[image: image1.wmf]A

x

×

b

Computing System in Engineering Vol. 2. No. 2/3 pp. 197-201, 1991

Printed in Great Britain.

A PARALLEL-VECTOR EQUATION SOLVER FOR UNSYMMETRIC MATRICES ON SUPERCOMPUTERS

J.Qin, D.T. Nguyen, Civil Engineering Department, Old Dominion University, Norfolk, VA 23529, USA

C.E. Gray, Jr, Facilities Engineering Division, NASA Langley Research Center, Hampton, VA 23665, USA

And C. Mei, Mechanical Engineering and Mechanics Department, Old Dominion University, Norfolk, VA 23529, USA

(Received 18 December 1990)

PARALLEL-VECTOR UNSYMMETRIC

EQUATION SOLVER

[image: image52.wmf]y

x

0

i

j

m

[image: image90.wmf]P1

P2

P3

P1

P2

x

1

x

n

=

P3

x

n-4

x

n-8

x

n-28

y

1

y

n

y

n-4

y

n-8

y

n-28

92

th

 row=(n-8)

th

 row

[image: image53.wmf]2

j

i

j

j

i

i

1

3

1

2

3

[image: image2.wmf]A

L

U

×

[image: image54.wmf]1

2

3

4

5

j

k

i

k

j

i

i

j

i

j

k

k

1

2

3

4

(3)

[image: image55.wmf]P1

P2

P3

P1

P2

x

1

x

n

=

P3

x

n-4

x

n-8

x

n-28

y

1

y

n

y

n-4

y

n-8

y

n-28

92

th

 row=(n-8)

th

 row

[image: image56.wmf]P1

P2

P3

P1

P2

x

1

x

n

=

P3

x

n-4

x

n-8

x

n-28

y

1

y

n

y

n-4

y

n-8

y

n-28

92

th

 row=(n-8)

th

 row

[image: image57.wmf]Processor 0

Processor 1

Processor 0

Processor 1

NUNROL=4

[K]=

(5)

Table 1. Basic algorithm for decomposition

[image: image58.wmf][image: image59.wmf]MAXA

1

2

3

.

.

NEQ

NP

æ

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

ø

MAXA

1

2

3

4

5

6

7

8

æ

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

1

2

4

7

11

16

22

29

æ

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

(For I = 1,2,3,....,n)

c****ITOP is the row number of the top element of the I-th column

Do 1 K = ITOP, I-1

c**** do-loop 2 is to update the I-th row of U due to the contribution

c**** of the K-th row.

[image: image60.wmf]MAXA

1

2

3

4

5

6

7

8

æ

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

1

6

12

19

27

36

46

57

æ

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

[image: image61.wmf]A

a

11

a

21

a

31

a

12

a

22

a

32

a

13

a

23

a

33

æ

ç

ç

ç

è

ö

÷

÷

÷

ø

[image: image62.wmf]u

3

6

,

a

3

6

,

L

3

1

,

u

1

6

,

×

L

3

2

,

u

2

6

,

×

+

(

)

-

u

3

12

,

a

3

12

,

L

3

1

,

u

1

12

,

×

L

3

2

,

u

2

12

,

×

+

(

)

-

L

6

3

,

a

6

3

,

L

6

1

,

u

1

3

,

×

L

6

2

,

u

2

3

,

×

+

(

)

-

u

3

3

,

L

12

3

,

a

12

3

,

L

12

1

,

u

1

3

,

×

L

12

2

,

u

2

3

,

×

+

(

)

-

 Do 2 J=I,K+length of the K-th row.

 a(I,J)=a(I,J)-a(I,K)*a(K,J)

2
 continue

c**** do-loop 3 is to update the I-th column of L due to the

[image: image63.wmf]Information required to

factorize i

th

 row (sym.

case)

i

th

 row factorized => need multipliers

or

[A]=

c**** contribution of the K-th column.

[image: image64.wmf]Information required to

factorize i

th

 row and i

th

 column

Note: OL=OM distance

UBW<LBW

[A]=

O

M

L

Column height of L

Column height of U

 Do 3 J1=I+1,K+length of the K-th column

 a(J1,I)=a(J1,I)-a(K,I)*a(J1,K)

[image: image65.wmf]mxm

n

Q

Q

R

t

J

I

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

¶

¶

-

ú

û

ù

ê

ë

é

D

×

)

(

[D,A,B,C,E]

[F]

[H]

[G]

[I]

[image: image66.wmf][A]=

j

th

 col=i

th

i

th

row

mth row

3
 continue

1
continue

[image: image67.png]537 Nodes
1,647 Elements
3,188 Equations

Geostationary -
Platform

[image: image68.wmf]U

r

i

,

(

)

a

r

i

,

(

)

1

r

1

-

k

L

r

k

,

(

)

U

k

i

,

(

)

×

å

=

-

i

r

......

,

n

,

(

)

L

i

r

,

(

)

a

i

r

,

(

)

1

r

1

-

k

L

i

k

,

(

)

U

k

r

,

(

)

×

å

=

-

æ

ç

ç

è

ö

÷

÷

ø

U

r

r

,

(

)

i

r

1

+

.....

,

n

,

(

)

Do 4 J1=I+1,I+length of the I-th column

 a(J1,I)=a(J1,I)/a(I,I)

4
continue

[image: image69.wmf]L

y

×

b

(End for loop I)

and to solve

[image: image3.wmf]U

x

×

y

 (6)

for x, with

[image: image4.wmf]x

i

(

)

y

i

(

)

i

1

+

n

k

U

i

k

,

(

)

x

k

(

)

×

å

=

-

U

i

i

,

(

)

i

n

..

,

1

,

(

)

(7)

For I = 1,2,3,…,n

Step a. Find the I th row of U.

Step b. Find the I th column of L.

[image: image70.wmf]y

i

(

)

b

i

(

)

1

i

1

-

k

L

i

k

,

(

)

y

k

(

)

×

å

=

-

i

1

....

,

n

,

(

)

[image: image5.wmf]1

2

3

1

2

3

P1

P2

P3

P1

P2

P3

P1

P2

P3

P1

P2

P3

n-1

n-1

Detailed Derivations For the [L] and [U] Matrices

In order to better understand the derived formula shown in Eq. (3), let’s try to compute the factorized [L] and [U] matrices from the following 3x3 unsymmetrical matrix [A] (assuming to be a full matrix to simplify the discussion)

[image: image71.wmf]L

12,3

u

3,6

u

3,12

C

N

E

O

P

Q

R

L

6,3

Current factorized

i=11

th

 column

Info.

Required

Current factorized

i=11

th

 row

Info.

Required

(101)

The above unsymmetrical matrix A can be factorized as indicated in Eq. (2), or in the long form.

[image: image72.wmf]2

j

i

j

j

i

i

1

3

1

2

3

[image: image6.wmf]a

11

a

21

a

31

a

12

a

22

a

32

a

13

a

23

a

33

æ

ç

ç

ç

è

ö

÷

÷

÷

ø

1

l

21

l

31

0

1

l

32

0

0

1

æ

ç

ç

ç

è

ö

÷

÷

÷

ø

u

11

0

0

u

12

u

22

0

u

13

u

23

u

33

æ

ç

ç

ç

è

ö

÷

÷

÷

ø

×

The 9 unknowns (according to a special ordering u11, u12, u13; then l21, l31; then u22, u23; then l32; and finally u33) from Eq. (102) can be found by simultaneously solving the following system of equations.

[image: image7.wmf]a

11

u

11

a

12

u

12

a

13

u

13

a

21

l

21

u

11

×

a

31

l

31

u

11

×

a

22

l

21

u

12

×

u

22

+

a

23

l

21

u

13

×

u

23

+

a

32

l

31

u

12

×

l

32

u

22

×

+

a

33

l

31

u

13

×

l

32

u

23

×

+

u

33

+

[image: image73.wmf]y

x

0

i

j

m

[image: image74.wmf]1

2

3

4

5

j

k

i

k

j

i

i

j

i

j

k

k

1

2

3

4

Thus, from Eq. (103), one obtains

[image: image75.wmf]Information required to

factorize i

th

 row (sym.

case)

i

th

 row factorized => need multipliers

or

[A]=

[image: image76.png]537 Nodes
1,647 Elements
3,188 Equations

Geostationary -
Platform

[image: image77.wmf]Processor 0

Processor 1

Processor 0

Processor 1

NUNROL=4

[K]=

[image: image78.wmf]U

r

i

,

(

)

a

r

i

,

(

)

1

r

1

-

k

L

r

k

,

(

)

U

k

i

,

(

)

×

å

=

-

i

r

......

,

n

,

(

)

L

i

r

,

(

)

a

i

r

,

(

)

1

r

1

-

k

L

i

k

,

(

)

U

k

r

,

(

)

×

å

=

-

æ

ç

ç

è

ö

÷

÷

ø

U

r

r

,

(

)

i

r

1

+

.....

,

n

,

(

)

[image: image79.wmf]Information required to

factorize i

th

 row and i

th

 column

Note: OL=OM distance

UBW<LBW

[A]=

O

M

L

Column height of L

Column height of U

[image: image80.wmf]mxm

n

Q

Q

R

t

J

I

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

¶

¶

-

ú

û

ù

ê

ë

é

D

×

)

(

[D,A,B,C,E]

[F]

[H]

[G]

[I]

[image: image81.wmf]MAXA

1

2

3

.

.

NEQ

NP

æ

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

ø

MAXA

1

2

3

4

5

6

7

8

æ

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

1

2

4

7

11

16

22

29

æ

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

[image: image82.wmf]MAXA

1

2

3

4

5

6

7

8

æ

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

1

6

12

19

27

36

46

57

æ

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

[image: image83.wmf]A

a

11

a

21

a

31

a

12

a

22

a

32

a

13

a

23

a

33

æ

ç

ç

ç

è

ö

÷

÷

÷

ø

[image: image84.wmf]u

3

6

,

a

3

6

,

L

3

1

,

u

1

6

,

×

L

3

2

,

u

2

6

,

×

+

(

)

-

u

3

12

,

a

3

12

,

L

3

1

,

u

1

12

,

×

L

3

2

,

u

2

12

,

×

+

(

)

-

L

6

3

,

a

6

3

,

L

6

1

,

u

1

3

,

×

L

6

2

,

u

2

3

,

×

+

(

)

-

u

3

3

,

L

12

3

,

a

12

3

,

L

12

1

,

u

1

3

,

×

L

12

2

,

u

2

3

,

×

+

(

)

-

[image: image85.wmf]P1

P2

P3

P1

P2

x

1

x

n

=

P3

x

n-4

x

n-8

x

n-28

y

1

y

n

y

n-4

y

n-8

y

n-28

92

th

 row=(n-8)

th

 row

[image: image86.wmf]L

y

×

b

[image: image8.wmf]u

11

a

11

u

12

a

12

u

13

a

13

l

21

a

21

u

11

l

31

a

31

u

11

u

22

a

22

l

21

u

12

×

-

u

23

a

23

l

21

u

13

×

-

l

32

a

32

l

31

u

12

×

(

)

-

u

22

u

33

a

33

l

31

u

13

×

l

32

u

23

×

+

(

)

-

It can be seen clearly that the 9 unknowns shown in Eq. (104) can also be obtained by directly using Eq.(3)

The ordering appeared in Eq. (104) suggests that the factorized matrix [L] and [U] can be found in the following systematic pattern:

Step 1: The 1st row of [U] can be solved (Ex: u11, u12, u13).

