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Table 1. Basic algorithm for decomposition
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( For I = 1,2,3,....,n )

c****ITOP is the row number of the top element of the I-th column


Do 1 K = ITOP, I-1

c**** do-loop 2 is to update the I-th row of U due to the contribution

c**** of the K-th row.
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 Do 2 J=I,K+length of the K-th row.


  a(I,J)=a(I,J)-a(I,K)*a(K,J)

2
 continue

c**** do-loop 3 is to update the I-th column of L due to the
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c**** contribution of the K-th column.
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 Do 3 J1=I+1,K+length of the K-th column


  a(J1,I)=a(J1,I)-a(K,I)*a(J1,K)
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Do 4 J1=I+1,I+length of the I-th column


 a(J1,I)=a(J1,I)/a(I,I)

4
continue
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(End for loop I)

and to solve
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for x, with
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(7)

For I = 1,2,3,…,n

Step a. Find the I th row of U.


Step b. Find the I th column of L. 
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Detailed Derivations For the [L] and [U] Matrices

In order to better understand the derived formula shown in Eq. (3), let’s try to compute the factorized [L] and [U] matrices from the following 3x3 unsymmetrical matrix [A] (assuming to be a full matrix to simplify the discussion)
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(101)

The above unsymmetrical matrix A can be factorized as indicated in Eq. (2), or in the long form.
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The 9 unknowns (according to a special ordering u11, u12, u13; then l21, l31; then u22, u23; then l32; and finally u33) from Eq. (102) can be found by simultaneously solving the following system of equations.
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Thus, from Eq. (103), one obtains
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It can be seen clearly that the 9 unknowns shown in Eq. (104) can also be obtained by directly using Eq.(3)


The ordering appeared in Eq. (104) suggests that the factorized matrix [L] and [U] can be found in the following systematic pattern:

Step 1: The 1st row of [U] can be solved (Ex: u11, u12, u13).

Step 2: The 1st column of [L] can be solved (Ex: l21, l31).

Step 3: The 2nd row of [U] can be solved.

Step 4: The 2nd column of [L] can be solved.

Step 5: The 3rd row of [U] can be solved.

*

*

*

etc…..

For the case r=8, and i=9, Eq.(3) becomes
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observing Eq.(105), one can see that to factorize the term u8,9 of the upper triangular [U], one only needs to know the factorized row 8 of [L] and column 9 of [U].

similarly, to factorize the term l9,8 of the lower triangular matrix [L], one only needs to know the factorized row 9 of [L] and column 8 of [U].
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Also: 


[A] =

If the matrix is full (& unsymmetrix)

· To factorize the entire ith row (line OE),

We need
- multipliers, row ith of [L] (or line OP)


- earlier rows of [U] (rectangular area OCNE, right above OE)

· To factorize the entire ith column (line OR),

We need
- multipliers, column ith of [U] (or line OC)


- earlier columns of [L] (rectangular area OPQR, left of OR)

If the matrix is banded (& unsymmetric)


[image: image10.wmf][A]=

J

C

N

E

F

M

D

B

A

O

K

P

Q

G

H

P

T

UBW

LBW

i

th

 row factorized

Note: OG=OA

i

th

 column

factorized


Table 2. Vector algorithm for factorization


( For I = 1,2,3,....,n )


Do 1 K = ITOP, I-1, 6

       CDIR$ IVDEP


 Do 2 J=I,K+length of the K-th row.


  a(I,J)=a(I,J)-a(I,K)*a(K,J)-a(I,K+1)*a(K+1,J)

     +        -a(I,K+2)*a(K+2,J)-a(I,K+3)*a(K+3,J)

     +
  -a(I,K+4)*a(K+4,J)-a(I,K+5)*a(K+5,J)

2
 continue

       CDIR$ IVDEP


 Do 3 J1=I+1,K+length of the K-th column


  a(J1,I)=a(J1,I)-a(K,I)*a(J1,K)-a(K+1,I)*a(J1,K+1)

     +         -a(K+2,I)*a(J1,K+2)-a(K+3,I)*a(J1,K+3)

     +
   -a(K+4,I)*a(J1,K+4)-a(K+5,I)*a(J1,K+5)

3
 continue

1
continue


Do 4 J1=I+1,I+length of the I-th column


 a(J1,I)=a(J1,I)/a(I,I)

4
continue


(End for loop I)


In this paper, the artificial coefficient matrix A is automatically generated as
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Table 3. Parallel algorithm for decomposition


Presched Do 100 I=1, n


Do 1 K=ITOP, I-NP, 6

       CDIR$ IVDEP


Do 2 J=I,K+length of the K-th row


  a(I,J)=a(I,J)-a(I,K)*a(K,J)-a(I,K+1)*a(K+1,J)

     +          -a(I,K+2)*a(K+2,J)-a(I,K+3)*a(K+3,J)

     +          -a(I,K+4)*a(K+4,J)-a(I,K+5)*a(K+5,J)

2
continue

       CDIR$ IVDEP


Do 3 J1=I+1,K+length of the K-th column.


  a(J1,I)=a(J1,I)-a(K,I)*a(J1,K)-a(K+1,I)*a(J1,K+1)

     +           -a(K+2,I)*a(J1,K+2)-a(K+3,I)*a(J1,K+3)

     +           -a(K+4,I)*a(J1,K+4)-a(K+5,I)*a(J1,K+5)

3
continue

1
continue


Do 10 K=I-NP+1,I-1


Copy Asyn(K) into KK


Do 20 J=I,K+length of the K-th row.


  a(I,J)=a(I,J)-a(I,K)*a(K,J)

20
continue


Do 30 J1=I+1,K+length of the K-th column


  a(J1,I)=a(J1,I)-a(K,I)*a(J1,K)

30
continue

10
continue


Do 4 J1=I+1,K+length of the I-th column


  a(J1,I)=a(J1,I)/a(I,I)

4
continue


Produce Asyn(I)=1.0

100
End Presched Do
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Very detailed, important notes (For efficient code implementation)

Note#1

Symmetric case ( 

Unsym. Case 2
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for I=1,2,3,...,n


 Do 1 K=1,I-1


 scalar=a(I,K)

c...
do loop 2 is used to update (or factorize) the I-th row of [U]

c...
due to the contribution of the K-th row

c...
(refer to the first part of Eq. 3)


  Do 2 J=I,n

2
  a(I,J)=a(I,J)-scalar*a(K,J)

c...
do loop 3 is used to "partially" update the I-th column of [L]!

c...
due to contribution of the K-th column (refer to the

c...
nominator of the second part of Eq. 3)


  scalar=a(K,I)


  Do 3 J1=I+1,n

3
  a(J1,I)=a(J1,I)-scalar*a(J1,K)

1
 continue

c...
do loop 4 is used to compute the "final" update of

c...
the I-th column of [L]


  Do 4 J1=I+1,n

4
  a(J1,I)=a(J1,I)/a(I,I)


Continue (for loop i)

Table 11: Basic Algorithm For [L]&[U] Factorization (full-matrix is assumed)


