
 

 

Chapter 04.09  

Cholesky and T
LDL  Decomposition 

 

Introduction 

Solving large (and sparse) system of simultaneous linear equations (SLE) has been (and 
continues to be) a major challenging problem for many real-world engineering/science 
applications [1-2]. In matrix notation, the SLE can be represented as: 

][]][[ bxA =                                                              (1) 

where ][A = known coefficient matrix, with dimension nn ×  

][b = known right-hand-side (RHS) 1×n vector 

][x = unknown 1×n  vector. 

Symmetrical Positive Definite (SPD) SLE 

For many practical SLE, the coefficient matrix ][A  (see Equation (1)) is Symmetric Positive 

Definite (SPD). In this case, the efficient 3-step Cholesky algorithms [1-2] can be used. 
 

A matrix nnA
×

][ can be considered as SPD if either of the following conditions is satisfied: 

(a) If each and every determinant of sub-matrix ),...,2,1( niAii = is positive, or.. 

(b) If ,0>AyyT  for any given vector 0][ 1

r
≠

×ny  

As a quick example, let us make a test a test to see if the given matrix  

















−

−−

−

=

110

121

012

][A  is SPD? 

 

Based on criteria (a):  

The given 33×  matrix ][A is symmetrical, because jiij aa = . Furthermore, one has 
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Hence ][A is SPD. 



 

 

 

Based on criteria (b): For any given vector  
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Since the above scalar is always positive, hence matrix ][A is SPD. 

 
 

Step 1: Matrix Factorization phase 

In this step, the coefficient matrix ][A that is SPD can be decomposed (or factorized) into 

 

][][][ UUA T
=                                           (2) 

 

where ][U  is a nn ×  upper triangular matrix. 

The following simple 33×  matrix example will illustrate how to find the matrix ][U . 

Various terms of the factorized matrix ][U can be computed/derived as follows (see Equation 

(2)): 
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Multiplying two matrices on the right-hand-side (RHS) of Equation (3), then equating each 
upper-triangular RHS terms to the corresponding ones on the upper-triangular left-hand-side 

(LHS), one gets the following 6 equations for the 6 unknowns in the factorized matrix ][U . 
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In general, for a nn ×  matrix, the diagonal and off-diagonal terms of the factorized matrix 

][U can be computed from the following formulas: 
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It is noted that if ji = , then the numerator of Equation (7) becomes identical to the terms under 

the square root in Equation (6). In other words, to factorize a general term iju , one simply needs 

to do the following steps: 
 
Step 1.1: Compute the numerator of Equation (7), such as  
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Step 1.2 If iju is an off-diagonal term (say, ji < ) then 
ii

ij
u

Sum
u = (See Equation (7)). Else, if iju is 

a diagonal term (that is, ji = ), then Sumuii = (See Equation (6)) 

 
As a quick example, one computes: 
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Thus, for computing )7,5( == jiu , one only needs to use the (already factorized) data in 

columns )5(# =i , and )7(# =j of ][U , respectively. 

 
Remarks 

• In general, to find the (off-diagonal) factorized term iju , one only needs to utilize the 

“already factorized” columns i# , and j#  information (see Figure 1). For example, if 

5=i , and 7=j , then Figure 1 will lead to the same formula as shown earlier in 

Equation (7), or in Equation (8). Similarly, to find the (diagonal) factorized term iiu , one 

simply needs to utilize columns i# , and i#  (again!) information (see Figure 1). In this 
case, Figure 1 will lead to the same formula as shown earlier in Equation (6). 
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Figure 1 Cholesky Factorization for the term iju  

• Since the square root operation involved during the Cholesky factorization phase (see 
Equation (6)), one must make sure the term under the square root is non-negative. This 

requirement satisfied by ][A being SPD.  

Step 2: Forward Solution phase 

Substituting Equation (2) into Equation (1), one gets: 

][]][[][ bxUU T
=                                        (9) 

 
Let us define: 
 

][][][ yxU ≡                                                         (10) 

 
Then, Equation (9) becomes: 
 

][][][ byU T
=                                                                       (11) 

 

Since TU ][ is a lower triangular matrix, Equation (11) can be efficiently solved for the 

intermediate unknown vector ][y , according to the order 
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, hence the name “forward 

solution”. 

As a quick example, one has (see Equation (11)): 
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From the 1st row of Equation (12), one gets 
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From the 2nd row of Equation (12), one gets 
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In general, from the thj  row of Equation (12), one has 
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Step 3: Backward Solution phase 

Since ][U is an upper triangular matrix, Equation (10) can be efficiently solved for the original 

unknown vector ][x , according to the order
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, hence the name “backward solution”. 