Step 2: The 1st column of [L] can be solved (Ex: l21, l31).

Step 3: The 2nd row of [U] can be solved.

Step 4: The 2nd column of [L] can be solved.

Step 5: The 3rd row of [U] can be solved.

*

*

*

etc…..

For the case r=8, and i=9, Eq.(3) becomes

[image: image87.wmf]y

i

(

)

b

i

(

)

1

i

1

-

k

L

i

k

,

(

)

y

k

(

)

×

å

=

-

i

1

....

,

n

,

(

)

[image: image88.wmf]L

12,3

u

3,6

u

3,12

C

N

E

O

P

Q

R

L

6,3

Current factorized

i=11

th

 column

Info.

Required

Current factorized

i=11

th

 row

Info.

Required

[image: image9.wmf]u

8

9

,

a

8

9

,

l

8

1

,

u

1

9

,

×

l

8

2

,

u

2

9

,

×

+

.....

+

l

8

7

,

u

7

9

,

×

+

(

)

-

l

9

8

,

a

9

8

,

l

9

1

,

u

1

8

,

×

l

9

2

,

u

2

8

,

×

+

....

+

l

9

7

,

u

7

8

,

×

+

(

)

-

u

8

8

,

observing Eq.(105), one can see that to factorize the term u8,9 of the upper triangular [U], one only needs to know the factorized row 8 of [L] and column 9 of [U].

similarly, to factorize the term l9,8 of the lower triangular matrix [L], one only needs to know the factorized row 9 of [L] and column 8 of [U].

[image: image89.wmf][A]=

j

th

 col=i

th

i

th

row

mth row

Also:

[A] =

If the matrix is full (& unsymmetrix)

· To factorize the entire ith row (line OE),

We need
- multipliers, row ith of [L] (or line OP)

- earlier rows of [U] (rectangular area OCNE, right above OE)

· To factorize the entire ith column (line OR),

We need
- multipliers, column ith of [U] (or line OC)

- earlier columns of [L] (rectangular area OPQR, left of OR)

If the matrix is banded (& unsymmetric)

[image: image10.wmf][A]=

J

C

N

E

F

M

D

B

A

O

K

P

Q

G

H

P

T

UBW

LBW

i

th

 row factorized

Note: OG=OA

i

th

 column

factorized

Table 2. Vector algorithm for factorization

(For I = 1,2,3,....,n)

Do 1 K = ITOP, I-1, 6

 CDIR$ IVDEP

 Do 2 J=I,K+length of the K-th row.

 a(I,J)=a(I,J)-a(I,K)*a(K,J)-a(I,K+1)*a(K+1,J)

 + -a(I,K+2)*a(K+2,J)-a(I,K+3)*a(K+3,J)

 +
 -a(I,K+4)*a(K+4,J)-a(I,K+5)*a(K+5,J)

2
 continue

 CDIR$ IVDEP

 Do 3 J1=I+1,K+length of the K-th column

 a(J1,I)=a(J1,I)-a(K,I)*a(J1,K)-a(K+1,I)*a(J1,K+1)

 + -a(K+2,I)*a(J1,K+2)-a(K+3,I)*a(J1,K+3)

 +
 -a(K+4,I)*a(J1,K+4)-a(K+5,I)*a(J1,K+5)

3
 continue

1
continue

Do 4 J1=I+1,I+length of the I-th column

 a(J1,I)=a(J1,I)/a(I,I)

4
continue

(End for loop I)

In this paper, the artificial coefficient matrix A is automatically generated as

[image: image11.wmf]a

i

j

,

(

)

1.0

j

for

j

i

>

(

)

a

i

j

,

(

)

1

j

1

i

j

+

+

for

j

i

<

(

)

a

i

i

,

(

)

i

for

1

i

<

n

<

(

)

b

i

(

)

1.0

for

1

i

<

n

<

(

)

Table 3. Parallel algorithm for decomposition

Presched Do 100 I=1, n

Do 1 K=ITOP, I-NP, 6

 CDIR$ IVDEP

Do 2 J=I,K+length of the K-th row

 a(I,J)=a(I,J)-a(I,K)*a(K,J)-a(I,K+1)*a(K+1,J)

 + -a(I,K+2)*a(K+2,J)-a(I,K+3)*a(K+3,J)

 + -a(I,K+4)*a(K+4,J)-a(I,K+5)*a(K+5,J)

2
continue

 CDIR$ IVDEP

Do 3 J1=I+1,K+length of the K-th column.

 a(J1,I)=a(J1,I)-a(K,I)*a(J1,K)-a(K+1,I)*a(J1,K+1)

 + -a(K+2,I)*a(J1,K+2)-a(K+3,I)*a(J1,K+3)

 + -a(K+4,I)*a(J1,K+4)-a(K+5,I)*a(J1,K+5)

3
continue

1
continue

Do 10 K=I-NP+1,I-1

Copy Asyn(K) into KK

Do 20 J=I,K+length of the K-th row.

 a(I,J)=a(I,J)-a(I,K)*a(K,J)

20
continue

Do 30 J1=I+1,K+length of the K-th column

 a(J1,I)=a(J1,I)-a(K,I)*a(J1,K)

30
continue

10
continue

Do 4 J1=I+1,K+length of the I-th column

 a(J1,I)=a(J1,I)/a(I,I)

4
continue

Produce Asyn(I)=1.0

100
End Presched Do

[image: image12.wmf]67.25

123.56

0.21

210.49

0

50

100

150

200

250

Present solver

Solver in

Math./lib

Present solver

Solver in

Math./lib

Solver, A=1452x1452 full matrix

CPU, sec

Fig. 2. Different solvers on CONVEX C220

Factorization

Forward/backward

solving

Pressure

Cavity

Air flow

panel length

h, panel thickness

x,u

+z, w

a

V

velocity

q

1

2

r

a

V

2

×

dynamic

pressure

M

Mach

number

Fig. 4. Finite Element panel flutter analysis

2.428

1.22

0.631

0.325

0

0.5

1

1.5

2

2.5

3

1

2

4

8

Number of processors

CPU, sec

Fig. 3. Factorization of A=LU on CRAY Y-MP

212.5

MFLOPS

423.1

MFLOPS

810.7

MFLOPS

1587

MFLOPS

Speed up=7.486

Efficiency=93.57%

Matrix size=2000

Half-bandwidth=383

4.63

2.33

1.18

0.79

0.61

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

2

4

6

8

Number of processors

CPU, sec

Fig. 5. Panel flutter analysis on CRAY Y-MP (CPU

time for factorization and forward/backward

elimination)

233.6

MFLOPS

464.2

MFLOPS

915.4

MFLOPS

1355.8

MFLOPS

1778.7

MFLOPS

n=1452

NBWU=778

NBWL=727

5.929

7.807

3.965

1.996

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Number of processors

Speedup

Fig.6. Speedup for panel flutter analysis on CRAY Y-MP

[image: image13.wmf]5.4003

2.7447

1.5553

0

1

2

3

4

5

6

1

2

4

Number of processors

Elapsed time, sec

200.089

MFLOPS

393.700

MFLOPS

694.800

MFLOPS

n=1452

NBWU=778

NBWL=727

Figure 7 : Elapsed time for factorization on Cray-2 (Voyager)

Very detailed, important notes (For efficient code implementation)

Note#1

Symmetric case (

Unsym. Case 2

[image: image14.wmf]Information required to

factorize i

th

 row and i

th

 column

i

th

 row factorized => need multipliers

Note: OD=OC distance

UBW>LBW

[A]=

O

C

D

Note#2 – In practice, we also have considered variable column heights for [U] and [L] for more efficiency!!

Coefficient Matrix in CFD Application:

Equations=25,160

Upper Bandwidth=Lower Bandwidth=425

	CFD Vector Solver
	Present solver
	Voyager (Cray-2)

	(65 sec
	(53 sec
	1 processor

	N/A
	(14 sec
	4 processors

 *
[image: image15.wmf]{

}

{

}

1

1

)

(

mx

n

mx

n

Q

R

Q

=

D

for I=1,2,3,...,n

 Do 1 K=1,I-1

 scalar=a(I,K)

c...
do loop 2 is used to update (or factorize) the I-th row of [U]

c...
due to the contribution of the K-th row

c...
(refer to the first part of Eq. 3)

 Do 2 J=I,n

2
 a(I,J)=a(I,J)-scalar*a(K,J)

c...
do loop 3 is used to "partially" update the I-th column of [L]!

c...
due to contribution of the K-th column (refer to the

c...
nominator of the second part of Eq. 3)

 scalar=a(K,I)

 Do 3 J1=I+1,n

3
 a(J1,I)=a(J1,I)-scalar*a(J1,K)

1
 continue

c...
do loop 4 is used to compute the "final" update of

c...
the I-th column of [L]

 Do 4 J1=I+1,n

4
 a(J1,I)=a(J1,I)/a(I,I)

Continue (for loop i)

Table 11: Basic Algorithm For [L]&[U] Factorization (full-matrix is assumed)

In order to better understand the basic algorithm shown in Table 11 for factorization of a full unsymmetrical matrix, a 3x3 matrix [A] given in the previous section will be used to verify Table 11

For i=1, then (please refer to Table 11)

· loop 1 will be skipped

· from loop 4

a(2,1) = a(2,1)/a(1,1) (l21

(refer to Eq. 104)

a(3,1) = a(3,1)/a(1,1) (l31

(refer to Eq. 104)

· notice:

The first row of [U] (such as u11, u12 and u13) are not required to calculate, because they are the same as the original matrix [A] (u11 = a11, u12 = a12 and u13 = a13)

For i=2, then

· from loop 2

a(2,2) = a(2,2)-a(2,1)(=scalar)*a(1,2) (U22
(refer to Eq. 104)

a(2,3) = a(2,3)-a(2,1)*a(1,3) (U23

(refer to Eq. 104)
· from loop 3

a(3,2) = a(3,2)-a(1,2)(=scalar)*a(3,1) (Partial solution for l3,2
· from loop 4

a(3,2) = a(3,2)/a(2,2) (l32

(refer to Eq. 104)
For i=3, then

· from loop 2 (with K=1)

a(3,3) = a(3,3)-a(3,1)*a(1,3) (Partial solution for u3,3
· loop 3 will be skipped

· loop 4 will be skipped

· from loop 2 (with K=2)

a(3,3) = a(3,3)-a(3,2)*a(2,3) (u3,3

(refer to Eq. 104)
· loop 3 will be skipped

· loop 4 will be skipped

Comments on Table 11

(a) The operations in the innermost loops 2 and 3 are “saxpy” operations (a vector + a scalar * another vector), thus these operations can be done quite fast on vector computers (such as CRAY Y-MP, CRAY-C90 computers)

(b) In loop 2, the Jth column of U keeps changing, thus it is important to store the upper triangular matrix U according to a row-by-row fashion (see Figure 1). This will assure to have a stride 1 in vector computation.