In order to better understand the basic algorithm shown in Table 11 for factorization of a full unsymmetrical matrix, a 3x3 matrix [A] given in the previous section will be used to verify Table 11

For i=1, then (please refer to Table 11)

· loop 1 will be skipped

· from loop 4

a(2,1) = a(2,1)/a(1,1) ( l21

(refer to Eq. 104)

a(3,1) = a(3,1)/a(1,1) ( l31

(refer to Eq. 104)

· notice:

The first row of [U] (such as u11, u12 and u13) are not required to calculate, because they are the same as the original matrix [A] (u11 = a11, u12 = a12 and u13 = a13)

For i=2, then

· from loop 2

a(2,2) = a(2,2)-a(2,1)(=scalar)*a(1,2) ( U22
(refer to Eq. 104)

a(2,3) = a(2,3)-a(2,1)*a(1,3) ( U23


(refer to Eq. 104)
· from loop 3

a(3,2) = a(3,2)-a(1,2)(=scalar)*a(3,1) ( Partial solution for l3,2
· from loop 4

a(3,2) = a(3,2)/a(2,2) ( l32



(refer to Eq. 104)
For i=3, then

· from loop 2 (with K=1)

a(3,3) = a(3,3)-a(3,1)*a(1,3) ( Partial solution for u3,3
· loop 3 will be skipped

· loop 4 will be skipped

· from loop 2 (with K=2)

a(3,3) = a(3,3)-a(3,2)*a(2,3) ( u3,3

(refer to Eq. 104)
· loop 3 will be skipped

· loop 4 will be skipped

Comments on Table 11

(a) The operations in the innermost loops 2 and 3 are “saxpy” operations (a vector + a scalar * another vector), thus these operations can be done quite fast on vector computers (such as CRAY Y-MP, CRAY-C90 computers)

(b) In loop 2, the Jth column of U keeps changing, thus it is important to store the upper triangular matrix U according to a row-by-row fashion (see Figure 1). This will assure to have a stride 1 in vector computation.

(c) In loop 3, the J1th row of L keeps changing, thus it is important to store the lower triangular matrix L according to a column-by-column fashion (see figure 1). This will assure to have a stride 1 in vector computation.

(d) The “scalar” defined in Table 11 is also refered to as “multiplier”. In general, the average upper bandwidth (or UBW) of [U] is different from the average lower bandwidth (or LBW) of [L]. Factorizing the Ith row (of [U]) and the Ith column (of [L]) can be done much more efficiently by skipping some operations when the multiplier is zero. Figures 247 and 248 show what information are truly needed to factorize the Ith row and the Ith column.
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Basic Algorithm for Decomposition of Variable Bandwidths / Column Heights Unsymmetrical Matrix

For many practical engineering applications, the unsymmetrical matrix is not full. Instead, the   unsymmetrical matrix will have variable bandwidths and variable column heights as shown in figure 111.










A =








Figure 111 : Unsymmetrical Matrix with Variable Bandwidths and Column Heights.

In this case, to avoid unnecessary operations with zero values, the algorithm given in table 11 need to be modified slightly as shown in Table 1.

From Table I, one clearly sees that the previously factorized rows (please refer to loop 1) are used to partially factorized the current Ith row (please refer to loop 2) of the upper triangular matrix U. Thus, to improve the vector performance, one should try to increase the work loads of the innermost loop 2. This can be done by unrolling the outer loop 1. For example, a block of 6 (instead of just 1) previously factorized rows is used to partially factorize the current Ith row.

Similarly, the previously factorized columns (please refer to loop 1) are used to partially factorize the current Ith column (please refer to loop 3) of the lower triangular matrix L. A block of 6 (instead of just 1) previously factorized columns is used to partially factorize the current Ith column (inside loop 3).

Thus, Table 2 can be obtained by simply making the following minor modifications to Table 1.

(a) The increment of loop 1 is changed from 1 into 6 (to consider a block of 6 rows/columns at a time).

(b) Expanding the FORTRAN statement inside loop 2 to include the effects of using 6 rows at a time to partially factorize the current Ith row of upper matrix, [U].

(c) Expanding the FORTRAN statement inside loop 3 to include the effects of using 6 columns at a time to partially factorize the current Ith column of lower matrix, [L].

A careful comparison between Table 2 (vector algorithm for factorization) and Table 3 (parallel-vector algorithm for factorization) suggests that the latter can be obtained from the former with the following modifications.

(a) The outermost loop (for index I) is executed in parallel (in stead of sequential mode) by using a “Presched” parallel FORTRAN statement.

(b) Loop 1 (for index K) in Table 2 is separated into 2 loops (loops 1 and 10) in Table 3. 

· In Table 2, the index K goes from “ITOP” to “I-1”.

· In Table 3, the index K goes from “ITOP” to “I-NP” (see loop 1) and then, from “I-NP+1” to “I-1” (see loop 10).

(c) The “Copy” parallel FORTRAN statement inside loop 10 (of Table 3) will assure that the previous Kth row has been completely factorized (or else the processor will wait!) and can now be safely used to partially factorize the current Ith row (see loop 20) and Ith column (see loops 30 and 4).

(d) The “Produce” parallel FORTRAN statement (after loop 4) is used to broadcast to all other processors that the Ith row/column have been completely factorized now.

Forward Solution Phase [L] {y} = {b}

To simplify the discussions, let us consider a 6x6 full-system as shown in the following equations.

      1      0     0     0     0       0                 y1



b1
                                                                                     

      L21   1     0     0     0       0  
              y2



b2

      L31   L32   1     0     0       0

y3



b3



 





=




      L41   L42   L43   1    0       0

y4



b4

      L51   L52   L53   L54   1   
0

y5



b5
      L61   L62   L63   L64   L65   1

y6



b6

The forward solution for the unknown vector {y} can be proceeded as following




y1 = b1



y2 = b2 – L21y1


                           yI = bI - (     LI,k  yk     

Since the lower triangular matrix has been generated and stored in a column-by-column fashion (please recall Figure 1), thus column 1 of [L] has stride 1. Furthermore, to improve the vector performance, one should try to work with long vector in the innermost do-loop. Thus, a good strategy will be outline in the following.

	Step 1. 
Solve for the unknown y1 (according to Eq. 122)

Step 2. 
Use the first column of [L] and operate on the known scalar y1 in order to update the right-hand-side vector {b}. Thus, the unknown y2 can be found. 

Step 3.
Use the second column of [L] and operate on the known scalar y2 in order to update the right-hand-side vector {b}. Thus, the unknown y3 can be found.

Step 4.
Continue to do “similar” operating as mentioned in step 2&3, until all unknowns of vector {y} are found.




The above step-by-step procedure can be simply coded as shown in Table 123.