 
As a quick example, one has (See Equation (10)): 
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From the last (or rdthn 3= ) row of Equation (17), one has                              
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Remarks 

(a) Amongst the above 3-step Cholesky algorithms, factorization phase in step 1 consumes about 
95% of the total SLE solution time. 

(b) If the coefficient matrix ][A is symmetrical but not necessarily positive definite, then the 

above Cholesky algorithms will not be valid. In this case, the following TLDL factorized 
algorithms can be employed: 

 
TLDLA ]][][[][ =                                          (22) 

 
For example, 
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Multiplying the three matrices on the RHS of Equation (23), then equating the resulting upper-
triangular RHS terms of Equation (23) to the corresponding ones on the LHS, one obtains the 

following formulas for the “diagonal” ][D , and “lower-triangular” ][L matrices: 

 

 ∑
−

=

−=
1

1

2
j

k

kkjkjjjj dlad                                              (24)                     














×







−= ∑

−

= jj

j

k

jkkkikijij
d

ldlal
11

1

                           (25)                                

Thus, the TLDL algorithms can be summarized by the following step-by-step procedures. 
 



 

 

Step1: Factorization phase 

TLDLA ]][][[][ =                                    (22, repeated) 

 
Step 2: Forward solution and diagonal scaling phase 

Substituting Equation (22) into Equation (1), one gets: 
 

][][]][][[ bxLDL T
=                                                    (26) 

 
Let us define: 
 

][][][ yxL T
=  
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Also, define: 
 

][]][[ zyD =  
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Then Equation (26) becomes: 
 

][]][[ bzL =  
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Equation (31) can be efficiently solved for the vector [ ]z , then Equation (29) can be conveniently 

(and trivially) solved for the vector [ ]y . 

 
Step 3: Backward solution phase 

In this step, Equation (27) can be efficiently solved for the original unknown vector [ ]x . 

 
Numerical Example 1 (Cholesky algorithms) 
 

Solve the following SLE system for the unknown vector [ ]x ? 

 
][]][[ bxA =  

 
where  
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Solution: 
 

The factorized, upper triangular matrix [ ]U can be computed by either referring to Equations (6-

7), or looking at Figure 1, as following: 
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Thus, the factorized matrix  
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The forward solution phase, shown in Equation (11), becomes: 
 

[ ] [ ] [ ]byU
T

=  

 

















=

































−

−

0

0

1

5774.08165.00

0225.17071.0

00414.1

3

2

1

y

y

y

 

 
Thus, Equation (16) can be used to solve: 
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The backward solution phase, shown in Equation (10), becomes: 
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Thus, Equation (21) can be used to solve: 
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Numerical Example 2 ( TLDL  Algorithms) 
 

Using the same data given in Numerical Example 1, find the unknown vector ][x  by TLDL  

algorithms? 
 
Solution: 
 
The factorized matrices ][D and ][L can be computed from Equation (24), and Equation (25), 

respectively. 
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















=

3333.000

05.10

002

D  

and 

[ ]
















−

−=

16667.00

015.0

001

L  

 
 
The forward solution shown in Equation (31), becomes: 

 

[ ] [ ] [ ]bzL =  

 

















=

































−

−

0

0

1

1667.00

015.0

001

3

2

1

z

z

z

 

or, 
 

∑
−

=

−=
1

1

i

k

kikii zlbz           (32, repeated) 

Hence 
 

( )( )

( )( ) ( )( )

3333.0

5.06667.0100

5.0

15.00

1

23213133

12122

11

=

−−−=

−−=

=

−−=

−=

==

zLzLbz

zLbz

bz

 

 
The diagonal scaling phase, shown in Equation (29), becomes 
 

[ ][ ] [ ]zyD =  

 

















=

































3333.0

5.0

1

3333.000

05.10

002

3

2

1

y

y

y

 



 

 

 
or 

ii

i
i

d

z
y =  

Hence 

1

3333.0

3333.0

3333.0

5.1

5.0

5.0

2

1

33

3
3

22

2
2

11

1
1

=

=

=

=

=

=

=

=

=

d

z
y

d

z
y

d

z
y

 

 
The backward solution phase can be found by referring to Equation (27) 
 

[ ] [ ] [ ]yxL
T

=  

 

















=

































−

−

1

333.0

5.0

100

667.010

05.01

3

2

1

x

x

x

 

 

∑
+=

−=
N

ik

kkiii xlyx
1

                                  (28, repeated) 



 

 

Hence 
 

( )

( )( ) ( )( )

1

1015.05.0

1

16667.03333.0

1

1

33122111

2

33222

33

=

−−−=

−−=

=

×−−=

−=

=

=

x

xlxlyx

x

xlyx

yx

 

Hence 
 

[ ]
















=

















=

1

1

1

3

2

1

x

x

x

x  

 
Remarks 
Through this numerical example, one clearly sees that the “square root operations” have NOT  

been involved during the entire TLDL algorithms. Thus, the coefficient matrix ][A , shown in 

Equation (1), is NOT required to be SPD. 
 

