UKJ  and Sum4 = Sum4+UK,I+1*UK,J+1

UIJ = KIJ-Sum 1 and UI,J+1 = KI,J+1- Sum2

UI+1,J = KI+1,J-Sum3 and UI+1,J+1 = KI+1,J+1- Sum4


Do 33 K = Top row of column I, row I-1              Treat 2 diagonal &                Compute Sum1, Sum2, Sum3                           1 extra term separately

33
(Similar to loop 3)    

UJJ = SQRT (KJJ-Sum1)

Produce X(J) = UJJ         (                   Broadcast column #J done

UJ,J+1 = (KJ,J+1 – Sum2)/UJJ

UJ+1,J+1 = SQRT(KJ+1,J+1 – Sum3-UJ,J+1* UJ,J+1)

Produce x(J+1) = UJ+1,J+1    (         Broadcast column#J+1 done

End Presched Do   

Version 5 Parallel Vector “ Skyline” Choleski Code

“Exactly” same as version 4 , except :

UKI

                                                A[MAXA(I)+I-K]     

UKJ
     
                                                                  A[MAXA(J)+J-K]                        

UIJ                                                                                          A[MAXA(J)+J-I]                        

SIJ                                                                                           A[MAXA(J)+J-I]                        

UII                                                                                          A[MAXA(I)]      

UII                                                                                          A[MAXA(I)]               

Note:    In actual coding, the decomposed matrix U will overwrite the original stiffness matrix S. For clarity, however, these 2 matrices have been shown under different names             

Forward Substitution
To solve [U]T{y} = {F}                          for {y}

Example :

	 
	
	
	
	 
	
	
	
	

	 
	U11
	0
	0
	 
	
	y1
	
	F1

	 
	U12
	U22
	0
	 
	
	y2
	=
	F2

	 
	U13
	U23
	U33
	 
	
	y3
	
	F3


           U11y1   = F1                                       y1 = F1/U11


U12y1+U22y2     = F2                              y2 = F2 –U12   y1/U22


                                                                                             multipliers


Similarly  


In general :

Version 1      Basic scheme

DO 1 J = 1, NEQ

Sum1 = 0

DO 2 I = 1, J-1

2
Sum1 = Sum1 + U(I,J)*y(I)

          y(J) = (y(J) – Sum1)/U(J,J)

1
continue

Version 2       Skyline scheme


DO 1 J= 1, NEQ


Sum1= 0

c…
DO 2 I = Top row of column J, next to diagonal term, +1


DO 2 I = colh(J), 1 , -1

2
Sum1 = Sum1 + U[MAXA(J)+I]* y (J-I)

1
y(J) = (y(J) – Sum1)/U(MAXA (J))

	
	
	
	
	
	
	J th Column
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	 
	
	
	
	 
	
	
	 

	
	
	 
	x
	x
	0
	x
	0
	0
	 

	
	
	 
	
	x
	x
	x
	x
	0
	 

	U
	=
	 
	
	
	x
	x
	x
	0
	 

	
	
	 
	
x
	x
	x
	x
	x
	x
	 

	
	
	 
	
sym
	
	
	
	x
	x
	 

	
	
	 
	
	
	
	
	
	x
	 

	
	
	
	
	
	
	
	
	
	


Version 3 Skyline and Vector- Unrolling scheme

Assuming NEQ = Number of equations = odd number




J th  Column

                                              &(J+1)th column have same column height


	
	
	 
	
	
	
	 
	
	 
	 

	
	
	 
	x
	x
	0
	x
	
	0
	 

	
	
	 
	x
	x
	x
	x
	
	x
	 

	U
	=
	 
	0
	x
	x
	x
	
	x
	 

	
	
	 
	x
	x
	x
	x
	
	x
	 

	
	
	 
	0
	x
	x
	x
	
	x
	 


        Extra term = U (MAXA(J+1)+1)

C… treat column 1 separately

        y(1) = y(1)/ U (MAXA(1))