	C       Solve for the first unknown

C       Note : solution vector {y} will over write right-hand-side 

C       vector {b} to save computer memory


b(1) = b(1)

C 
Try to solve the subsequent unknowns


Do  1 
I = 2, n, 1



Do 2

J = I, n

C
use the previously known solution to update the right-hand-side vector {b}    

      2           b(J) = b(J) – L(J,I-1) * b(I-1)

C
 Next solution is readily found


 b(I) = b(I)

      1  continue




Table 123 : Basic Algorithm for Forward Solution

It should be mentioned here that inside loop 2 of Table 123, one has SAXPY operations (a vector {b} ( scalar y * another vector L ), thus the innermost loop 2 can be executed very efficiently on the vector computer (such as the CRAY-YMP, CRAY-C90 etc…).

However, a careful observation of the above 4-step procedure and the data structure shown in Eq. (121) suggests that even better vector-performance can be achieved (by using the “loop unrolling” technique) with a simple modification to Table 123.

The key idea in “loop unrolling” technique is to add more work loads (SAXPY operations) into the innermost do-loop (see loop 2 of Table 123). A simple way to achieve this objective is to use 2 (or more) columns (instead of just 1) of matrix [L] and operate on previously known 2 (instead of just 1) solutions. Thus, loop-unrolling algorithm for forward solution can be shown in Table 124.

Table 124 : Loop-unrolling (Level 2) for Forward Solution

	C         Solve the first 2 unknowns

            b(1) = b(1)

            b(2) = b(2) – L(2,1)*b(1)


C          For subsequent unknowns

            Do 1    I = 3, n, 2

                    Do 2    J = I, n

                     b(J) = b(J) - L(J,I-1)*b(I-1)

         $                          - L(J,I-2)*b(I-2)

       2            continue

C           Next 2 solutions can be found

               b(I) = b(I)

               b(I+1) = b(I+1) – L(I+1,I)*b(I)

       1      continue


Comments on Table 124 :

(a) In actual computer implementation, loop-unrolling level 6 or 8 can be used instead of using unrolling level 2 (see the increment 2 in loop 1).

(b) For a general matrix with dimension n, the use of loop-unrolling technique will require “special” treatments for the left-over columns of the matrix L

(c) To simplify the discussions, the matrix system of equations shown in Eq. (121) is assumed to be “full”. However, in actual computer implementation, variable column-heights of the lower triangular matrix [L], and variable row-length (or bandwidth) of the upper triangular matrix [U] can be accommodated to avoid unnecessary operations (on the zeros). 

(d) In actual computer implementation, the lower and upper factorized matrices [L] and [U] will be stored in a 1-D array and the original matrix (which is also stored in a 1-D array) will be over written by [L] and [U] in order to save computer memory.

Backward Solution Phase [U] {x} = {y}

To simplify the discussions, let us consider the following 6x6 full system of equations.

    U11  U12   U13  U14  U15  U16

x1



y1
      0    U22   U23  U24  U25  U26

x2



y2
      0     0      U33  U34  U35  U36

x3



y3









=




      0     0       0    U44  U45  U46

x4



y4
      0     0       0      0    U55  U56 

x5



y5
      0     0       0      0     0     U66

x6



y6

The backward solution for the unknown vector {x} can be proceeded as following


x6 =    


x5 =




xI =   















As an example,   x2  =

The operations involved in the above parenthesis are called “dot product” operations, since it involves {u2,3, u2,4, u2,5, u2,6} .  

Since the upper triangular matrix has been generated and stored in a row-by-row fashion (please refer to Figure 1), thus each row of [U] has stride 1. However, each column of [U] has very undesirable stride (column stride of [U] is greater than 1). Due to this reason, it is not efficient (in this case) to use loop-unrolling technique (for example, having found the unknown x6, then using column 6 to operate on the scalar x6 for the purpose of updating the right-hand vector {y} ) as discussed in the previous section. The backward solution (please refer to Eq. 132) can be coded using “dot-product” operations (instead of SAXPY operations as discussed in the forward solution phase) as shown in Table 141.

Table 141 : Basic Algorithm for Backward Solution


C
    Solve the last unknown



   X(N) = 

C
   For subsequent unknowns


   Do   1 
I = N-1, 1,  -1

C
   Performing the summation (or dot-product) operations in 

C
   Eq. (132)
 


   
Do 2   K = I + 1, N


2
Sum1 = Sum1 + U(I,K) * x(K)



    x(I) = 


1  Continue

It should be mentioned here that the dot-product operations inside loop 2 (of Table 141) can be vectorized quite well (on vector computers) since the row vector of [U] has stride 1 (recalled that the matrix U is stored in a row-by-row fashion).

However, a careful observation of Eq. (132) and the storage scheme used for matrix [U] shown in Eq. (131) suggests that even better vector-performance can be achieved by using the “vector-unrolling” technique with a simple modification to Table 141.

The key idea in “vector-unrolling” technique is to add more work loads (dot-product operations) into the innermost do-loop (see loop 2 of Table 141). A simple way to achieve this objective is to use 2 (or more) rows (instead of just 1) of matrix [U] and operate on previously known 2 (instead of just 1) solutions. The resulted “vector-unrolling” (level 2 unrolling is assumed) algorithm for backward solution is illustrated in Table 142.

Table 142 Vector-Unrolling Algorithm for Backward Solution


C
    Solve the last 2 (or more) unknowns



   x(N) = 


 
   x(N-1) = 


C
   For subsequent unknowns


   Do   1 
I = N-2, 1,  -2

C
   Performing 2 (or more) dot-product operations in Eq. 132


   
Do 2   K = I + 1, N



Sum1 = Sum1 + U(I,K) * x(K)


2
Sum2 = Sum2 + U(I-1,K) * x(K)



    x(I) = 



    x(I-1) = 


1  Continue
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For Sun => machine Double precision = 10-15


  

( Partial pivoting => switch rows

X Complete Pivoting => switch rows & columns







             X Diagonal Pivoting



	Notes
	(a) When switch rows, then upper b.w. will be at most double (proof: easily)

(b) When switching rows, then lower b.w. will be at most full matrix

proof: 

 switch row1 & row6 => lower b.w.=6

later on, we may find a66 too small

=> switch row 6 with ,say, row 10 => lower b.w.=10=full


	
	 
	
	
	
	
	
	
	
	
	
	
	 
	

	 
	 
	10-10
	1
	0
	100
	0
	200
	0
	0
	0
	0
	 
	

	
	 
	1
	2
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	
	 
	0
	 
	3
	 
	 
	 
	 
	 
	 
	 
	 
	

	
	 
	100
	 
	 
	4
	 
	 
	 
	 
	 
	 
	 
	

	A=
	 
	0
	 
	 
	 
	5
	 
	 
	 
	 
	 
	 
	

	
	 
	200
	 
	 
	 
	 
	6
	 
	 
	 
	 
	 
	

	
	 
	0
	 
	 
	 
	 
	 
	7
	 
	 
	 
	 
	

	
	 
	0
	 
	 
	 
	 
	 
	 
	8
	 
	 
	 
	

	
	 
	0
	 
	 
	 
	 
	 
	 
	 
	9
	 
	 
	

	
	 
	0
	 
	 
	 
	 
	 
	 
	 
	 
	10
	 
	

	
	 
	
	
	
	
	
	
	
	
	
	
	 
	


	For m = i, i+1, … , i+NBW
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(aii=not known yet)

Then:

 Pivoting element=Max/{amj where m= i, i+1, … , i+NBW

 Example row k ( row i








	Update (new) row i (same as “old” row k)
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Note:

(a) After switching rows of the coeff matrix, we also have to switch RHS(=load vector) too.