(c) In loop 3, the J1th row of L keeps changing, thus it is important to store the lower triangular matrix L according to a column-by-column fashion (see figure 1). This will assure to have a stride 1 in vector computation.

(d) The “scalar” defined in Table 11 is also refered to as “multiplier”. In general, the average upper bandwidth (or UBW) of [U] is different from the average lower bandwidth (or LBW) of [L]. Factorizing the Ith row (of [U]) and the Ith column (of [L]) can be done much more efficiently by skipping some operations when the multiplier is zero. Figures 247 and 248 show what information are truly needed to factorize the Ith row and the Ith column.

[image: image16.wmf]Information required

to factorize i

th

 row

i

th

 row (currently factorized)

Note: OD=OC distance

UBW>LBW

[A]=

Information required

to factorize i

th

 row

Note: OL=OM distance

UBW<LBW

[A]=

O

C

D

O

M

L

UBW

Information required

to factorize

i

th

 column

i

th

 column (currently factorized)

LBW

Figure 247. Unsymmetrical Factorization

(UBW>LWB; OD=OC)

i

th

 row (currently factorized)

i

th

 column (currently factorized)

UBW

LBW

Information required

to factorize i

th

 column

Figure 248. Unsymmetrical Factorization

(UBW<LWB; OM=OL)

Basic Algorithm for Decomposition of Variable Bandwidths / Column Heights Unsymmetrical Matrix

For many practical engineering applications, the unsymmetrical matrix is not full. Instead, the unsymmetrical matrix will have variable bandwidths and variable column heights as shown in figure 111.

A =

Figure 111 : Unsymmetrical Matrix with Variable Bandwidths and Column Heights.

In this case, to avoid unnecessary operations with zero values, the algorithm given in table 11 need to be modified slightly as shown in Table 1.

From Table I, one clearly sees that the previously factorized rows (please refer to loop 1) are used to partially factorized the current Ith row (please refer to loop 2) of the upper triangular matrix U. Thus, to improve the vector performance, one should try to increase the work loads of the innermost loop 2. This can be done by unrolling the outer loop 1. For example, a block of 6 (instead of just 1) previously factorized rows is used to partially factorize the current Ith row.

Similarly, the previously factorized columns (please refer to loop 1) are used to partially factorize the current Ith column (please refer to loop 3) of the lower triangular matrix L. A block of 6 (instead of just 1) previously factorized columns is used to partially factorize the current Ith column (inside loop 3).

Thus, Table 2 can be obtained by simply making the following minor modifications to Table 1.

(a) The increment of loop 1 is changed from 1 into 6 (to consider a block of 6 rows/columns at a time).

(b) Expanding the FORTRAN statement inside loop 2 to include the effects of using 6 rows at a time to partially factorize the current Ith row of upper matrix, [U].

(c) Expanding the FORTRAN statement inside loop 3 to include the effects of using 6 columns at a time to partially factorize the current Ith column of lower matrix, [L].

A careful comparison between Table 2 (vector algorithm for factorization) and Table 3 (parallel-vector algorithm for factorization) suggests that the latter can be obtained from the former with the following modifications.

(a) The outermost loop (for index I) is executed in parallel (in stead of sequential mode) by using a “Presched” parallel FORTRAN statement.

(b) Loop 1 (for index K) in Table 2 is separated into 2 loops (loops 1 and 10) in Table 3.

· In Table 2, the index K goes from “ITOP” to “I-1”.

· In Table 3, the index K goes from “ITOP” to “I-NP” (see loop 1) and then, from “I-NP+1” to “I-1” (see loop 10).

(c) The “Copy” parallel FORTRAN statement inside loop 10 (of Table 3) will assure that the previous Kth row has been completely factorized (or else the processor will wait!) and can now be safely used to partially factorize the current Ith row (see loop 20) and Ith column (see loops 30 and 4).

(d) The “Produce” parallel FORTRAN statement (after loop 4) is used to broadcast to all other processors that the Ith row/column have been completely factorized now.

Forward Solution Phase [L] {y} = {b}

To simplify the discussions, let us consider a 6x6 full-system as shown in the following equations.

 1 0 0 0 0 0 y1

b1

 L21 1 0 0 0 0
 y2

b2

 L31 L32 1 0 0 0

y3

b3

=

 L41 L42 L43 1 0 0

y4

b4

 L51 L52 L53 L54 1
0

y5

b5
 L61 L62 L63 L64 L65 1

y6

b6

The forward solution for the unknown vector {y} can be proceeded as following

y1 = b1

y2 = b2 – L21y1

 yI = bI - (LI,k yk

Since the lower triangular matrix has been generated and stored in a column-by-column fashion (please recall Figure 1), thus column 1 of [L] has stride 1. Furthermore, to improve the vector performance, one should try to work with long vector in the innermost do-loop. Thus, a good strategy will be outline in the following.

	Step 1.
Solve for the unknown y1 (according to Eq. 122)

Step 2.
Use the first column of [L] and operate on the known scalar y1 in order to update the right-hand-side vector {b}. Thus, the unknown y2 can be found.

Step 3.
Use the second column of [L] and operate on the known scalar y2 in order to update the right-hand-side vector {b}. Thus, the unknown y3 can be found.

Step 4.
Continue to do “similar” operating as mentioned in step 2&3, until all unknowns of vector {y} are found.

The above step-by-step procedure can be simply coded as shown in Table 123.

	C Solve for the first unknown

C Note : solution vector {y} will over write right-hand-side

C vector {b} to save computer memory

b(1) = b(1)

C
Try to solve the subsequent unknowns

Do 1
I = 2, n, 1

Do 2

J = I, n

C
use the previously known solution to update the right-hand-side vector {b}

 2 b(J) = b(J) – L(J,I-1) * b(I-1)

C
 Next solution is readily found

 b(I) = b(I)

 1 continue

Table 123 : Basic Algorithm for Forward Solution

It should be mentioned here that inside loop 2 of Table 123, one has SAXPY operations (a vector {b} (scalar y * another vector L), thus the innermost loop 2 can be executed very efficiently on the vector computer (such as the CRAY-YMP, CRAY-C90 etc…).

However, a careful observation of the above 4-step procedure and the data structure shown in Eq. (121) suggests that even better vector-performance can be achieved (by using the “loop unrolling” technique) with a simple modification to Table 123.

The key idea in “loop unrolling” technique is to add more work loads (SAXPY operations) into the innermost do-loop (see loop 2 of Table 123). A simple way to achieve this objective is to use 2 (or more) columns (instead of just 1) of matrix [L] and operate on previously known 2 (instead of just 1) solutions. Thus, loop-unrolling algorithm for forward solution can be shown in Table 124.

Table 124 : Loop-unrolling (Level 2) for Forward Solution

	C Solve the first 2 unknowns

 b(1) = b(1)

 b(2) = b(2) – L(2,1)*b(1)

C For subsequent unknowns

 Do 1 I = 3, n, 2

 Do 2 J = I, n

 b(J) = b(J) - L(J,I-1)*b(I-1)

 $ - L(J,I-2)*b(I-2)

 2 continue

C Next 2 solutions can be found

 b(I) = b(I)

 b(I+1) = b(I+1) – L(I+1,I)*b(I)

 1 continue

Comments on Table 124 :

(a) In actual computer implementation, loop-unrolling level 6 or 8 can be used instead of using unrolling level 2 (see the increment 2 in loop 1).

(b) For a general matrix with dimension n, the use of loop-unrolling technique will require “special” treatments for the left-over columns of the matrix L

(c) To simplify the discussions, the matrix system of equations shown in Eq. (121) is assumed to be “full”. However, in actual computer implementation, variable column-heights of the lower triangular matrix [L], and variable row-length (or bandwidth) of the upper triangular matrix [U] can be accommodated to avoid unnecessary operations (on the zeros).

(d) In actual computer implementation, the lower and upper factorized matrices [L] and [U] will be stored in a 1-D array and the original matrix (which is also stored in a 1-D array) will be over written by [L] and [U] in order to save computer memory.

Backward Solution Phase [U] {x} = {y}

To simplify the discussions, let us consider the following 6x6 full system of equations.

 U11 U12 U13 U14 U15 U16

x1

y1
 0 U22 U23 U24 U25 U26

x2

y2
 0 0 U33 U34 U35 U36

x3

y3

=

 0 0 0 U44 U45 U46

x4

y4
 0 0 0 0 U55 U56

x5

y5
 0 0 0 0 0 U66

x6

y6

The backward solution for the unknown vector {x} can be proceeded as following

x6 =

x5 =

xI =

As an example, x2 =

The operations involved in the above parenthesis are called “dot product” operations, since it involves {u2,3, u2,4, u2,5, u2,6} .

Since the upper triangular matrix has been generated and stored in a row-by-row fashion (please refer to Figure 1), thus each row of [U] has stride 1. However, each column of [U] has very undesirable stride (column stride of [U] is greater than 1). Due to this reason, it is not efficient (in this case) to use loop-unrolling technique (for example, having found the unknown x6, then using column 6 to operate on the scalar x6 for the purpose of updating the right-hand vector {y}) as discussed in the previous section. The backward solution (please refer to Eq. 132) can be coded using “dot-product” operations (instead of SAXPY operations as discussed in the forward solution phase) as shown in Table 141.