        Do 1 J = 2, NEQ , 2

        Sum1 = 0

        Sum2 = 0

        Do 2 I = Colh(J),1, -1

        Sum 1= Sum1 + U(MAXA(J)+I)*y(J-I)

        Sum2 = Sum2 + U(MAXA(J+1)+1+I)*y(J-I)

2      continue

        y(J) = (y(J)-Sum1)/U(MAXA(J))

        y(J+1) = [y(J+1)- Sum2- U(MAXA(J+1)+1) * y(J) ] / U[MAXA(J+1)]

1      continue

Backward Substitution

     To solve [U]{Z} = {y}

Example:

	 
	
	
	
	
	 
	
	
	
	

	 
	U11
	U12
	U13
	U14
	
	 
	Z1
	
	y1

	 
	0
	U22
	U23
	U24
	
	 
	Z2
	=
	y2

	 
	0
	0
	U33
	U34
	
	 
	Z3
	
	y3

	 
	0
	0
	0
	U44
	 
	 
	Z4
	
	y4



U44 Z4 = y4  , hence  



U33 Z3 +U34 Z4 = y3 , hence 


Similarly:  


In general: 

Note

        Once Z4  is known , we can update the right hand side vector {y} as following : 



y3 = y3 – U34Z4

y2 = y2 – U24Z4

y1 = y1 – U14Z4

Version 1 Basic Scheme


In practice, the solution vector {Z} will overwrite the right hand side vector {y}


DO 1 J = NEQ , 1, -1    (say, J = 4)


Y(J) = y(J) / U(J,J)


Do 2 I = J-1, top row of column J, -1

2
y(I) = y(I) – U(I,J)* y(J)

1
continue

Version 2 Loop Unrolling Scheme


Do 1 J = NEQ , 1 , -2


y(J) = y(J)/U(J,J)


y(J-1) = [ y(J-1)- U(J-1,J) * y(J)] / U(J-1,J-1)


Do 2 I = J-colh(J), J-2, +1

C…   Do 2 I = J-1, top row of column J, -1


2        y(I) = y(I) –U(I,J) *y(J) – U(I,J-1) * y(J-1)

1        continue

Applications 

(SDM 30th , Mobile, Alabama, April 89 by Storaasli, Nguyen and co-workers)

1. N = 10,000 and BW = 800

	
	
	
	

	No. Processors
	Cray-2 Time 
	Speedup
	MFLOPS

	 
	(seconds)
	 
	 

	1
	74
	1.00
	83

	2
	37
	2.00
	166

	3
	25
	2.96
	249

	4
	19
	3.89
	326


2.N =54,870, BW = 381 and Max BW = 894

space shuttle solid rocket booster (SRB) problem

	1
	135
	1.00
	66

	2
	70
	1.93
	127

	3
	46
	2.93
	193

	4
	36
	3.75
	250


[image: image25.jpg]



Figure 1. Variable bandwidth row storage of panel stiffness method
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Figure 2. Skyline column storage of panel stiffness matrix
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Figure 3. Skyline storage for stiffness matrix before and after decomposition


Figure 4. Computation time reduction for test problemwith 10,000equations and 800             bandwidth.


Figure 5. Time comparison for one processor with 10,000equations and 800 bandwidth

   (F denotes Force used)


Figure 6. Computation time reduction for 3000 equation cube.


Figure7. Computation time reduction for Space Shuttle Solid Rocket Booster with 54,870      equations.

Parallel Vector Variable Bandwidth Choleski Factorization

To solve [K]{Z} = {F}

Let [K] = [U]T[U]

[U]T[U]{Z} = {F}

[U]T {Y}   = {F}…… Forward Do 2 k =top row# of ith column,i-NP, 
[image: image28.wmf]D

  =2

unroll#

[U]{Z} = {Y}……….Backward

Do 3 j = I, k+ row length k

                                                                                                                 #rows unrolled


                                                                                                                     Row I-NP

                                                                                                                                      Row I
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Unrolled, say, level 2                  Fig. 6 Information required to update row I.