(b) Row lengths also change when switching rows. In the very beginning of Eq. Solver, we already reserve extra memory (for worst case) for switching rows => no need to re-define diagonal pointer array MAXA (??)
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Motivation

· Equation solution dominates analysis time

· Equation solution time reduced significantly (PVSOLVE by Storaasli, Nguyen and Agarwal)
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· Time to generate/assembly [K] significant:

· Complex element types

· Nonlinear structural analysis

· Structural optimization

· Control-structure interaction

Traditional Element Assembly

Parallel Approach: Assign elements to different processors


DO 1 e = 1,3 elements


Generate element stiffness matrix: [k(e)]


Assemble global [K]=
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Synchronization Bottleneck

Elements with common nodes are added simultaneously (([k(e)])!

Node-by-Node Element Generation
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	Step 1: Element Connectivity (old)
	
	Step 2: Nodal Connectivity (new)

	
	
	
	
	
	
	
	

	Element No.
	Node i
	Node j
	
	Node No.
	DOF
	Elements

Attached to 

	1
	2
	3
	
	 
	 
	Node i 
	Node j

	2
	1
	3
	
	1
	1, 2
	2
	3

	3
	2
	1
	
	2
	3, 4
	1, 3
	none

	
	
	
	
	3
	5, 6
	none
	1, 2


Step 3: Parallel Generation and Assembly of kii(e) for each Node of a Structure

	Table 4 Parallel Generation-Assembly of kii(e)

	
	
	
	
	
	
	

	 
	1
	2
	3
	4
	5
	6

	1
	2
	2
	 
	 
	 
	 

	2
	 
	2
	 
	 
	 
	 

	3
	
	
	1, 3
	1, 3
	
	 

	4
	 
	 
	 
	1, 3
	 
	 

	5
	
	
	
	
	
	 

	6
	 
	 
	 
	 
	 
	 


Step 4: Parallel Generation and Assembly of kjj(e) for Each Node of a Structure

	Table 5 Parallel Generation-Assembly of kjj(e)

	
	
	
	
	
	
	

	 
	1
	2
	3
	4
	5
	6

	1
	3
	3
	 
	 
	 
	 

	2
	 
	3
	 
	 
	 
	 

	3
	
	
	
	
	
	 

	4
	 
	 
	 
	
	 
	 

	5
	
	
	
	
	1, 2
	1, 2

	6
	 
	 
	 
	 
	 
	1,2


Step 5:


In this step, the portion Kij=( kij(e) of the structural stiffness matrix, K, is generated and assembled in a parallel computer environment


In this paper, the information for nodes j is used in this step. Thus, processor 1 is assigned to node 1 to process element 3. Element 3 is connected to DOF 1, 2, 3 and 4 and its contribution to Kii and Kjj have been done in step3 and step 4, respectively. Processor 1 will generate kij(e=3) and add its contribution to the appropriate locations of Kij. Simultaneously, processor 3 is assigned to node 3 to process elements 1 and 2. Processor 3 will, therefore, generate kij(e) for elements e=1 and 2, and add its contribution to the appropriate locations of Kij. In this step, Processor 2 is idle since there are no elements with node j=2. The parallel generation/assembly of kij(e) for each structural node is conveniently represented in Table 6.

	Table 6 Parallel Generation-Assembly of kij(e)

	
	
	
	
	
	
	

	 
	1
	2
	3
	4
	5
	6

	1
	
	
	3 
	3
	2 
	2

	2
	 
	
	 3
	3
	2
	2

	3
	
	
	
	
	1
	1

	4
	 
	 
	 
	
	1
	1

	5
	
	
	
	
	
	

	6
	 
	 
	 
	 
	 
	



Fig 2. Three node Triangular Element

A two dimensional, 6 x 6 element stiffness matrix [k(e)] can be symbolically represented as:

	
	 
	
	
	
	 
	

	
	 
	Kii(e)
	Kij(e)
	Kim(e)
	 
	

	[K(e)]=
	 
	
	Kjj(e)
	Kjm(e)
	 
	

	
	 
	
	
	Kmm(e)
	 
	

	
	 
	
	
	
	 
	



In Eq. (2), Kii(e), Kjj(e), and Kmm(e) refer to the 2 x 2 sub-matrices which represent a portion of an element stiffness matrix attached to node i, node j, and node m, respectively. The coupling effect between nodes i, j, and m of an element stiffness matrix [K(e)] is represented by the sub-matrices Kij(e), Kim(e), and Kjm(e). Thus, for a three-node triangular element, an additional step needs to be inserted before the last step (step 5) for parallel generation and assembly of Kmm(e) for each node m of the structure.

Alternative Implementation of Baddourah-Nguyen’s Generation and Assembly method


	Proc (or Node) Number
	Els. Attached Node-i
	Els. Attached Node-j

	1

2

3
	1,3

2

None
	None

1

2,3


For Each processor pth
Do 1 L =1, NEL(pth)

  Step 1: Kii (& Kij where j>i)

	
	1
	2
	3
	4
	5
	6th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	1, 3
	1, 3
	1
	1
	3
	3
	
	
	
	
	
	
	
	
	
	
	
	
	 
	 
	 
	 
	 
	 

	2
	 
	1, 3
	1
	1
	3
	3
	
	
	
	
	
	
	
	
	
	
	
	
	 
	 
	 
	 
	 
	 

	3
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 2
	2
	2
	2
	
	
	
	 
	 
	 
	 
	 
	 

	4
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 2
	2
	2
	
	
	
	 
	 
	 
	 
	 
	 

	5
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 

	6
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 

	
	
	Processor 1
	
	
	
	
	
	Processor 2
	
	
	
	
	Processor 3 (idle) !!


  Step 2 : Kjj (& Kji where i>j)

	
	1
	2
	3
	4
	5
	6th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 

	2
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 

	3
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	1
	1
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 

	4
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	1
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 

	5
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	2, 3
	2, 3

	6
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	 
	
	
	
	 
	 
	 
	 
	 
	2, 3

	
	Processor 1 (idle!)
	