Re-ordering Algorithms For Minimizing Fill-in Terms [1,2]. 

During the factorization phase (of Cholesky, or TLDL algorithms), many “zero” terms in the 

original/given matrix ][A  will become “non-zero” terms in the factored matrix ][U . These new 

non-zero terms are often called as “fill-in” terms (indicated by the symbol F ). It is, therefore, 
highly desirable to minimize these fill-in terms, so that both computational time/effort and 
computer memory requirements can be substantially reduced. For example, the following matrix 

][A  and vector ][b are given: 

 

[ ]



























=

1100102

0440030

0066040

1008850

03451107

20007112

A
                                             (33) 

 



 

 



























=

14

47

70

94

129

121

][b
                                                                 (34) 

 

The Cholesky factorization matrix ][U , based on the original matrix ][A  (see Equation 33) and 

Equations (6-7), or Figure 1, can be symbolically computed as: 
 

[ ]



























×

×

×

××

××××

×××

=

00000

0000

000

00

0

000

F

FF

FF

F

U
                                        (35) 

 

In Equation (35), the symbols x , and F  represents the “non-zero” and “fill-in” terms, 
respectively. 

 
In practical applications, however, it is always a necessary step to rearrange the original matrix 
[A] through re-ordering algorithms (or subroutines) [Refs 1-2] and produce the following integer 
mapping array 

 
IPERM (new equation #) = {old equation #}                (36) 

 
such as,  for this particular example: 



























=



























1

2

3

4

5

6

6

5

4

3

2

1

IPERM
                                                                   (37) 

Using the above results (see Equation 37), one will be able to construct the following re-arranged 
matrices: 

 

[ ]



























=

11270002

71105430

0588001

0406600

0300440

2010011

*
A

                                    (38) 

and 



 

 

 



























=

121

129

94

70

47

14

][ *
b

                                                                             (39) 

 

Remarks: 

• In the original matrix A (shown in Equation 33), the nonzero term A  (old row 1, old 

column 2) = 7 will move to new location of the new matrix 
*

A  (new row 6, new column 
5) = 7, etc. 

• The non zero term A  (old row 3, old column 3) = 88 will move to 
*

A  (new row 4, new 
column 4) = 88, etc. 

• The value of b  (old row 4) = 70 will be moved to (or located at) 
*b  (new row 3) = 70, 

etc. 

 

Now, one would like to solve the following modified system of linear equations (SLE) for ][ *
x , 

 
 

][]][[ *** bxA =                                                          (40) 

 

rather than to solve the original SLE (see Equation1). The original unknown vector }{x can be 

easily recovered from ][ *
x  and [ ]IPERM , shown in Equation (37). 

The factorized matrix ][ *U can be “symbolically” computed from ][ *A as (by referring to either 

Figure 1, or Equations 6-7): 

 

[ ]



























×

××

××

××

××

×××

=

00000

0000

000

0000

0000

000

*

F
U

                                                      (41) 

 
You can clearly see the big benefits of solving the SLE shown in Equation (40), instead of 

solving the original Equation (1), since the factorized matrix ][ *U has only 1 fill-in term (see the 

symbol “ F ” in Equation 41), as compared to six fill-in-terms occurred in the factorized matrix 

][U  (shown in Equation 35)! 

 



 

 

On-Line Chess-Like Game For Reordering/Factorized Phase [4]. 

Based on the discussions presented in the previous section 2 (about factorization phase), and 
section 3 (about reordering phase), one can easily see the similar operations between the 
symbolic, numerical factorization and reordering (to minimize the number of fill-in terms) 
phases of sparse SLE. 

In practical computer implementation for the solution of SLE, the reordering phase is usually 
conducted first (to produce the mapping between “old↔new” equation numbers, as indicated in 
the integer array IPERM(-), see Equations 36-37). 

Then, the sparse “symbolic” factorization phase is followed by using either Cholesky Equations 

6-7, or the TLDL Equations 24-25 (without requiring the actual/numerical values to be computed). 
The reason is because during the “symbolic factorization” phase, one only wishes to find the 
number (and the location) of non-zero “fill-in terms”. This “symbolic” factorization process is 
necessary for allocating the “computer memory” requirement for the “numerical factorization” 

phase which will actually compute the exact numerical values of ][ *U , based on the same 

Cholesky Equations (6-7) (or the TLDL  Equations (24-25)). 
 

In this work, a chess-like game (shown in Figure 2, Ref. [4]) has been designed with the 
following objectives: 
 

 
 

Figure 2 A Chess-Like Game For Learning to Solve SLE. 
 