                                                                     Assuming bandwidth is full

    Do 1 i = row#1 , row#n


    Do 2 k =top row #of ith column , i-1

C
    compute multiplication factor, xmult


     xmult = U (k,i)

cgauss    xmult = U(k,k) * U(k,i) replaces above statement


     Do 3 j = i,k+ row length of row k

C                  calculate the numerator of Eq. 5

U(i,j) =K(i,j) – xmult * U(k,j)

3 continue

2 continue

C     calculate final value of U(i,i) as in Eq. 4

U(i,i) = SQRT(U(i,i))

Cgauss    remove above statement

C     Do loop 4 divides the numerator of Eq.5by Uii
Xinv = 1/U(i,i) 

Do 4 j = I+1 ,I + row  length of row I

U(I,j) = U(I,j) * xinv

4 continue

1 continue

Fig. 4 Sequential Choleski variable-band skeleton code for matrix factorization.

Loop- Unrolling Technique to Enchance Sequential Choleski Code

In Fig. 6, for example, once the first four rows of the factored matrix, [U], have been completely updated, row 5 can be updated according to the numerator of Eq.5

U5j = k5j -U15 *U1j
              -U25 *U2j
              -U35 *U3j
              -U45 *U4j


DO 1 I= row# 1, row#n

DO 2 k=top row#of Ith column, I-1, 4 

DO 3 j=I ,k + row length of row k

C    Eq. 6(numerator of Eq. 5)code follows

U(i,j) = k(i,j) –U(k,I) *U(k,j)

                   –U(k+1,I) *U(k+1,j)

                       –U(k+2,I) *U(k+2,j)

                       –U(k+3,I) *U(k+3,j)

3    Continue

2    Continue

c    repeat loop 2 to update ith row by extra k values

c    for Do 2 k = 1, 10,4, extra k values   are 9,10 

     U(i,i) = SQRT(U(i,i))

      Xinv = 1/ U(i,i)

      DO 4 j = I+1, I + row length of row i

      U(i,j) = U(i,j)*xinv

4  continue

1  continue

 Fig. 5 Choleski factorization code:

level 4 unrolling

	
	
	
	
	
	
	
	
	
	
	
	Row
	
	Processor

	
	 
	
	
	
	
	
	
	
	
	 
	No.
	 
	No.

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	1
	 
	1

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	2
	 
	2

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	3
	 
	3

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	4
	 
	4

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	5
	 
	1

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	6
	 
	                     2   completely

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	7
	 
	                    3   factorized

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	8
	 
	               4    region

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	9
	 
	1

	A     =
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	10
	 
	2

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	11
	 
	3
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	14
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	15
	 
	3

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	16
	 
	4

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	17
	 
	1

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	18
	 
	2

	
	 i-NP+1=19
	 
	 
	 
	 
	 
	 
	 
	 
	 
	19
	 
	                     3     sequential

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	20
	  
	               4     region

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	21
	 
	1

	
	 i=22
	 
	 
	 
	 
	 
	 
	 
	 
	 
	22
	 
	2

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	23
	 
	3

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	24
	 
	4

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	25
	 
	1

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	26
	 
	2

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	27
	 
	3

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	28
	 
	4

	
	 
	
	
	
	
	
	
	
	
	 
	29
	
	1



Assuming NP = 4 processors 

U(1,1) =SQRT (k(1,1))

Divide row#1 by U(1,1)

Declare row#1 finished

Produce X(1) = U(1,1)

Presched  DO 1 i = row #2, row# n

            DO 2 k = top row# of the ith column , I-NP, 4

C          skip DO 3 if all multipliers are zero

            DO 3 j = i, k + row length of row k

            U(i,j) =k(i,j) - U(k,i)* U(k,j)

                                - U(k+1,i)* U(k+1,j)                  In parallel
                                - U(k+2,i)* U(k+2,j)

                                - U(k+3,i)* U(k+3,j)

3         continue

2         continue


            Copy X(i-1) into temp 

           DO 4 k = max(top row # of ith column, I- NP+1), I-1  In Sequential
           DO 5 j = i, k + row length of row k                            (see black region                              