	
	
	
	Processor 2
	
	
	
	
	Processor 3


1
continue

3-Node Element case (for simplicity assuming each node has only 1 dof, say x-translation)


	Processor (or Node)
Number
	Els. To Node-i
	Els. To Node-j
	Els. To Node-k

	1
	1, 2
	None
	None

	2
	3
	2
	None

	3
	4
	3
	None

	4
	None
	4
	1

	5
	None
	1
	2, 3, 4


For each Processor pth

Do 1 L = 1, NEL (pth)

 Step 1: Kii (&Kij, Kik where j, k > i)

	1
	1, 2
	2
	 
	1
	1, 2
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	2
	 
	 
	 
	 
	 
	
	
	 
	3
	3
	 
	3
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	3
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	4
	4
	4
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	4
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	5
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	
	1
	2
	3
	4
	5th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Processor 1
	
	
	Processor 2
	
	Processor 3
	
	Processor 4
	
	Processor 5


 Step 2: Kjj (&Kji, Kjk where i, k > j)

	1
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	2
	 
	 
	 
	 
	 
	
	
	 
	2
	 
	 
	2
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	3
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	3
	 
	3
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	4
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	4
	4
	
	 
	 
	 
	 
	 

	5
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	1

	
	1
	2
	3
	4
	5th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Processor 1
	
	
	Processor 2
	
	Processor 3
	
	Processor 4
	
	Processor 5


 Step 3: Kkk (&Kki, Kkj where i, j > k)

	1
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	2
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	3
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 

	4
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	1
	1
	
	 
	 
	 
	 
	 

	5
	 
	 
	 
	 
	 
	
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	 
	
	 
	 
	 
	 
	2, 3, 4

	
	1
	2
	3
	4
	5th Dof
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Processor 1
	
	
	Processor 2
	
	Processor 3
	
	Processor 4
	
	Processor 5


1
continue

3-D Geostationary Platform

(537 Nodes, 1647 Elements, 3188 Degrees of Freedom)
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Matrix Generation and Assembly on iPSC/860
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Conclusion

· Simple, efficient method developed and tested to:

· Generate element [k(e)] in parallel

· Assemble global [K] in parallel

Which is:

· General (2&3 node elements, mixed elements)

· Accurate (exact agreement with SAP-4)

· Efficient (good speedup on multiple processors)

· Portable (to Cray Y-MP, Cray 2, Convex, Alliant)

· Modular (to different finite-element codes)

· Consistent (with parallel-vector equation solver)

· Ingredients (element generation, assembly solver) for next generation parallel finite element code
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Block Storage scheme for matrix A in a one-dimensional array

(can be skyline or variable band)

(can be shared or distributed memory computers)

New Parallel G/A Approach

	Element #
	Element DOF #
	Processor #

	1
	1->6
	1

	2
	7->12
	1, 2

	3
	7, 8, 9, 18, 19, 20
	1, 3

	*
	 
	 

	*
	 
	 

	*
	 
	 

	*
	 
	 

	28
	20, 21, 22, 80, 81, 82
	3, 1, 2

	*
	 
	 

	*
	 
	 

	*
	 
	 

	NEL
	 
	 


	Processor #
	Element #

	1
	1, 2, 3, 28

	2
	2, 28

	3
	3, 28

	*
	*

	*
	*

	*
	*

	*
	*

	*
	*

	NP
	*


New Parallel G/A Approach

In Parallel, for each processor i:


Do 1 K=1, NEL (i)

· ELDOF (kth element) = 20, 21, 22, 80, 81, 82

· Generate Stiffness of the kth element

· Assemble the entire (or just a portion of) kth element stiffness

1 Continue

In parallel, for each processor i:


Do 1 K = 1, ALLELS

· ELDOF (kth element) = 20, 21, 22, 80, 81, 82

Do 2 M=1, 6

If (ELDOF(M) belongs to Processor i) then

· Record element k belongs to processor i

· Exit loop 2, and go to loop 1

Endif

2 continue

1
continue
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Assuming NP=3 processors (= P1, P2 and P3)

Unrolling level=4
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Example. 2-D truss structures with ‘nb’ bays and ‘ns’ stories are denoted as nb x ns. Table 1 gives the CPU times for the generation and assembly of the global stiffness matrix (on the Gamma computer with up to 128 processors). For the 200 x 6 model, nel=4806, neq=2412. For the 1 x 1650 model, nel=82500 and neq=66000

Table 1. CPU times for the generation and assembly of the global matrix

	nb x ns
	k
	1
	2
	4
	8
	16
	32
	64
	128

	200 x 6
	4
	0.337
	0.206
	0.1036
	0.0593
	0.029
	0.01398
	0.00718
	0.0034

	200 x 6
	8
	0.339
	0.1885
	0.1145
	0.0569
	0.0273
	0.01412
	0.00664
	0.0033

	1 x 16500
	4
	4.64
	3.537
	1.793
	0.9083
	0.4515
	0.2267
	0.114
	0.057

	1 x 16500
	8
	-
	2.985
	1.507
	0.7564
	0.376
	0.188
	0.0945
	0.0481


* timings for task 1 is not included here.
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Storage scheme for factorization
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Block storage scheme for matrix A in a one-dimensional array

Vector unrolling & Blockwise updating:
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are executed by processor 1, while the following dot product operation
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 are processed by processor 2 etc…

A skeleton pseudo-code for parallel-vector Choleski factorization


Parallel Do 100 ith row=1, n, 4

(say i=9)

C
…me = processor number


If (“me” have the ith column) then

 Do 200 j = 0, 3
(This loop is required due to skipping occurs in the first loop)


II=(Global row #) = i+j

 Do 400 column # JJ = II, n, 4
(The values of JJ maybe skipped, depending on the value of “me”)


  Sum1=sum2=sum3=sum4=0


Do 500 row k=1, 2, …., II

  Sum1=sum1+uk,II*uk,jj
  Sum2=sum2+uk,II*uk,jj+1
  Sum3=sum3+uk,II*uk,jj+2
  Sum4=sum4+uk,II*uk,jj+3
500
Continue


if (II.Eq.JJ) then


 uii,jj = SQRT(Aii,jj – sum1)


 send column jj to all other processors


else
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endif

400
continue

200
continue

Else

c…
all other processors do the following

· receive column #jj

· update row ii

Endif

100
continue

Table 2. Vector performance with different options.

Decomposition of a 1000x1000 matrix on one processor (Intel iPSC/860)

	Options
	Time (seconds)

	No vector-unrolling
	44.8

	Vector-unrolling level 4
	35.8

	Vector-unrolling+block-wise updating
	22.2

	DDOT+vector-unrolling+block-wise updating
	20.2

	DDOT+vector-unrolling without block-wise updating
	14.5


Table 3 : Communication schemes

	Single-send scheme
	Double-send scheme

	Do 100 i = 1, n, 4

 If (I have the ith column) then

  Do 200 j = 0,3

   Update the (i+j)th column

   Send the (i+j)th column to all other processors (fan-out)

   Update the (i+j)th row

200 continue

 else

  do 300 j=0, 3

     receive the (i+j)th column

     update the (i+j)th row

300 continue

endif

100 continue
	Do 100 i = 1, n, 4

 If (I have the ith column) then

  Do 200 j = 0,3

   Update the (i+j)th column

   Send the (i+j)th column to the next processor

   Send the (i+j)th column to all other processors
   Update the (i+j)th row

200 continue

 else

  do 300 j=0, 3

     receive the (i+j)th column

     update the (i+j)th row

300 continue

endif

100 continue


Sequential send (or Ring) scheme

Do 100 i = 1, n, 4

 If (ME have the ith column) then

· Update the (i+j)th column

· Send the (i+j)th column to next processor

· Update the (i+j)th row

Else

· Every processor receives info from previous processor (ME-1)