Table 141 : Basic Algorithm for Backward Solution

C
 Solve the last unknown

 X(N) =

C
 For subsequent unknowns

 Do 1
I = N-1, 1, -1

C
 Performing the summation (or dot-product) operations in

C
 Eq. (132)

Do 2 K = I + 1, N

2
Sum1 = Sum1 + U(I,K) * x(K)

 x(I) =

1 Continue

It should be mentioned here that the dot-product operations inside loop 2 (of Table 141) can be vectorized quite well (on vector computers) since the row vector of [U] has stride 1 (recalled that the matrix U is stored in a row-by-row fashion).

However, a careful observation of Eq. (132) and the storage scheme used for matrix [U] shown in Eq. (131) suggests that even better vector-performance can be achieved by using the “vector-unrolling” technique with a simple modification to Table 141.

The key idea in “vector-unrolling” technique is to add more work loads (dot-product operations) into the innermost do-loop (see loop 2 of Table 141). A simple way to achieve this objective is to use 2 (or more) rows (instead of just 1) of matrix [U] and operate on previously known 2 (instead of just 1) solutions. The resulted “vector-unrolling” (level 2 unrolling is assumed) algorithm for backward solution is illustrated in Table 142.

Table 142 Vector-Unrolling Algorithm for Backward Solution

C
 Solve the last 2 (or more) unknowns

 x(N) =

 x(N-1) =

C
 For subsequent unknowns

 Do 1
I = N-2, 1, -2

C
 Performing 2 (or more) dot-product operations in Eq. 132

Do 2 K = I + 1, N

Sum1 = Sum1 + U(I,K) * x(K)

2
Sum2 = Sum2 + U(I-1,K) * x(K)

 x(I) =

 x(I-1) =

1 Continue

Pivoting

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	ith row

	A=
	
	
	
	
	aii
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	kth row

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

[image: image17.wmf]å

-

=

)

(

*

)

(

a

a

ii

ii

 => If aii near zero = (

[image: image18.wmf][

]

)

/(

)

(

*

)

(

e

=

-

=

å

ii

ij

ij

a

a

a

For Sun => machine Double precision = 10-15

(Partial pivoting => switch rows

X Complete Pivoting => switch rows & columns

 X Diagonal Pivoting

	Notes
	(a) When switch rows, then upper b.w. will be at most double (proof: easily)

(b) When switching rows, then lower b.w. will be at most full matrix

proof:

 switch row1 & row6 => lower b.w.=6

later on, we may find a66 too small

=> switch row 6 with ,say, row 10 => lower b.w.=10=full

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	10-10
	1
	0
	100
	0
	200
	0
	0
	0
	0
	
	

	
	
	1
	2
	
	
	
	
	
	
	
	
	
	

	
	
	0
	
	3
	
	
	
	
	
	
	
	
	

	
	
	100
	
	
	4
	
	
	
	
	
	
	
	

	A=
	
	0
	
	
	
	5
	
	
	
	
	
	
	

	
	
	200
	
	
	
	
	6
	
	
	
	
	
	

	
	
	0
	
	
	
	
	
	7
	
	
	
	
	

	
	
	0
	
	
	
	
	
	
	8
	
	
	
	

	
	
	0
	
	
	
	
	
	
	
	9
	
	
	

	
	
	0
	
	
	
	
	
	
	
	
	10
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	For m = i, i+1, … , i+NBW

[image: image19.wmf][

]

??)

/(

)

#

(

)

#

(

=

-

=

ii

T

mj

mj

a

m

row

j

col

a

a

(aii=not known yet)

Then:

 Pivoting element=Max/{amj where m= i, i+1, … , i+NBW

 Example row k (row i

	Update (new) row i (same as “old” row k)

[image: image20.wmf]å

-

=

)

(

*

)

(

a

a

il

il

Note:

(a) After switching rows of the coeff matrix, we also have to switch RHS(=load vector) too.

(b) Row lengths also change when switching rows. In the very beginning of Eq. Solver, we already reserve extra memory (for worst case) for switching rows => no need to re-define diagonal pointer array MAXA (??)

A Fast Parallel Algorithm for Generation and Assembly of Finite Element Stiffness and Mass Matrices

By

Majdi Baddourah (ODU)

Olaf Storaasli (NASA-Langley)

Ed Carmona (USAF Phillips Labs)

Duc Nguyen (ODU)

AIAA/ASME/ASCE/AHS/ASC 32nd
Structures, Structural Dynamics and Materials Conference

Baltimore, MD

April 8-10, 1991

A NEW PARALLEL-VECTOR FINITE ELEMENT ANALYSIS SOFTWARE ON DISTRIBUTED MEMORY COMPUTERS

Jiangning Qin and Duc T. Nguyen

Center for Multidisciplinary Parallel-Vector Computation

Civil Engineering Department, Old Dominion University, Norfolk, VA 23529

Motivation

· Equation solution dominates analysis time

· Equation solution time reduced significantly (PVSOLVE by Storaasli, Nguyen and Agarwal)

[image: image21.wmf][k], [K]

Equation

Solution

[k], [K]

ES

· Time to generate/assembly [K] significant:

· Complex element types

· Nonlinear structural analysis

· Structural optimization

· Control-structure interaction

Traditional Element Assembly

Parallel Approach: Assign elements to different processors

DO 1 e = 1,3 elements

Generate element stiffness matrix: [k(e)]

Assemble global [K]=
[image: image22.wmf]å

e

[k(e)]

1
Continue

Synchronization Bottleneck

Elements with common nodes are added simultaneously (([k(e)])!

Node-by-Node Element Generation

[image: image23.wmf]3

2

1

u

3

u

4

u

5

u

6

1

2

3

u

1

u

2

y

x

2

j=3

i=1

j=3

j=1

i=2

i=2

3

1

	Step 1: Element Connectivity (old)
	
	Step 2: Nodal Connectivity (new)

	
	
	
	
	
	
	
	

	Element No.
	Node i
	Node j
	
	Node No.
	DOF
	Elements

Attached to

	1
	2
	3
	
	
	
	Node i
	Node j

	2
	1
	3
	
	1
	1, 2
	2
	3

	3
	2
	1
	
	2
	3, 4
	1, 3
	none

	
	
	
	
	3
	5, 6
	none
	1, 2

Step 3: Parallel Generation and Assembly of kii(e) for each Node of a Structure

	Table 4 Parallel Generation-Assembly of kii(e)

	
	
	
	
	
	
	

	
	1
	2
	3
	4
	5
	6

	1
	2
	2
	
	
	
	

	2
	
	2
	
	
	
	

	3
	
	
	1, 3
	1, 3
	
	

	4
	
	
	
	1, 3
	
	

	5
	
	
	
	
	
	

	6
	
	
	
	
	
	

Step 4: Parallel Generation and Assembly of kjj(e) for Each Node of a Structure

	Table 5 Parallel Generation-Assembly of kjj(e)

	
	
	
	
	
	
	

	
	1
	2
	3
	4
	5
	6

	1
	3
	3
	
	
	
	

	2
	
	3
	
	
	
	

	3
	
	
	
	
	
	

	4
	
	
	
	
	
	

	5
	
	
	
	
	1, 2
	1, 2

	6
	
	
	
	
	
	1,2

Step 5:

In this step, the portion Kij=(kij(e) of the structural stiffness matrix, K, is generated and assembled in a parallel computer environment

In this paper, the information for nodes j is used in this step. Thus, processor 1 is assigned to node 1 to process element 3. Element 3 is connected to DOF 1, 2, 3 and 4 and its contribution to Kii and Kjj have been done in step3 and step 4, respectively. Processor 1 will generate kij(e=3) and add its contribution to the appropriate locations of Kij. Simultaneously, processor 3 is assigned to node 3 to process elements 1 and 2. Processor 3 will, therefore, generate kij(e) for elements e=1 and 2, and add its contribution to the appropriate locations of Kij. In this step, Processor 2 is idle since there are no elements with node j=2. The parallel generation/assembly of kij(e) for each structural node is conveniently represented in Table 6.

	Table 6 Parallel Generation-Assembly of kij(e)

	
	
	
	
	
	
	

	
	1
	2
	3
	4
	5
	6

	1
	
	
	3
	3
	2
	2

	2
	
	
	 3
	3
	2
	2

	3
	
	
	
	
	1
	1

	4
	
	
	
	
	1
	1

	5
	
	
	
	
	
	

	6
	
	
	
	
	
	

Fig 2. Three node Triangular Element

A two dimensional, 6 x 6 element stiffness matrix [k(e)] can be symbolically represented as:

	
	
	
	
	
	
	

	
	
	Kii(e)
	Kij(e)
	Kim(e)
	
	

	[K(e)]=
	
	
	Kjj(e)
	Kjm(e)
	
	

	
	
	
	
	Kmm(e)
	
	

	
	
	
	
	
	
	

In Eq. (2), Kii(e), Kjj(e), and Kmm(e) refer to the 2 x 2 sub-matrices which represent a portion of an element stiffness matrix attached to node i, node j, and node m, respectively. The coupling effect between nodes i, j, and m of an element stiffness matrix [K(e)] is represented by the sub-matrices Kij(e), Kim(e), and Kjm(e). Thus, for a three-node triangular element, an additional step needs to be inserted before the last step (step 5) for parallel generation and assembly of Kmm(e) for each node m of the structure.

Alternative Implementation of Baddourah-Nguyen’s Generation and Assembly method

	Proc (or Node) Number
	Els. Attached Node-i
	Els. Attached Node-j

	1

2

3
	1,3

2

None
	None

1

2,3

For Each processor pth
Do 1 L =1, NEL(pth)

 Step 1: Kii (& Kij where j>i)

	
	1
	2
	3
	4
	5
	6th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	1, 3
	1, 3
	1
	1
	3
	3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	
	1, 3
	1
	1
	3
	3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	
	
	
	 2
	2
	2
	2
	
	
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	
	
	
	
	 2
	2
	2
	
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	6
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	Processor 1
	
	
	
	
	
	Processor 2
	
	
	
	
	Processor 3 (idle) !!

 Step 2 : Kjj (& Kji where i>j)

	
	1
	2
	3
	4
	5
	6th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	
	
	
	1
	1
	
	
	
	
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	
	
	
	
	1
	
	
	
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	2, 3
	2, 3

	6
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	2, 3

	
	Processor 1 (idle!)
	