           U(i,j) = U(i,j)-U(k,i)*U(k,j)                                         ,Fig 6)

5         continue

4         continue

           U(i,i) = SQRT(U(i,i))

           Xinv = 1/U(i,i) 

           DO 6 j= I+1, I+ row length of row I 

           U(i,j) = U(i,j)* xinv

6         continue

C         broadcast to all processors that row i is finished

           Produce X(i) = U(i,i)

1         End Presched DO

Parallel vector Choleski skelaton code with loop unrolling level 4


APPLICATION

Fig. 3 Effect of more processors on analysis time (high-Speed Research Aircraft).

 Table 1 Matrix decomposition time (MFLOPS) for aircraft on Cray Y-MP:

16,146 equations, bandwidth=600 max, 321 average,

5,579,839 nonzeros (after factorization), 499,505 nonzeros (before factorization)

	 
	
	 

	processor 
	Sec (MFLOPS 
	Sec (MFLOPS) with zero-checking

	 
	 
	

	1
	8.58(228)
	6.31(203)

	2
	4.50(441)
	3.46(399)

	4
	2.41(822)
	1.39(730)

	8
	1.54(1284)
	1.29(1071)




Fig. 9 Effect of more processors on analysis time (Space Shuttle SRB)

Table 2 Matrix decomposition time (MFLOPS) (shuttle SRB on  Cray Y-MP)

54,370 equations, bandwidth=900 max, 383 average,

21,090,396 nonzeros (after factorization), 1,310,973 nonzeros (before factorization)

	 
	 
	 

	processor 
	Sec (MFLOPS 
	Sec (MFLOPS) with zero-checking

	 
	 
	

	1
	40.26(228)
	40.97(224)

	2
	20.27(452)
	19.32(425)

	4
	10.50(872)
	10.00(821)

	8
	6.04(1517)
	3.79(1444)
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[k]{x} = {f}
                                                                    (14)

	
	
	
	
	

	
	-2
	-1
	0
	

	
	-1
	2
	-1
	

	
	0
	-1
	1
	


 where [k] =                                                                                                                                                                              (15)

	1

	0

	0


and     {f} =                    (16)

the solution of equation 14-16 is:

	
	
	1

	{x}
	=
	1

	
	
	1


                                                                                                             (17)

A-1 Choleski Method 

The stiffness matrix [k} of equation 15 can be converted into a Choleski upper triangular matrix, [U], by appropriate row operations:

[K1] = [K] = 
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            [K2] = 
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                             [K3] =

            [K4] = 
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                              [K5] =                                                 
where 

Row 1 of [K2] = Row 1 of [K] / 
[image: image34.wmf]K1
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Row 2 of [K2] = Row 1 of [K2] /        + Row 2 of [K1]

Row 2 of [K3] = Row 2 of [K2] / 
[image: image35.wmf]K2
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Row 3 of [K4] = Row 2 of [K3]*       + Row 3 of [K3] 

Row 3 of [K5] = Row 3 of [K4] / 
[image: image36.wmf]K4
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The multiplier constants, mij, used in the forward substitution (or updating the right-hand side vector of Eq.14) are the same as terms in the factorized upper-triangular matrix such that

New (row2) = old (row2)-new (row1)*m12   , Hence m12= 
[image: image37.wmf]1
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A.2 Gauss Elimination Method

As in the Choleski Method in Section A.1, the stiffness matrix,[K] of Eq. 15 can be converted into a Gauss upper-triangular matrix by appropriate row operations. 

[K1] = [K] = 
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           [K2] =                                      [K3] =  

In this version of the Gauss elimination method, the multipliers mij can be obtained from the factored matrix, [U], as:
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An alternative version of Gauss elimination where the final diagonal elements become 1 follows:

[K1]    =     [K] = 

             

                  [K2] =                                                    [K3] = 


                   [K4] =                                                    [K5] =  

Since the final diagonal terms become one, in the computer code, the main diagonal of the factored matrix is used to store the diagonal terms before scaling.