· If (ME (Processor which possess [i-1]) then

· Send info to next processor which possess (i+4)

· With exception: Last processor NP send info to processor 0

endif

· Update (i+j)th row

Endif

Table 4. Communication performance

Decomposition of a 4000x4000 matrix on 16 processors (Intel iPSC/860)
	Options
	Time (sec)

	Single-send (with CSEND, CRECV)
	231

	Single-send (with ISEND, IRECV)
	192

	Single-send (DDOT+ISEND, IRECV)
	120

	Double-send (DDOT+ISEND, IRECV)
	108

	Sequential-send (DDOT+CSEND, CRECV)
	104


Forward Elimination:
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Figure 2: Parallel Forward Elimination
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For example, processor 1 will compute: (partially)
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At the same time, processor 3 will compute: (partially)
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and will also compute:

y18(incomplete) through y20 (incomplete), and y29 (incomplete) through y32 (incomplete)

	Forward elimination

	Do 100 i = 1, n, 4

  If (“me” have the ith row) then    ( Ex: row i=9

c.. For 1 processor

   update y(i), y(i+1), y(i+2), y(i+3)

   fan-out (or send to all)

   y(i), y(i+1), y(i+2), y(i+3)

   partially update y(j) (for i+3 < j < n)

   for processor “me”’s portion only

  else

c… For all other processors

   receive y(i), y(i+1), y(i+2), y(i+3)

   partially update y(j) (for i+3 < j < n)

  endif

100 Continue


Backward Elimination:



Figure 3: Backward Elimination
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Thus, one can clearly see that processor 1 (see Figure 3) can easily calculate unknowns x92 to x89, since x100 to x93 have already been “completely” calculated.


Having completed the final solution for x92 through x89, processor 1 continues to compute the “partial” (or incomplete) solution for x88 through x85. Processor 1 then send these partial solutions to the next processor (on its left, say processor 2) and processor 1 continues to find the partial solution for x84 through x1.


Meanwhile, a “if check” is performed in order to determine the workloads for the remaining processor (not including processor 1). If a processor is adjacent to the left of processor 1 (say processor 2), it will receive the “partial” solutions (for example, x88 to x85) from all other processors (fan in), say processors 1 and 3. All the other processors (not including processor 1 and the adjacent processor 2) will send the required information to processor 2. Therefore, processor 2 is now ready to compute the “final” solution for x88 through x85.

	Backward elimination

	Do 200 i = n, 4, -4

  If (“me” have the ith row) then    ( Ex: row i=92

c.. For 1 processor

   update x(i), x(i-1), x(i-2), x(i-3)

   send partially updated x(i-4), x(i-5), x(i-6), x(i-7) to the next processor

   partially update x(j) (for 1 < j < i-7)

  else

c… For 1 processor (the adjacent processor to “me”) 

   if (“me” have the (i-4)th column) then

    fan-in (or receive) x(i-4), x(i-5), x(i-6), x(i-7)

   else

c… For all other processors

    send information correspond to row (i-4), (i-5), (i-6) and (i-7) to processor which contains the (i-4)th column

   endif

 endif

200 Continue
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Figure 1. Block storage scheme for matrix A in a one-dimensional array

Table 7A. Comparison of equation solvers

N=16152, nbw=328, using 32 nodes on Intel iPSC/860 Gamma.

	 
	Intel Pro-Solver (SES)
	The Present Solver*

	Decomposition
	51.18
	25.85

	Forward
	9
	0.8156

	Backward
	62 (-10)
	0.9401

	Total
	122.18 (-10)
	27.607


* Sequential-send scheme with vector-unrolling level 8.

Table 5. Solving High-Speed Research Aircraft problem on 8, 16 and 32 nodes (Gamma)

	Task(s)
	Time(seconds)

	 
	8 nodes
	16 nodes
	32 nodes
	*32 nodes

	Factorization
	35.9
	30.7
	28.7
	26

	Forward Elimination
	1.6
	1.4
	1.4
	0.8

	Backward Elimination
	1.4
	1.5
	1.7
	1

	Total
	38.9
	33.6
	31.8
	27.8


Notes: Sequential send scheme with vector unrolling level 4

Max. displ. = +0.45; sum displ.=189

* vector unrolling level 8 is used

Table 6. Comparisons of MPFEA on the Gamma and Delta

(shaded area) Computers

(750 bays, 6 stories, 18006 els., NEQ=9016, Ave BW=1512)

	 
	8
	16
	32
	64
	128
	256
	512

	g/a
	-
	0.1585
	0.0806
	0.0403
	0.0188
	-
	-

	fac
	-
	80.2
	61.383
	57.018
	48.081
	-
	-

	forw
	-
	0.8228
	0.6241
	0.7751
	1.2786
	-
	-

	back
	-
	0.5411
	0.5405
	0.6015
	0.709
	-
	-

	g/a
	0.3203
	0.1506
	0.0785
	0.0377
	0.0176
	0.0095
	0.00463

	fac
	136.05
	75.686
	54.854
	46.893
	40.848
	39.044
	39.401

	forw
	1.265
	0.795
	0.603
	0.735
	0.596
	0.552
	0.575

	back
	0.616
	0.428
	0.356
	0.468
	0.399
	0.478
	0.589


Table 7B. Parallel Performance of MPFEA on 256 processors

	Task(s)
	CPU time
(second)
	Mflops

	generation/assembly
	0.12251
	38.46

	factorization
	662.417
	631.56

	forward elimination
	4.9654
	77.94

	backward elimination
	3.1579
	120.16

	others (overhead, etc.)
	3.4624
	-

	Total
	674.13
	621.73


1096 bays, 41 stories, 179785 els., NEQ=89960, Ave BW=2208


To further improve the computational efficiencies, block-wise updating strategies are also employed. A block-wise updating (see Figure 7.2) means there are four rows being concurrently up-dated by multiprocessors. A block-wise updating also means that having completed all 4 columns (say 9, 10, 11 and 12 in Figure 7.1), processors 1 will send all these 4 columns to all other processors.
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Figure 7.2: Block-wise (rows) factorization for matrix A ( in a 1-D array)
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Figure 7.3: “Twice” block-wise (rows) factorization for matrix A (in a 1-D array)
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Figure 7.4 Flows of “Twice” Block-wise (Rows) Factorization Algorighm

 Start ...