	
	
	
	Processor 2
	
	
	
	
	Processor 3

1
continue

3-Node Element case (for simplicity assuming each node has only 1 dof, say x-translation)

	Processor (or Node)
Number
	Els. To Node-i
	Els. To Node-j
	Els. To Node-k

	1
	1, 2
	None
	None

	2
	3
	2
	None

	3
	4
	3
	None

	4
	None
	4
	1

	5
	None
	1
	2, 3, 4

For each Processor pth

Do 1 L = 1, NEL (pth)

 Step 1: Kii (&Kij, Kik where j, k > i)

	1
	1, 2
	2
	
	1
	1, 2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	
	
	
	
	
	
	
	
	3
	3
	
	3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	4
	4
	4
	
	
	
	
	
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	1
	2
	3
	4
	5th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Processor 1
	
	
	Processor 2
	
	Processor 3
	
	Processor 4
	
	Processor 5

 Step 2: Kjj (&Kji, Kjk where i, k > j)

	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	
	
	
	
	
	
	
	
	2
	
	
	2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	3
	
	3
	
	
	
	
	
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	4
	4
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	1

	
	1
	2
	3
	4
	5th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Processor 1
	
	
	Processor 2
	
	Processor 3
	
	Processor 4
	
	Processor 5

 Step 3: Kkk (&Kki, Kkj where i, j > k)

	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	1
	1
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	2, 3, 4

	
	1
	2
	3
	4
	5th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Processor 1
	
	
	Processor 2
	
	Processor 3
	
	Processor 4
	
	Processor 5

1
continue

3-D Geostationary Platform

(537 Nodes, 1647 Elements, 3188 Degrees of Freedom)

[image: image24.jpg]

[image: image25.wmf]1.34 (1.00)

0.69 (1.93)

0.37 (3.61)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1

2

4

Number of Cray 2 Processors

Time, secs (Speedup)

Matrix Generation and Assembly on iPSC/860

[image: image26.wmf]0

0.5

1

1.5

2

2.5

Time, sec.

1

2

4

8

16

32

Number of Processors

Conclusion

· Simple, efficient method developed and tested to:

· Generate element [k(e)] in parallel

· Assemble global [K] in parallel

Which is:

· General (2&3 node elements, mixed elements)

· Accurate (exact agreement with SAP-4)

· Efficient (good speedup on multiple processors)

· Portable (to Cray Y-MP, Cray 2, Convex, Alliant)

· Modular (to different finite-element codes)

· Consistent (with parallel-vector equation solver)

· Ingredients (element generation, assembly solver) for next generation parallel finite element code

	
	
	
	
	
	9
	13
	17
	21
	25
	29
	33
	37
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Row 9

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	P 1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	P 2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	P 3
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	P 1
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P 2
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P 3
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P 1
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P 2
	
	
	
	

Block Storage scheme for matrix A in a one-dimensional array

(can be skyline or variable band)

(can be shared or distributed memory computers)

New Parallel G/A Approach

	Element #
	Element DOF #
	Processor #

	1
	1->6
	1

	2
	7->12
	1, 2

	3
	7, 8, 9, 18, 19, 20
	1, 3

	*
	
	

	*
	
	

	*
	
	

	*
	
	

	28
	20, 21, 22, 80, 81, 82
	3, 1, 2

	*
	
	

	*
	
	

	*
	
	

	NEL
	
	

	Processor #
	Element #

	1
	1, 2, 3, 28

	2
	2, 28

	3
	3, 28

	*
	*

	*
	*

	*
	*

	*
	*

	*
	*

	NP
	*

New Parallel G/A Approach

In Parallel, for each processor i:

Do 1 K=1, NEL (i)

· ELDOF (kth element) = 20, 21, 22, 80, 81, 82

· Generate Stiffness of the kth element

· Assemble the entire (or just a portion of) kth element stiffness

1 Continue

In parallel, for each processor i:

Do 1 K = 1, ALLELS

· ELDOF (kth element) = 20, 21, 22, 80, 81, 82

Do 2 M=1, 6

If (ELDOF(M) belongs to Processor i) then

· Record element k belongs to processor i

· Exit loop 2, and go to loop 1

Endif

2 continue

1
continue

[image: image27.wmf]1

4

1

8

3

2

3

2

5

4

7

6

5

6

9

10

15

11

9

12

13

8

7

10

12

16

14

13

11

[image: image28.wmf]Element No.

DOF No.

Processor No.

1

1, 6, 4

1, 2

2

1, 4, 2

1

3

2, 4, 7

1, 2

4

2, 7, 5

1, 2

5

2, 5, 3

1, 2

6

3, 5, 8

1, 2

7

5, 7, 8

2

8

4, 6, 7

1, 2

9

6, 9, 7

2, 3

10

6, 11, 9

2, 3

11

7, 9, 12

2, 3

12

7, 12, 10

2, 3

13

7, 10, 8

2, 3

14

8, 10,

13

1, 2, 3

15

9, 11, 12

3

16

10, 12, 13

1, 3

[image: image29.wmf]1

2

3

Processor No.

1 , 6, 8, 14 , 16

1 , 3 , 14

 9 , 16

Element No.

	
	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	1
	
	1, 2
	2
	
	1, 2
	
	1
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	2
	
	
	2
	
	2
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	4
	
	
	
	
	1, 2
	
	1
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	6
	
	
	
	
	
	
	1
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	7
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	[A] =
	
	
	8
	
	
	
	
	
	
	
	
	14
	
	14
	
	
	14
	
	
	

	
	
	
	
	9
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	10
	
	 S
	Y
	M
	
	
	
	
	
	
	14
	
	
	14
	
	
	

	
	
	
	
	11
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	12
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	13
	
	
	
	
	
	
	
	
	
	
	
	
	
	14
	
	
	

	
	
	
	
	14
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	15
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	16
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	P1
	P2
	P3
	P1

Assuming NP=3 processors (= P1, P2 and P3)

Unrolling level=4

[image: image30.wmf]
Example. 2-D truss structures with ‘nb’ bays and ‘ns’ stories are denoted as nb x ns. Table 1 gives the CPU times for the generation and assembly of the global stiffness matrix (on the Gamma computer with up to 128 processors). For the 200 x 6 model, nel=4806, neq=2412. For the 1 x 1650 model, nel=82500 and neq=66000

Table 1. CPU times for the generation and assembly of the global matrix

	nb x ns
	k
	1
	2
	4
	8
	16
	32
	64
	128

	200 x 6
	4
	0.337
	0.206
	0.1036
	0.0593
	0.029
	0.01398
	0.00718
	0.0034

	200 x 6
	8
	0.339
	0.1885
	0.1145
	0.0569
	0.0273
	0.01412
	0.00664
	0.0033

	1 x 16500
	4
	4.64
	3.537
	1.793
	0.9083
	0.4515
	0.2267
	0.114
	0.057

	1 x 16500
	8
	-
	2.985
	1.507
	0.7564
	0.376
	0.188
	0.0945
	0.0481

* timings for task 1 is not included here.

Parallel-Vector Equation Solver For

Distributed-Memory Computers

Jiangning Qin and Duc T. Nguyen

Center for Multi-disciplinary Parallel-Vector computation

Civil Engineering Department

Old Dominion University, Norfolk, Virginia 23529

2nd Symposium

on

Parallel Computational Methods

For

Large-Scale Structural Analysis and Design

February 24-25, 1993

Marriott Hotel, Norfolk, Virginia

Sponsor

NASA Langley Research Center

Hampton, Virginia

Storage scheme for factorization

	
	
	
	
	
	9
	13
	17
	21
	25
	29
	33
	37
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Row 9

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	P 1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	P 2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	P 3
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	P 1
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P 2
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P 3
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P 1
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	P 2
	
	
	
	

Block storage scheme for matrix A in a one-dimensional array

Vector unrolling & Blockwise updating:

[image: image31.wmf]sum

1

sum

1

column

9

(

)

column

9

(

)

×

+

sum

2

sum

2

column

9

(

)

column

10

(

)

×

+

sum

3

sum

3

column

9

(

)

column

11

(

)

×

+

sum

4

sum

4

column

9

(

)

column

12

(

)

×

+

are executed by processor 1, while the following dot product operation

[image: image32.wmf]sum

1

sum

1

column

9

(

)

column

13

(

)

×

+

sum

2

sum

2

column

9

(

)

column

14

(

)

×

+

sum

3

sum

3

column

9

(

)

column

15

(

)

×

+

sum

4

sum

4

column

9

(

)

column

16

(

)

×

+

 are processed by processor 2 etc…

A skeleton pseudo-code for parallel-vector Choleski factorization

Parallel Do 100 ith row=1, n, 4

(say i=9)

C
…me = processor number

If (“me” have the ith column) then

 Do 200 j = 0, 3
(This loop is required due to skipping occurs in the first loop)

II=(Global row #) = i+j

 Do 400 column # JJ = II, n, 4
(The values of JJ maybe skipped, depending on the value of “me”)

 Sum1=sum2=sum3=sum4=0

Do 500 row k=1, 2, …., II

 Sum1=sum1+uk,II*uk,jj
 Sum2=sum2+uk,II*uk,jj+1
 Sum3=sum3+uk,II*uk,jj+2
 Sum4=sum4+uk,II*uk,jj+3
500
Continue

if (II.Eq.JJ) then

 uii,jj = SQRT(Aii,jj – sum1)

 send column jj to all other processors

else

[image: image33.wmf]ii

ii

jj

ii

jj

ii

u

Sum

A

u

,

,

,

1

-

=

,
[image: image34.wmf]ii

ii

jj

ii

jj

ii

u

Sum

A

u

,

1

,

1

,

2

-

=

+

+

,

[image: image35.wmf]ii

ii

jj

ii

jj

ii

u

Sum

A

u

,

2

,

2

,

3

-

=

+

+

,
[image: image36.wmf]ii

ii

jj

ii

jj

ii

u

Sum

A

u

,

3

,

3

,

4

-

=

+

+

endif

400
continue

200
continue

Else

c…
all other processors do the following

· receive column #jj

· update row ii

Endif

100
continue

Table 2. Vector performance with different options.