For example, U11=2; U22 =     ; and U33 =       , The multiplier mij is obtained from the factored matrix, [U], as:

                                                

A. 1 Choleski



[K] =                     =                            *                          

 

                      multipliers

                                                [U] T        *         [U]

Forward Phase                  [U]T  {y} = {b}

A. 2 Gauss



[K] =                     =                           *    


                        multipliers

                                                  [L]    *          [U]

Forward Phase                   [L] {y} =  {b}

                                                   multipliers
                                                     

** or, alternatively [K]  =                      =                           *    

A.3 LDLT Algorithm (or UTDU)


[K] = 
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Notes

(1) LDLT is essentially the same as the 2nd version (see A.2) of Gauss

(2) Computer implementation of LDLT

Do 11 I = 1, N


 Do 22 K = 1, I-1


  xmult=u()/D(I)=u(K,I)/u(K,K)


  Do 33 J = I, N (or I+Irowlength)


   u(I,J) = u(I,J)-xmult*Kth Row

33
  Continue


  u(K,I) = xmult

22
 Continue

11
Continue

For I = 1 ( Temporary no change in 1st row

For I = 2 , Hence K = 1 ( 1
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u2,2 = u2,2 – (xmult)(u1,2) = 2-(-1/2)(-1) = 3/2


u2,3 = u2,3 – (xmult)(u1,3) = -1-(-1/2)(0) = -1


u(1,2) = xmult = -1/2

For I=3 , Hence K= 1 ( 2
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u3,3 = u3,3 – (xmult=0)*(u1,3=0) = 1


u(1,3)=0

Now K = 2
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u3,3 = u3,3 – (xmult = -2/3)(u2,3 = -1) = 1/3


u(2,3) = xmult = -2/3




----------------- QED

Hence:
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Parallel Vector Variable Bandwidth Choleski Factorization

To solve [K]{Z} = {F}

Let [K] = [U]T[U]

[U]T[U]{Z} = {F}

[U]T {Y}   = {F}…… Forward Do 2 k =top row# of ith column,i-NP, 
[image: image45.wmf]D

  =2

unroll#

[U]{Z} = {Y}……….Backward

Do 3 j = I, k+ row length k

                                                                                                                 #rows unrolled


                                                                                                                     Row I-NP

                                                                                                                                      Row I
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Unrolled, say, level 2                  Fig. 6 Information required to update row I.

                                                                     Assuming bandwidth is full

Storage Strategy (PV-00C)


[image: image47.wmf]Rec. 1
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Incore Memory reserved to buffer

In "old" record, which are required

by current, Factorized record

Ilocate


Icstore = No. records stay in the core memory

Nloop = No. blocks in a record

a block = 8 rows = loop ( For unrolling purpose)

I.M.R. = Max. (Maxbw2, Available)

NP = No. Processors
Typical Use of BUFFER IN and BUFFER OUT Statements


         DO 1000 I = 9, n


         if  (I – ((I-1) / (nloop*loop))* (nloop*loop).eq. NP) then


         call setpos (Id,ilocate)                                          Ical1

         call buffer in (a(start), a (start+ length-1))

         endif

C…. Update the I th row of A

  …..

  …..


C…. The I-th row of A has been updated

         If  (I-((I-1)/(nloop*loop))* (nloop*loop).eq.NP) then

         call setpos (id, ilocate1)

         call buffer out (a(start1),a(start1 + length1-1))

        endif 

1000     continue


Assuming :    I = 16  (and I = 17)


            Loop = 8

                      Nloop = 2 ; NP =1     16 rows per record

Thus :            Ical1 = 16 (and Ical = 1)

APPLICATION

Characteristic of Finite Element Models

	
	
	
	

	 
	HSRA
	Refined HSRA 
	SRB

	Max. Bandwidth
	600
	702
	900

	Ave. Brandwidth
	321
	451
	383

	Matrix Terms
	5,207,547
	7,312,860
	21,090,396

	Non-zero Terms
	499,505
	373,782
	1,310,973

	No. Operations 
	171,425,520
	 
	9.2*109

	No. Equations
	16,146
	16152
	54,870


Note:

  “Same” problem + different reordering method           “different” problem 

(w.r.t. Equation Solver)
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Table 5. Performance time (tsecnd) of Pvsolve-ooc on Cray Y-MP

	
	
	
	

	No. of Processors
	HSRA
	Refined HRSA
	SRB

	1
	6.98
	15.50      (15.99*)
	31.26

	2
	3.50
	7.80          (8.44*).
	15.53

	4
	1.85
	3.94         (4.66*)
	7.80

	8
	1.01(2.31*)
	2.04         (3.15*)
	4.21


*Elapsed Time

CONCLUSIONS

· general purpose, modular PV- OOC solver has been developed on shared memory type computers.

· I.M.R. = Max. (Maxbw2, Available)

· Utilize Buffer In & Out

· Performance of PV-OOC on NASA Focused problems(HSRA and SRB) seems to be good

Notes:    “newer” version of PV-OOC is being developed    

                I.M.R.   = Max. (16*   Maxbw, Available)


      timing (tsecnd, Cray Y-MP) for (artificial) HSRA    model:

	
	
	

	Incore
	Maxbw2
	16*Maxbw

	8.5 sec
	8.6 sec
	12.8 sec


AN OUT-OF-CORE EQUATION SOLVER

FOR COMPUTATIONAL MECHANICS ON SUPERCOMPUTERS

Y.Hu*,J. Qin*, D.T. Nguyen*, and W.K. Belvin+
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Old Dominion University, Norfolk, VA 23529 (USA)
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IV  OUT-OF CORE VECTOR EQUATION SOLVER (VERSION 3)

	
	
	
	
	
	
	
	
	
	

	 Record 1 (Multiple of 8 rows)
	2
	3
	4
	5
	6
	7                          Assumed to be largest record
	8
	9                                   (Multiple of 8 rows)
	10                       (Left over)


Figure 1: Solid State Disk (SSD) Storage for the Coefficient Stiffness Matrix[A] 
	 
	 
	
	
	
	
	 
	 
	 
	 

	   (IM)      words


	 
	
	(6* neq) words to store column heights; diagonal location etc... 
	
	 


	 
	(6*neq)  words
	 

	
	
	
	Block 1 (Each block can hold 1 largest record, say record 7,and may have some small left-over, unused memory)
	Block 2
	
	
	
	(IM for [A]) words
	

	 
	 
	
	Block 3
	
	 
	 
	 
	 


Figure 2: Incore Memory Storage Management

(Assumed to be partitioned into 3 blocks)
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Figure 3: Information required to update row i (incore version)
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Figure 4: Out-Of-Core Choleski Factorization