2 nodes&nbw=
1512

FORTRAN STOP

 ** Start Time (dec)  =  10.14999961853027

 ** Start Time (for)  =  294.1999816894531

 ** Start Time (bac)  =  313.6099853515628

 ** Finishing Time    =  313.6899902343750

 ** Processor #   =
    2

 ** Time (dec.)   =  284.0499820709229

 ** Time (for.)   =  19.41000366210938

 ** Time (bac.)   = 0.3800048828125000

 ** Time(total)   =  303.8399906158447

 ** Mflops(dec)   = -2.049262645025570

 ** Mflops(for)   = 0.5851564182809850

 ** Mflops(bac)   =  29.92435201172502

 ** Mflops(tot)   = -1.840981193299589

 ** # of Max.  =          1

 ** Max. x(i)  =  0.2644967118825578

 ** SUM of x   =   3.930352212734294

 ** Elastic Modulus =   29001.00000000000

 ** Time in boundc  =  1.9999504089355469E-002

 ** Time in jointc  =  1.0000228881835938E-002

 ** Time in apload  =  0.0000000000000000E+000

 ** Time in elconn  =  1.0000228881835938E-002

 ** Time in materp  =  0.0000000000000000E+000

 ** Time in colht   =  0.5399999618530273

 ** Time in gen+file=   1.029999732971191

 TOTAL TIME:(nel,neq,ielm)  1.609999656677246
18006
9016
10969

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


 Start ...

16 nodes&nbw=
1512

 ** Start Time (bac)  =  59.84999847412109

 ** Finishing Time    =  60.31999969482422

 ** Processor #   =
    16

 ** Time (dec.)   =  48.63999938964844

 ** Time (for.)   =  3.069999694824219

 ** Time (bac.)   = 0.4700012207031250

 ** Time(total)   =  52.18000030517578

 ** Mflops(dec)   =  20.60519921911640

 ** Mflops(for)   = 0.4681433527961609

 ** Mflops(bac)   =  3.036894164745796

 ** Mflops(tot)   =  19.26219690592816

 ** # of Max.  =          1

 ** Max. x(i)  =  0.2644967831671393

 ** SUM of x   =   3.930355197070884

 ** Elastic Modulus =   29001.00000000000

 ** Time in boundc  =  1.9999980926513672E-002

 ** Time in jointc  =  0.0000000000000000E+000

 ** Time in apload  =  0.0000000000000000E+000

 ** Time in elconn  =  1.9999980926513672E-002

 ** Time in materp  =  9.9997520446777344E-003

 ** Time in colht   =   2.380000114440918

 ** Time in gen+file=  0.2899994850158691

 TOTAL TIME:(nel,neq,ielm)  2.719999313354492
18006
9016
1895

FORTRAN STOP



Start ...

32 nodes&nbw=
1512

 ** Start Time (dec)  =  8.699999809265137

FORTRAN STOP

 ** Start Time (for)  =  40.20999908447266

 ** Start Time (bac)  =  42.29000091552734

 ** Finishing Time    =  42.95999908447266

 ** Processor #   =
    32

 ** Time (dec.)   =  31.50999927520752

 ** Time (for.)   =  2.080001831054688

 ** Time (bac.)   = 0.6699981689453125

 ** Time(total)   =  34.25999927520752

 ** Mflops(dec)   =  16.04534005693415

 ** Mflops(for)   = 0.3510535398250376

 ** Mflops(bac)   =  1.083047734376779

 ** Mflops(tot)   =  14.79989710560952

 ** # of Max.  =          1

 ** Max. x(i)  =  0.2644967831671393

 ** SUM of x   =   3.930355197071425

 ** Elastic Modulus =   29001.00000000000

 ** Time in boundc  =  9.9997520446777344E-003

 ** Time in jointc  =  1.0000228881835938E-002

 ** Time in apload  =  0.0000000000000000E+000

 ** Time in elconn  =  1.9999980926513672E-002

 ** Time in materp  =  9.9997520446777344E-003

 ** Time in colht   =   3.069999694824219

 ** Time in gen+file=  0.1000003814697266

 TOTAL TIME:(nel,neq,ielm)  3.219999790191650
18006
9016
955

FORTRAN STOP




Figure 3: Backward Elimination (“some” Parallel)

Conclusions

· A general, fast, minimum memory requirement equation solver on distributed computers (i.e. Intel iPSC/860) has been developed

· Forward & Backward solution time is quite efficient. Thus, open doors to solutions of eigenvalue, nonlinear, D.S.A., structural dynamics and structural optimization problems.

· The present solver takes advantage of both parallel & vector capabilities, hence, seems to offer very fast solution time on the Intel iPSC/860 (including the practical, NASA focused HSCT finite element model.)

· Ideal parallel speed up obtained for g/a

· Present parallel g/a can be applied to both shared and distributed computers
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Figure 4: GDSUM is used to merge partial (processor) solution for final solution
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Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,opf)

Where:

a = a real vector, dimensioned nterms, containing the coefficients of the stiffness matrix, [K]

b = a real vector dimensioned neq, containing the load vector, {f}. Upon return from subroutine PVS, b contains the displacement solution, {u}.

maxa = an integer vector, dimensioned neq, containing the location of the diagonal terms of [K] in vector{a}, equal to the sum of the number coefficients.

irowl = an integer vector, dimensioned neq, containing the row lengths (i.e., half-bandwidth of each row excluding the diagonal term) of [K].

icolh = an integer vector, dimensioned neq, containing the column heights (excluding the diagonal term) of each column of the stiffness matrix, [K].

neq = number of equations to solve (= degrees of freedom)

nterms = the dimension of the vector, {a} , [=maxa(neq)].

iif
= 1 factor system of equations without internal zero check


= 2 factor system of equations with internal zero check


= 4 perform forward/backward substitution


= 5 perform forward/backward substitution and error check

opf,ops = an integer vector, dimensioned to the number of processors (8 for Cray Y-MP), containing the number of operations performed by each processor during factor and solve, respectively.

For example, the values of these input variables to solve a system of 21 equations, whose right hand side is the vector of real numbers from 1. to 21., and [K] is the symmetric, positive-definite matrix in Fig. B1 are given in Table B1.
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     Force PVSOLVE of np ident me


     Shared real a(5208900),b(16150),at(499600),opf(8)


csrb  Shared real a(21090500),b(54890),at(1350761)


     Shared real t0(8),t1(8),t2(8),t3(8),t4(8),t5(8),ops(8)


     Shared real et0(8),et1(8),et2(8),et3(8),et4(8),et5(8)


     Shared integer maxa(16150),irow(16150),irowl(16150)


     shared integer icoln(499600),icolh(16150),nc,neq


     End declarations


     
et0(me)=timef()/1000


     
t0(me)=second()/np


     if (me.eq.1) then call CSMIN(a,b,maxa,irowl,icolh,neq,

     +

nterms,irow,icoln,nc,maxbw,8,locrow,iavebe)


     write(*,*)'* PVSOLVE - pvsolve -PVSOLVE Mar. 1990'


     write(*,*)'* Parallel-Vector equation SOLVEr by Olaf'


     write(*,*)'* Storaasli, Tarun Agarwal and Duc Nguyen'


     write(*,*)'* ',np,' proc. solve',neq,' equations; nc= ',nc


     write(*,*)'* bandwidth: max= ',maxbw,',avg.= ',iavcbw


     write(*,*)'* [K] matrix size, nterms= ',nterms,' words'


     endif


     
et1(me)=timef()/1000.


     
t1(me)=second()/np


     Barrier


     End barrier


     
et2(me)=timef()/1000.