Decomposition of a 1000x1000 matrix on one processor (Intel iPSC/860)

	Options
	Time (seconds)

	No vector-unrolling
	44.8

	Vector-unrolling level 4
	35.8

	Vector-unrolling+block-wise updating
	22.2

	DDOT+vector-unrolling+block-wise updating
	20.2

	DDOT+vector-unrolling without block-wise updating
	14.5

Table 3 : Communication schemes

	Single-send scheme
	Double-send scheme

	Do 100 i = 1, n, 4

 If (I have the ith column) then

 Do 200 j = 0,3

 Update the (i+j)th column

 Send the (i+j)th column to all other processors (fan-out)

 Update the (i+j)th row

200 continue

 else

 do 300 j=0, 3

 receive the (i+j)th column

 update the (i+j)th row

300 continue

endif

100 continue
	Do 100 i = 1, n, 4

 If (I have the ith column) then

 Do 200 j = 0,3

 Update the (i+j)th column

 Send the (i+j)th column to the next processor

 Send the (i+j)th column to all other processors
 Update the (i+j)th row

200 continue

 else

 do 300 j=0, 3

 receive the (i+j)th column

 update the (i+j)th row

300 continue

endif

100 continue

Sequential send (or Ring) scheme

Do 100 i = 1, n, 4

 If (ME have the ith column) then

· Update the (i+j)th column

· Send the (i+j)th column to next processor

· Update the (i+j)th row

Else

· Every processor receives info from previous processor (ME-1)

· If (ME (Processor which possess [i-1]) then

· Send info to next processor which possess (i+4)

· With exception: Last processor NP send info to processor 0

endif

· Update (i+j)th row

Endif

Table 4. Communication performance

Decomposition of a 4000x4000 matrix on 16 processors (Intel iPSC/860)
	Options
	Time (sec)

	Single-send (with CSEND, CRECV)
	231

	Single-send (with ISEND, IRECV)
	192

	Single-send (DDOT+ISEND, IRECV)
	120

	Double-send (DDOT+ISEND, IRECV)
	108

	Sequential-send (DDOT+CSEND, CRECV)
	104

Forward Elimination:

[image: image37.wmf]9

5

13

17

21

25

29

P1

P2

P3

P1

P2

P2

P3

P3

P1

P1

P2

P2

P3

P3

y

5

y

9

y

17

y

n

=

b

5

b

9

b

17

b

n

Figure 2: Parallel Forward Elimination

[image: image38.wmf]y

9

b

9

1

8

i

u

i

9

,

y

i

×

å

=

-

u

9

9

,

or

[image: image39.wmf]y

9

b

9

u

1

9

,

y

1

×

u

2

9

,

y

2

×

+

.....

+

u

8

9

,

y

8

×

+

(

)

-

u

9

9

,

For example, processor 1 will compute: (partially)

[image: image40.wmf]y

21

incomplete

(

)

×

b

21

u

1

21

,

y

1

×

.....

+

u

12

21

,

y

12

×

+

(

)

-

....

(

)

-

u

21

21

,

At the same time, processor 3 will compute: (partially)

[image: image41.wmf]y

17

incomplete

(

)

×

b

17

u

1

17

,

y

1

×

.....

+

u

12

17

,

y

12

×

+

(

)

-

....

(

)

-

u

17

17

,

and will also compute:

y18(incomplete) through y20 (incomplete), and y29 (incomplete) through y32 (incomplete)

	Forward elimination

	Do 100 i = 1, n, 4

 If (“me” have the ith row) then (Ex: row i=9

c.. For 1 processor

 update y(i), y(i+1), y(i+2), y(i+3)

 fan-out (or send to all)

 y(i), y(i+1), y(i+2), y(i+3)

 partially update y(j) (for i+3 < j < n)

 for processor “me”’s portion only

 else

c… For all other processors

 receive y(i), y(i+1), y(i+2), y(i+3)

 partially update y(j) (for i+3 < j < n)

 endif

100 Continue

Backward Elimination:

Figure 3: Backward Elimination

[image: image42.wmf]x

92

y

92

93

100

i

u

92

i

,

x

i

å

=

-

u

92

92

,

Or

[image: image43.wmf]x

92

y

92

u

92

93

,

x

93

×

u

92

94

,

x

94

×

+

....

+

u

92

100

,

x

100

×

+

(

)

-

u

92

92

,

Thus, one can clearly see that processor 1 (see Figure 3) can easily calculate unknowns x92 to x89, since x100 to x93 have already been “completely” calculated.

Having completed the final solution for x92 through x89, processor 1 continues to compute the “partial” (or incomplete) solution for x88 through x85. Processor 1 then send these partial solutions to the next processor (on its left, say processor 2) and processor 1 continues to find the partial solution for x84 through x1.

Meanwhile, a “if check” is performed in order to determine the workloads for the remaining processor (not including processor 1). If a processor is adjacent to the left of processor 1 (say processor 2), it will receive the “partial” solutions (for example, x88 to x85) from all other processors (fan in), say processors 1 and 3. All the other processors (not including processor 1 and the adjacent processor 2) will send the required information to processor 2. Therefore, processor 2 is now ready to compute the “final” solution for x88 through x85.

	Backward elimination

	Do 200 i = n, 4, -4

 If (“me” have the ith row) then (Ex: row i=92

c.. For 1 processor

 update x(i), x(i-1), x(i-2), x(i-3)

 send partially updated x(i-4), x(i-5), x(i-6), x(i-7) to the next processor

 partially update x(j) (for 1 < j < i-7)

 else

c… For 1 processor (the adjacent processor to “me”)

 if (“me” have the (i-4)th column) then

 fan-in (or receive) x(i-4), x(i-5), x(i-6), x(i-7)

 else

c… For all other processors

 send information correspond to row (i-4), (i-5), (i-6) and (i-7) to processor which contains the (i-4)th column

 endif

 endif

200 Continue

[image: image44.wmf]9

13

17

21

25

29

P1

P2

P3

P1

P2

row 9

Figure 1. Block storage scheme for matrix A in a one-dimensional array

Table 7A. Comparison of equation solvers

N=16152, nbw=328, using 32 nodes on Intel iPSC/860 Gamma.

	
	Intel Pro-Solver (SES)
	The Present Solver*

	Decomposition
	51.18
	25.85

	Forward
	9
	0.8156

	Backward
	62 (-10)
	0.9401

	Total
	122.18 (-10)
	27.607

* Sequential-send scheme with vector-unrolling level 8.

Table 5. Solving High-Speed Research Aircraft problem on 8, 16 and 32 nodes (Gamma)

	Task(s)
	Time(seconds)

	
	8 nodes
	16 nodes
	32 nodes
	*32 nodes

	Factorization
	35.9
	30.7
	28.7
	26

	Forward Elimination
	1.6
	1.4
	1.4
	0.8

	Backward Elimination
	1.4
	1.5
	1.7
	1

	Total
	38.9
	33.6
	31.8
	27.8

Notes: Sequential send scheme with vector unrolling level 4

Max. displ. = +0.45; sum displ.=189

* vector unrolling level 8 is used

Table 6. Comparisons of MPFEA on the Gamma and Delta

(shaded area) Computers

(750 bays, 6 stories, 18006 els., NEQ=9016, Ave BW=1512)

	
	8
	16
	32
	64
	128
	256
	512

	g/a
	-
	0.1585
	0.0806
	0.0403
	0.0188
	-
	-

	fac
	-
	80.2
	61.383
	57.018
	48.081
	-
	-

	forw
	-
	0.8228
	0.6241
	0.7751
	1.2786
	-
	-

	back
	-
	0.5411
	0.5405
	0.6015
	0.709
	-
	-

	g/a
	0.3203
	0.1506
	0.0785
	0.0377
	0.0176
	0.0095
	0.00463

	fac
	136.05
	75.686
	54.854
	46.893
	40.848
	39.044
	39.401

	forw
	1.265
	0.795
	0.603
	0.735
	0.596
	0.552
	0.575

	back
	0.616
	0.428
	0.356
	0.468
	0.399
	0.478
	0.589

Table 7B. Parallel Performance of MPFEA on 256 processors

	Task(s)
	CPU time
(second)
	Mflops

	generation/assembly
	0.12251
	38.46

	factorization
	662.417
	631.56

	forward elimination
	4.9654
	77.94

	backward elimination
	3.1579
	120.16

	others (overhead, etc.)
	3.4624
	-

	Total
	674.13
	621.73

1096 bays, 41 stories, 179785 els., NEQ=89960, Ave BW=2208

To further improve the computational efficiencies, block-wise updating strategies are also employed. A block-wise updating (see Figure 7.2) means there are four rows being concurrently up-dated by multiprocessors. A block-wise updating also means that having completed all 4 columns (say 9, 10, 11 and 12 in Figure 7.1), processors 1 will send all these 4 columns to all other processors.

[image: image45.wmf]9

13

17

21

25

29

P1

P2

P3

P1

P2

P3

row 9

row 10

row 11

row 12

Figure 7.2: Block-wise (rows) factorization for matrix A (in a 1-D array)

[image: image46.wmf]9

13

17

21

25

29

P1

P2

P3

P1

P2

P3

row 9

row 13

row 17

Figure 7.3: “Twice” block-wise (rows) factorization for matrix A (in a 1-D array)

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	P2A
	P3A
	P1B
	P2C
	P3B
	P1C
	P2D
	P3C
	

	
	
	
	P2B
	P3D
	P1D
	P2E
	P3F
	P1E
	P2F
	P3G
	

	
	
	
	
	P3E
	P1F
	P2G
	P3H
	P1H
	P2H
	P3I
	

	
	
	
	
	
	P1G
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	P1
	P2
	P3
	P1
	P2
	P3
	P1
	P2
	P3
	

Figure 7.4 Flows of “Twice” Block-wise (Rows) Factorization Algorighm

 Start ...

2 nodes&nbw=
1512

FORTRAN STOP

 ** Start Time (dec) = 10.14999961853027

 ** Start Time (for) = 294.1999816894531

 ** Start Time (bac) = 313.6099853515628

 ** Finishing Time = 313.6899902343750

 ** Processor # =
 2

 ** Time (dec.) = 284.0499820709229

 ** Time (for.) = 19.41000366210938

 ** Time (bac.) = 0.3800048828125000

 ** Time(total) = 303.8399906158447

 ** Mflops(dec) = -2.049262645025570

 ** Mflops(for) = 0.5851564182809850

 ** Mflops(bac) = 29.92435201172502

 ** Mflops(tot) = -1.840981193299589

 ** # of Max. = 1

 ** Max. x(i) = 0.2644967118825578

 ** SUM of x = 3.930352212734294

 ** Elastic Modulus = 29001.00000000000

 ** Time in boundc = 1.9999504089355469E-002

 ** Time in jointc = 1.0000228881835938E-002

 ** Time in apload = 0.0000000000000000E+000

 ** Time in elconn = 1.0000228881835938E-002

 ** Time in materp = 0.0000000000000000E+000

 ** Time in colht = 0.5399999618530273

 ** Time in gen+file= 1.029999732971191

 TOTAL TIME:(nel,neq,ielm) 1.609999656677246
18006
9016
10969

c%%%

 Start ...