Version 3 OOC performance

$$$$  vector Out –of Core Solver (LDL)  $$$$

+++  by O.D.U.  Parallel Center May 1991 ++++

****** BE SURE THAT : *****************

** incore > = m*neq + 24 * (5+  maxbw)
!**

**                   m = 6 for eqution solver
!**

**                   m = 7 for eigen solver

!**

**If use SSD then disksize .ne. 0

!**

**and reserve-disksize-words on SSD
!**

**disksize >= neq*(5+ maxbw)  

!**

**                  + neq (lanmax + 1)
  
!**

-----   The input parameters are :   -----

neq, maxbw, incore, ntblk, disksize, m, neig, lanmax, jqread

16146, 499505, 2000000,  3, 9000000,  6,  0,   1,  2 

Real Problem: neq = 16146ncof = 499505

IFLAG = 1 No. of procs. = 1 

CPU for Qread = 2.189999999999E-6

get_ma,neq,ncof,maxbw,maxuma,disksize,isegread

16146  ,  499505  , 2*0  ,  9000000  ,  9535318

NEQ = 16146 MaXBW = 600 NTERMS = 5207547

The Actual Incore,isegread = 2000000, 9535318

Original nblk=neq/8 = 2019

In transq: isummax = 97787

Iter#,nblk, iii ,neqbk,ntblk,neqq,incore,ntblkq=

3  ,  13  ,  131  ,  634347  ,3  ,3150  ,  1903043  ,  394

CPU For getting K = 5.0343924000001E-2

******i1,i2,i3,i4,i5,i6,i7,i8 ************

16151  ,  32298  ,  48444  ,  64590  ,  64655  ,  80801  ,  96947  ,  1999988

In-Core Memory used = 1999988

Iter#,nblk,i11,neqbk,ntblk,neqq,incore,ntblkq=

3,13,131,634347,3,3150,1903043,394

NBLKO = 13 and NBLK = 13

===Using Cray Y-MP C90 Computer ====

Non-Zeros after  Factorization = 3716388

Factorization  CPU (me) = 6.957708318,   1

Forward CPU   = 4.3623425999982E-2

Forward Mflops = 447.1076618331


Backward CPU       = 7.4812769999994E-2


Backward Mflops   = 260.7090741327

Total CPU = 7.07359014

Total WCT = 40.73067534

Neq=16146neqbk=634347ntblk=3 nblk=13 avg.band=322 maxbw=600 nroll= 8

$$$$  vector Out –of Core Solver (LDL)  $$$$

+++  by O.D.U.  Parallel Center May 1991 ++++

****** BE SURE THAT : *****************

** incore > = m*neq + 24 * (5+  maxbw)
!**

**                   m = 6 for eqution solver
!**

**                   m = 7 for eigen solver

!**

**If use SSD then disksize .ne. 0

!**

**and reserve-disksize-words on SSD
!**

**disksize >= neq*(5+ maxbw)  

!**

**                  + neq (lanmax + 1)
  
!**

-----   The input parameters are :   -----

neq, maxbw, incore, ntblk, disksize, m, neig, lanmax, jqread

16146  , 499505  ,  2000000  ,  3  , 9000000  ,  6 ,  0  ,  1 ,  2 

Real Problem: neq = 16146ncof = 499505

IFLAG = 1 No. of procs. = 1 

CPU for Qread = 2.189999999999E-6

get_ma,neq,ncof,maxbw,maxuma,disksize,isegread

16146,499505,2*0,9000000,9535318

NEQ = 16146 MaXBW = 600 NTERMS = 5207547

The Actual Incore,isegread = 2000000, 9535318

Original nblk=neq/8 = 2019

In transq: isummax = 97787

Iter#,nblk, iii ,negbk,ntblk,neqq,incoire,nstblkq=

2*1,  16146,5207547,  1,16146,8893028,1

CPU For getting K = 4.784964E-2

******i1,i2,i3,i4,i5,i6,i7,i8 ************

16151  ,  32298  ,  48444  ,  64590  ,  64595  ,  80741  ,  96887  ,  5304434

In-Core Memory used = 5304434

Iter#,nblk,i11,negbk,ntblk,negg,incore,ntblkg=

2*1,  16146,5207547,  1,16146,8893028,1

NBLKO = 1 and NBLK = 1

===Using Cray Y-MP C90 Computer ====

KA1, KA2, NTEERMQ,ME = 1, 16146,3716388,1

Non-Zeros after  Factorization = 3716388

Factorization  CPU (me) = 6.898511052,   1

Forward CPU   = 4.3623425999982E-2

Forward Mflops = 450.2729497396


Backward CPU       = 7.4812769999994E-2


Backward Mflops   = 262.4350406816

Total CPU = 7.016362956

Total WCT = 39.649387302

Neq=16146neqbk=634347ntblk=1 nblk=1 avg.band=322 maxbw=600 nroll= 8

Sum. =  301.2883232344

Max. = 0.4474361431831   at # 1341 D.O.F

| | Ax – b | | / | | b | | = 1.70011553331156E-8 
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2 rows are grouped together�& needs to add "extra" ● (zeroes)�so that these 2 rows will have same starting and ending points





Same final answer
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grouped together .� -> Need to add " extra" zeroes (●) so that these 2 columns will have same starting & ending points
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