     
t2(me)=second()/np


call PVS to factor [k] with internal zero check (iif = 2).......



iif=2


     Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,opf(me))


     
et3(me)=timef()/1000.


     
t3(me)=second()/np


call PVS to backsolve for {u} (iif=4, 5 error check eqs. 11-13)



iif = 5


     Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,ops(me))


     
et4(me)=timef()/1000.


     
t4(me)=second()/np


     Barrier


     
nat=499600


     
umax=abs(b(1))


     
do 1 i=1,neq

1

 umax=amax1(umax,abs(b(i)))


     write(*,*)'* Maximum displacement = ',umax


     if(iif.eq.5) call NORM(irowl,icoln,b,neq,nc)

c......reorder displacements and write to CSM Testbed........


      call TOCSM(b,irowl,icoln,at,at,icoln,8,nat)


      *


      *


      *


      Join


      end


      Forcesub PVS(a,b,maxa,irowl,icolh,neq,nterms,iif,ops)

     +

of np ident me

     
      dimension a(*),b(*),icolh(*),maxa(*),irowl(*)

     
      Async real x(16150)

     
      End declarations

     
      
if(iif.le.2) then

     
      Presched do 9 i=1,neq

     
      Void x(i)

9
      End presched do



  ops=0


      Barrier


      
  a(1) = sqrt(a(1))


      
  xinv=1.0/a(1)

cdir$
ivdep



do 20 k=1,irowl(1)

20

 a(k+1)=xinv*a(k+1)



 ops=ops+irowl(1)+2


      Produce x(1)=a(1)


      End barrier

c.............factor stiffness matrix in parallel from row 2 to neq


      Presched do 100 i = 2, neq

INTEL SOLVER (Skyline storage scheme)

Subroutine Node(nodes, iam, n, nbw, imod, a, z, y, x, maxa, irow, icolg, tem, kflag)

Node
=
number of processors

Iam
=
my node id#

n
=
degree-of-freedom

nbw
=
maximum bandwidth (include diagonal)

imod
=
1 (for real problem)

a
=
stiffness matrix (dimension=nterms)

z
=
working array, z(nbw, 8)

y
=
load vector, y(n)

x
=
displacement vector, x(n)

maxa
=
diagonal locations, dimension ( 
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irow
=
ith row length (include diagonal) , dimension ( 
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icolg
=
column height, dimension ( 
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tem
=
real array, dimension ( nbw

kflag
=
1, for factorization


=
else, for forward/backward

Note:


All real arrays are declared as double precisions

Massively Distributed Storage Scheme

For Equation solver






Assuming
-
(NEQ)actual = 14


-
NUNROL = 4 


-
NP (=No. of Processors) =2=(processor)


-
Thus: NEQ=16=(=Multiple of NUNROL)

Notes:

(a) column height = from diagonal upward (include diag. Term)

(b) row-length = include diag. Term

(c) since NUNROL = 4 is used in Equation (Intel) solver, each block (of 4) columns must have same level high => Extra zeroes ( need be added.

(d) The last column  height in each block (of 4) must be a multiple of NUNROL and must be ( NUNROL.

(e) For the above example of [K], max NP=4 (Processor 0, 1, 2, 3), If NP > 4, then we’ll have idle processors

(f) We need GLOBAL column height ( 
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(g) We also need Global row-length information
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Where only Global row-length of LAST row in each block (of 4 rows) need be calculated.

(h) We also need Local (for each processor) MAXA information








For Processor 0


And 






For Processor 1

Lead to unsym. Matrix => not use cholesky





switch





Still sym. after switching rows & columns


Less accurate, not accurate





Update column





Update row
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Loop 200





P0 send info to P1 (=col 9)





P1 sends info to P2


P2 sends info to P3


P3 sends info to P4





We don’t want P4 send info to P1 (col.9) because P1 wants to send col.9 to all others!





Assuming the first 8 unknowns have been solved completely





To be solved “completely” by Processor P1





(10, 11, 12)





(22, 23, 24)





(18, 19, 20)





Block of (4) rows





NEQ=9016





750 bay x 6 story





Gamma&Delta Intel needs ( 16&8 nodes, respectively





Gamma Intel=80.20 sec => Intel Delta=75.7 sec


Gamma=0.82 sec => Delta=0.79 sec


Gamma=0.54 sec => Delta=0.43 sec





Meiko Parallel Computer (@LLNL) & ODU-Solver





Meiko Parallel Computer (@LLNL) & ODU-Solver





NEQ=9016





750 bay x 6 story





Gamma Intel=61.40 sec => Intel Delta=54.9 sec


Gamma=0.78 sec => Delta=0.60 sec


Gamma=0.54 sec => Delta=0.36 sec
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All processors need have this info.


Only the info. Of row length, column height of the last row and the last column of each block is needed





2 “extra” columns are added so that


NEQ=16=multiple of NUNROL





(NEQ)actual = 14
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Where only Global col. Height of the LAST column in each block (of 4 columns) need be calculated.





� EMBED Visio.Drawing.6  ���= Extra zeroes for unrolling
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0956-0521/91 $3.00 + 0.00


( 1991 Pergamon Press plc





(1)





(2)





U





L





Calculate [U]





Calculate [L]





Calculate [L]





Note: the first row of  uij always= the first row of Aij


U11=A11


U12=A12


U13=A13





A=[{row 1}, {row 2}, {row 3},…, {row n},…., {column 1}, {column 2}, {column 3},…,{column n}]





Fig. 1. Storage scheme for matrix A in a one-dimensional array.
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(102)





(103)





Factorized 1st row





Factorized 1st col. ( need col.1 of U matrix





Factorized 2nd row ( need multipliers l21 (of row 2 of L matrix) & needs earlier row(s)





Factorized 2nd col ( need col. 2 of U matrix & needs earlier column(s)





Factorized 3rd row ( need multipliers l3x (of row 3 of L matrix)& needs earlier row(s)





(104)





(105)





� EMBED Mathcad  ���





U





L





U





L





� EMBED Visio.Drawing.6  ���





� EMBED Visio.Drawing.6  ���





� EMBED Visio.Drawing.6  ���





Multiplier(=constant, with respect to loop J)





� EMBED Visio.Drawing.6  ���





Ith Column





Length of Ith row





ITOP = 4 th row





Ith row = 9th row





Length of Ith column





121





122





I-1





k = 1





(2)





Loop-Unrolling level 2





131





y5 - u5,6 x6





y6





u6,6





u5,5





N





132





( yI - (  uI,k xk )





K = I+1





uI,I





y2 – ( u2,3 x3 + u2,4 x4 + u2,5 x5 + u2,6 x6 )





u2,2





x3


x4


x5


x6





y(N)





u(N,N)





y(I) – Sum1





u(I,I)





y(N)





u(N,N)





y(N-1) - u(N-1,N) * x(N)





u(N-1,N-1)





vector-Unrolling level 2





y(I) – Sum1





u(I,I)





y(I-1) – Sum2 – U(I-1,I)*x(I)





u(I-1,I-1)
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