16 nodes&nbw=
1512

 ** Start Time (bac) = 59.84999847412109

 ** Finishing Time = 60.31999969482422

 ** Processor # =
 16

 ** Time (dec.) = 48.63999938964844

 ** Time (for.) = 3.069999694824219

 ** Time (bac.) = 0.4700012207031250

 ** Time(total) = 52.18000030517578

 ** Mflops(dec) = 20.60519921911640

 ** Mflops(for) = 0.4681433527961609

 ** Mflops(bac) = 3.036894164745796

 ** Mflops(tot) = 19.26219690592816

 ** # of Max. = 1

 ** Max. x(i) = 0.2644967831671393

 ** SUM of x = 3.930355197070884

 ** Elastic Modulus = 29001.00000000000

 ** Time in boundc = 1.9999980926513672E-002

 ** Time in jointc = 0.0000000000000000E+000

 ** Time in apload = 0.0000000000000000E+000

 ** Time in elconn = 1.9999980926513672E-002

 ** Time in materp = 9.9997520446777344E-003

 ** Time in colht = 2.380000114440918

 ** Time in gen+file= 0.2899994850158691

 TOTAL TIME:(nel,neq,ielm) 2.719999313354492
18006
9016
1895

FORTRAN STOP

Start ...

32 nodes&nbw=
1512

 ** Start Time (dec) = 8.699999809265137

FORTRAN STOP

 ** Start Time (for) = 40.20999908447266

 ** Start Time (bac) = 42.29000091552734

 ** Finishing Time = 42.95999908447266

 ** Processor # =
 32

 ** Time (dec.) = 31.50999927520752

 ** Time (for.) = 2.080001831054688

 ** Time (bac.) = 0.6699981689453125

 ** Time(total) = 34.25999927520752

 ** Mflops(dec) = 16.04534005693415

 ** Mflops(for) = 0.3510535398250376

 ** Mflops(bac) = 1.083047734376779

 ** Mflops(tot) = 14.79989710560952

 ** # of Max. = 1

 ** Max. x(i) = 0.2644967831671393

 ** SUM of x = 3.930355197071425

 ** Elastic Modulus = 29001.00000000000

 ** Time in boundc = 9.9997520446777344E-003

 ** Time in jointc = 1.0000228881835938E-002

 ** Time in apload = 0.0000000000000000E+000

 ** Time in elconn = 1.9999980926513672E-002

 ** Time in materp = 9.9997520446777344E-003

 ** Time in colht = 3.069999694824219

 ** Time in gen+file= 0.1000003814697266

 TOTAL TIME:(nel,neq,ielm) 3.219999790191650
18006
9016
955

FORTRAN STOP

Figure 3: Backward Elimination (“some” Parallel)

Conclusions

· A general, fast, minimum memory requirement equation solver on distributed computers (i.e. Intel iPSC/860) has been developed

· Forward & Backward solution time is quite efficient. Thus, open doors to solutions of eigenvalue, nonlinear, D.S.A., structural dynamics and structural optimization problems.

· The present solver takes advantage of both parallel & vector capabilities, hence, seems to offer very fast solution time on the Intel iPSC/860 (including the practical, NASA focused HSCT finite element model.)

· Ideal parallel speed up obtained for g/a

· Present parallel g/a can be applied to both shared and distributed computers

	P1
	
	
	
	

	
	
	P2
	
	

	
	
	
	
	P3

	P1
	
	
	
	

	
	
	P2
	
	

	
	
	
	
	P3

	P1
	
	
	
	

Figure 4: GDSUM is used to merge partial (processor) solution for final solution

NASA Technical Memorandum 102614

A Parallel-Vector Algorithm for Rapid Structural Analysis on High-Performance Computers

Olaf O. Storaasli, Duc T. Nguyen and Tarun K. Agarwal

	
	Notice

For Early Domestic Dissemination

	
	Because of its significant early commercial potential, this information, which has been developed under a U.S. Government program, is being disseminated within the United States in advance of general publication. This information may be duplicated and used by the recipient with the express limitation that it not be published. Release of this information to other domestic parties by the recipient shall be made subject to these limitations.

Foreign release may be made only with prior NASA approval and appropriate export licenses. This legend shall be marked on any reproduction of this information in whole or in part.

Date for general release: April 30, 1992

April 1990

National Aeronautics and Space Administraion

Langley Research Center

Hampton, Virginia 23665-5225

Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,opf)

Where:

a = a real vector, dimensioned nterms, containing the coefficients of the stiffness matrix, [K]

b = a real vector dimensioned neq, containing the load vector, {f}. Upon return from subroutine PVS, b contains the displacement solution, {u}.

maxa = an integer vector, dimensioned neq, containing the location of the diagonal terms of [K] in vector{a}, equal to the sum of the number coefficients.

irowl = an integer vector, dimensioned neq, containing the row lengths (i.e., half-bandwidth of each row excluding the diagonal term) of [K].

icolh = an integer vector, dimensioned neq, containing the column heights (excluding the diagonal term) of each column of the stiffness matrix, [K].

neq = number of equations to solve (= degrees of freedom)

nterms = the dimension of the vector, {a} , [=maxa(neq)].

iif
= 1 factor system of equations without internal zero check

= 2 factor system of equations with internal zero check

= 4 perform forward/backward substitution

= 5 perform forward/backward substitution and error check

opf,ops = an integer vector, dimensioned to the number of processors (8 for Cray Y-MP), containing the number of operations performed by each processor during factor and solve, respectively.

For example, the values of these input variables to solve a system of 21 equations, whose right hand side is the vector of real numbers from 1. to 21., and [K] is the symmetric, positive-definite matrix in Fig. B1 are given in Table B1.

	1
	.2
	0
	.4
	0
	0
	0
	0
	0
	0
	0
	0
	
	
	
	
	
	
	
	
	

	
	5
	.6
	.7
	.8
	.9
	0
	0
	0
	0
	0
	0
	
	
	
	
	
	
	
	
	

	
	
	10
	.11
	0
	0
	0
	0
	0
	0
	0
	0
	
	
	
	
	
	
	
	
	

	
	
	
	14
	.15
	.16
	0
	0
	.19
	0
	0
	0
	
	
	
	
	
	
	
	
	

	
	
	
	
	20
	.21
	.22
	0
	.24
	0
	0
	0
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	25
	.26
	0
	.28
	0
	0
	0
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	29
	.3
	.31
	0
	0
	0
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	32
	.33
	0
	0
	0
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	34
	.35
	.36
	.37
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	38
	0
	.4
	.41
	.42
	.43
	0
	0
	0
	0
	0
	

	
	
	
	
	
	
	
	
	
	
	44
	.45
	.48
	0
	0
	0
	0
	0
	0
	0
	

	
	
	
	
	
	
	
	
	
	
	
	47
	.48
	.49
	0
	0
	0
	0
	0
	0
	

	
	
	
	
	
	
	
	
	
	
	
	
	50
	.51
	.52
	.53
	0
	0
	0
	0
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	54
	0
	.56
	.57
	0
	0
	0
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	58
	0
	.59
	0
	0
	0
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	60
	.61
	.62
	.63
	.64
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	65
	.66
	0
	.67
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	68
	.69
	0
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	70
	.71
	0

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	72
	.73

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	74

	i
	a(i)
	b(i)
	maxa(i)
	icolh(i)
	irowl(i)

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26-33

34

35

36

37-38

39

*

*

*

135

136

137

138

139

140

141
	1.

.2

0

.4

0

0

0

0

0

0

0

0

5.

.6

.7

.8

.9

0

0

0

0

0

0

10.

.11

0

14.

.15

.16

0

.19

*

*

*

0

70.

.71

0

72.

.73

74.
	1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

	1

13

24

34

43

51

58

64

69

73

84

94

103

111

118

124

129

133

136

139

141
	0

1

1

3

3

4

2

1

5

1

2

3

3

4

5

3

3

2

3

4

1
	11

10

9

8

7

6

5

4

3

10

9

8

7

6

5

4

3

2

2

1

0

 Force PVSOLVE of np ident me

 Shared real a(5208900),b(16150),at(499600),opf(8)

csrb Shared real a(21090500),b(54890),at(1350761)

 Shared real t0(8),t1(8),t2(8),t3(8),t4(8),t5(8),ops(8)

 Shared real et0(8),et1(8),et2(8),et3(8),et4(8),et5(8)

 Shared integer maxa(16150),irow(16150),irowl(16150)

 shared integer icoln(499600),icolh(16150),nc,neq

 End declarations

et0(me)=timef()/1000

t0(me)=second()/np

 if (me.eq.1) then call CSMIN(a,b,maxa,irowl,icolh,neq,

 +

nterms,irow,icoln,nc,maxbw,8,locrow,iavebe)

 write(*,*)'* PVSOLVE - pvsolve -PVSOLVE Mar. 1990'

 write(*,*)'* Parallel-Vector equation SOLVEr by Olaf'

 write(*,*)'* Storaasli, Tarun Agarwal and Duc Nguyen'

 write(*,*)'* ',np,' proc. solve',neq,' equations; nc= ',nc

 write(*,*)'* bandwidth: max= ',maxbw,',avg.= ',iavcbw

 write(*,*)'* [K] matrix size, nterms= ',nterms,' words'

 endif

et1(me)=timef()/1000.

t1(me)=second()/np

 Barrier

 End barrier

et2(me)=timef()/1000.

t2(me)=second()/np

call PVS to factor [k] with internal zero check (iif = 2).......

iif=2

 Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,opf(me))

et3(me)=timef()/1000.

t3(me)=second()/np

call PVS to backsolve for {u} (iif=4, 5 error check eqs. 11-13)

iif = 5

 Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,ops(me))

et4(me)=timef()/1000.

t4(me)=second()/np

 Barrier

nat=499600

umax=abs(b(1))

do 1 i=1,neq

1

 umax=amax1(umax,abs(b(i)))

 write(*,*)'* Maximum displacement = ',umax

 if(iif.eq.5) call NORM(irowl,icoln,b,neq,nc)

c......reorder displacements and write to CSM Testbed........

 call TOCSM(b,irowl,icoln,at,at,icoln,8,nat)

 *

 *

 *

 Join

 end

 Forcesub PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,ops)

 +

of np ident me

 dimension a(*),b(*),icolh(*),maxa(*),irowl(*)

 Async real x(16150)

 End declarations

if(iif.le.2) then

 Presched do 9 i=1,neq

 Void x(i)

9
 End presched do

 ops=0

 Barrier

 a(1) = sqrt(a(1))

 xinv=1.0/a(1)

cdir$
ivdep

do 20 k=1,irowl(1)

20

 a(k+1)=xinv*a(k+1)

 ops=ops+irowl(1)+2

 Produce x(1)=a(1)

 End barrier

c.............factor stiffness matrix in parallel from row 2 to neq

 Presched do 100 i = 2, neq

INTEL SOLVER (Skyline storage scheme)

Subroutine Node(nodes, iam, n, nbw, imod, a, z, y, x, maxa, irow, icolg, tem, kflag)

Node
=
number of processors

Iam
=
my node id#

n
=
degree-of-freedom

nbw
=
maximum bandwidth (include diagonal)

imod
=
1 (for real problem)

a
=
stiffness matrix (dimension=nterms)

z
=
working array, z(nbw, 8)

y
=
load vector, y(n)

x
=
displacement vector, x(n)

maxa
=
diagonal locations, dimension (
[image: image47.wmf]8

2

1

8

1

*

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

+

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

÷

ø

ö

ç

è

æ

-

nodes

n

irow
=
ith row length (include diagonal) , dimension (
[image: image48.wmf]1

8

1

+

÷

ø

ö

ç

è

æ

-

n

icolg
=
column height, dimension (
[image: image49.wmf]1

8

1

+

÷

ø

ö

ç

è

æ

-

n

tem
=
real array, dimension (nbw

kflag
=
1, for factorization

=
else, for forward/backward

Note:

All real arrays are declared as double precisions

Massively Distributed Storage Scheme

For Equation solver

Assuming
-
(NEQ)actual = 14

-
NUNROL = 4

-
NP (=No. of Processors) =2=(processor)

-
Thus: NEQ=16=(=Multiple of NUNROL)

Notes:

(a) column height = from diagonal upward (include diag. Term)

(b) row-length = include diag. Term

(c) since NUNROL = 4 is used in Equation (Intel) solver, each block (of 4) columns must have same level high => Extra zeroes (need be added.

(d) The last column height in each block (of 4) must be a multiple of NUNROL and must be (NUNROL.

(e) For the above example of [K], max NP=4 (Processor 0, 1, 2, 3), If NP > 4, then we’ll have idle processors

(f) We need GLOBAL column height (
[image: image50.wmf]ï

ï

ï

þ

ï

ï

ï

ý

ü

ï

ï

ï

î

ï

ï

ï

í

ì

=

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

=

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

+

÷

ø

ö

ç

è

æ

-

12

8

8

4

4

3

2

1

1

1

*

*

2

1

colh

NUNROL

NEQ

colh

(g) We also need Global row-length information

[image: image51.wmf]IROWL

1

2

.

.

.

NEQ

1

-

NUNROL

1

+

æ

ç

ç

ç

ç

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

÷

÷

÷

÷

ø

IROWL

1

2

3

4

æ

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

ø

5

9

5

1

æ

ç

ç

ç

ç

è

ö

÷

÷

÷

÷

ø

Where only Global row-length of LAST row in each block (of 4 rows) need be calculated.

(h) We also need Local (for each processor) MAXA information

For Processor 0

And

For Processor 1

Lead to unsym. Matrix => not use cholesky

switch

Still sym. after switching rows & columns

Less accurate, not accurate

Update column

Update row

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

Loop 200

P0 send info to P1 (=col 9)

P1 sends info to P2

P2 sends info to P3

P3 sends info to P4

We don’t want P4 send info to P1 (col.9) because P1 wants to send col.9 to all others!

Assuming the first 8 unknowns have been solved completely

To be solved “completely” by Processor P1

(10, 11, 12)

(22, 23, 24)

(18, 19, 20)

Block of (4) rows

NEQ=9016

750 bay x 6 story

Gamma&Delta Intel needs (16&8 nodes, respectively

Gamma Intel=80.20 sec => Intel Delta=75.7 sec

Gamma=0.82 sec => Delta=0.79 sec

Gamma=0.54 sec => Delta=0.43 sec

Meiko Parallel Computer (@LLNL) & ODU-Solver

Meiko Parallel Computer (@LLNL) & ODU-Solver

NEQ=9016

750 bay x 6 story

Gamma Intel=61.40 sec => Intel Delta=54.9 sec

Gamma=0.78 sec => Delta=0.60 sec

Gamma=0.54 sec => Delta=0.36 sec

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

All processors need have this info.

Only the info. Of row length, column height of the last row and the last column of each block is needed

2 “extra” columns are added so that

NEQ=16=multiple of NUNROL

(NEQ)actual = 14

� EMBED Visio.Drawing.6 ���

Where only Global col. Height of the LAST column in each block (of 4 columns) need be calculated.

� EMBED Visio.Drawing.6 ���= Extra zeroes for unrolling

� EMBED Mathcad ���

� EMBED Mathcad ���

0956-0521/91 $3.00 + 0.00

(1991 Pergamon Press plc

(1)

(2)

U

L

Calculate [U]

Calculate [L]

Calculate [L]

Note: the first row of uij always= the first row of Aij

U11=A11

U12=A12

U13=A13

A=[{row 1}, {row 2}, {row 3},…, {row n},…., {column 1}, {column 2}, {column 3},…,{column n}]

Fig. 1. Storage scheme for matrix A in a one-dimensional array.

� EMBED Mathcad ���

(102)

(103)

Factorized 1st row

Factorized 1st col. (need col.1 of U matrix

Factorized 2nd row (need multipliers l21 (of row 2 of L matrix) & needs earlier row(s)

Factorized 2nd col (need col. 2 of U matrix & needs earlier column(s)

Factorized 3rd row (need multipliers l3x (of row 3 of L matrix)& needs earlier row(s)

(104)

(105)

� EMBED Mathcad ���

U

L

U

L

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

Multiplier(=constant, with respect to loop J)

� EMBED Visio.Drawing.6 ���

Ith Column

Length of Ith row

ITOP = 4 th row

Ith row = 9th row

Length of Ith column

121

122

I-1

k = 1

(2)

Loop-Unrolling level 2

131

y5 - u5,6 x6

y6

u6,6

u5,5

N

132

(yI - (uI,k xk)

K = I+1

uI,I

y2 – (u2,3 x3 + u2,4 x4 + u2,5 x5 + u2,6 x6)

u2,2

x3

x4

x5

x6

y(N)

u(N,N)

y(I) – Sum1

u(I,I)

y(N)

u(N,N)

y(N-1) - u(N-1,N) * x(N)

u(N-1,N-1)

vector-Unrolling level 2

y(I) – Sum1

u(I,I)

y(I-1) – Sum2 – U(I-1,I)*x(I)

u(I-1,I-1)

� EMBED Photoshop.Image.5 \s ���

� EMBED Mathcad ���

� EMBED Mathcad ���

(4)

� EMBED Mathcad ���

� EMBED Visio.Drawing.6 ���

PAGE
76

_1051565414.bin

_1051659151.bin

_1051737815.vsd

_1052449072.vsd

_1052481918.vsd

_1052482391.unknown

_1052522865.xls
Chart1

		1

		2

		4

Time, secs

Number of Cray 2 Processors

Time, secs (Speedup)

1.34 (1.00)

0.69 (1.93)

0.37 (3.61)

1.34

0.69

0.37

Sheet1

		

				Number of Cray 2 Processors		Time, secs

				1		1.34

				2		0.69

				4		0.37

Sheet1

		0

		0

		0

Time, secs

Number of Cray 2 Processors

Time, secs (Speedup)

0.37 (3.61)

0.69 (1.93)

1.34 (1.00)

0

0

0

Sheet2

		

Sheet3

		

_1052523396.vsd

_1052482096.vsd

_1052479877.vsd

_1052479915.bin

_1052449080.vsd

_1051792414.psd

_1052438389.vsd

_1052439361.vsd

_1052440070.vsd

_1052438659.vsd

_1052438160.bin

_1052438252.bin

_1052438044.bin

_1051756939.vsd

_1051792413.xls
Chart1

		1

		2

		4

		8

		16

		32

Number of Processors

Time, sec.

2.3

1.2

0.5

0.25

0.175

0.1

Sheet1

		

												5		6		7		8																1		2		3		4

								5				5		-1		0		0												5				-4		0		-1		1

						=		6				-1		1		0		0						106				-		6				0		0		1		-1						106

								7				0		0		5		1						8						7				-1		-1		-4		0						8

								8				0		0		1		1												8				-1		-1		0		0

												1		2		3		4																5		6		7		8

								1				5		1		0		0												1				-4		0		-1		-1

						X		2				1		5		0		-4						106						2				0		0		-1		-1						106

								3				0		0		5		-1						8						3				-1		1		-4		0						8

								4				0		-4		-1		5												4				1		-1		0		0

												5		6		7		8

								5				55		11		0		0

				Kb		=		6				11		59		0		-48						106

								7				0		0		55		-11						88

								8				0		-48		-11		59

												1		2		3		4																1		2		3		4

								5				-4		0		-1		1												1				5		1		0		0										1						P1(1)

		Sb		=		-		6				0		0		1		-1						106						2				1		5		0		-4						106				2						P2(1)

								7				-1		-1		-4		0						8						3				0		0		5		-1						8				3						P3(1)

								8				-1		-1		0		0												4				0		-4		-1		5										4						0

								5				11		-11		0		-11										P1(1)								5				11		-11		0												P1(1)

				=				6				-1		5		-1		6						1				P2(1)						=		6				-1		5		-1						1						P2(1)

								7				0		11		11		11						11				P3(1)								7				0		11		11						11						P3(1)								1		2.3

								8				1		6		1		5										0								8				1		6		1																				2		1.2

																																																																4		0.5

																																																																8		0.25

																																																																16		0.175

																																																																32		0.1

Sheet1

		0

		0

		0

		0

		0

		0

Number of Processors

Time, sec.

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_1051741545.vsd

_1051741584.unknown

_1051738152.vsd

_1051664449.bin

_1051711687.vsd

_1051715492.vsd

_1051725237.vsd

_1051665976.bin

_1051664822.bin

_1051662438.bin

_1051662696.bin

_1051662063.bin

_1051661853.bin

_1051569885.bin

_1051633949.unknown

_1051657250.bin

_1051659061.bin

_1051655893.bin

_1051656358.bin

_1051657181.bin

_1051656239.bin

_1051653208.vsd

_1051653609.vsd

_1051578081.vsd

_1051633938.unknown

_1051577598.vsd

_1051568399.bin

_1051569757.bin

_1051565529.bin

_1051483792.vsd

_1051494778.unknown

_1051494955.unknown

_1051494989.unknown

_1051494934.unknown

_1051493781.bin

_1051493858.bin

_1051488736.vsd

_1051396381.unknown

_1051398951.unknown

_1051408351.vsd

_1051442310.vsd

_1051444189.vsd

_1051405489.vsd

_1051398768.vsd

_1051393308.unknown

_1051395826.unknown

_1051389664.unknown