(A)Teaching undergraduate/HS students the process how to use the reordering output 

 IPERM(-), see Equations (36-37) for converting the original/given matrix ][A , see Equation 

(33), into the new/modified matrix ][ *A , see Equation (38). This step is reflected in Figure 2, 

when the “Game Player” decides to swap node (or equation) ""i  (say 2=i ) with another node (or 

equation) "" j , and click the “CONFIRM” icon! 

Since node "2" =i  is currently connected to nodes ;8,7,6,4=j  hence swapping node 2=i  with 

the above nodes "" j   will “NOT” change the number/pattern of “Fill-in” terms. However, if 

node 2=i  is swapped with node ,5,3,1 ororj =  then the fill-in terms pattern may change (for 

better or worse)! 

(B) Helping undergraduate/HS students to understand the “symbolic” factorization” phase, by 
symbolically utilizing the Cholesky factorized Equations (6-7). This step is illustrated in Figure 
2, for which the “game player” will see (and also hear the computer animated sound, and human 



 

 

voice), the non-zero terms (including fill-in terms) of the original matrix ][A to move to the new 

locations in the new/modified matrix ][ *A . 

(C) Helping undergraduate/HS students to understand the “numerical factorization” phase, by 
numerically utilizing the same Cholesky factorized Equations (6-7). 

(D) Teaching undergraduate engineering/science students and even high-school (HS) students to 
“understand existing reordering concepts”, or even to “discover new reordering algorithms” 
 

 

Further Explanation On The Developed Game 

1. In the above Chess-Like Game, which is available on-line [4], powerful features of FLASH 
computer environments [3], such as animated sound, human voice, motions, graphical colors 
etc… have all been incorporated and programmed into the developed game-software for more 
appealing to game players/learners. 
 
2.  In the developed “Chess-Like Game”, fictitious monetary (or any kind of ‘scoring system”) is 
rewarded (and broadcasted by computer animated human voice) to game players, based on how 
he/she swaps the node (or equation) numbers, and consequently based on how many fill-in ""F  
terms occurred. In general, less fill-in terms introduced will result in more rewards! 
 

3. Based on the original/given matrix ][A , and existing re-ordering algorithms (such as the 

Reverse Cuthill-Mckee, or RCM algorithms [1-2]) the number of fill-in )"("F terms can be 

computed (using RCM algorithms). This internally generated information will be used to judge 
how good the players/learners are, and/or broadcast “congratulations message” to a particular 
player who discovers new “chess-like move” (or, swapping node) strategies which are even 
better than RCM algorithms! 
 

4. Initially, the player(s) will select the matrix size ( 88× , or larger is recommended), and the 
percentage (50%, or larger is suggested) of zero-terms (or sparsity of the matrix). Then, “START 
Game” icon will be clicked by the player. 
 

5. The player will then CLICK one of the selected node ""i  (or equation) numbers appearing on 

the computer screen. The player will see those nodes "" j  which are connected to node ""i  

(based on the given/generated matrix ][A ). The player then has to decide to swap node ""i  with 

one of the possible node "" j . After confirming the player’s decision, the outcomes/results will be 

announced by the computer animated human voice, and the monetary-award will (or will NOT) 
be given to the players/learners, accordingly. In this software, a maximum of $1,000,000 can be 
earned by the player, and the “exact dollar amount” will be INVERSELY proportional to the 
number of fill-in terms occurred (as a consequence of the player’s decision on how to swap node 

""i  with another node "" j ). 

 

6. The next player will continue to play, with his/her move (meaning to swap the th
i  node with 

the thj  node) based on the current best non-zero terms pattern of the matrix. 

 



 

 

Multiple Choice Tests 

Cholesky Algorithms 

For a given SLE: 

][]][[ bxA =  

where 



















−

−−

−−

−

=

1105.0

1210

0121

5.0012

][A  

and 

[ ]



















−

−

=

5.1

5

5

5.0

b  

 

1. The Cholesky factorized matrix ][U can be computed as 

 

(a) 



















−

−

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

 

 

(b) 



















−

−

−

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

 

 

(c) 



















−

−

−

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

 

 



 

 

(d) 



















−−

−

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

 

 

2. The forward solution vector ][ y can be computed as 

(a) { }5590.0,877.15,784.38,5363.0 −=
Ty
r

 

(b) { }5590.0,784.38,877.15,5363.0 −=
Ty
r

 

(c) { }5590.0,878.3,5877.1,536.3 −−=
Ty
r

 

(d) { }5590.0,5877.1,8784.3,3536.0 −−−=
Ty
r

 

 

3. The backward solution vector ][x can be computed as 

(a) { }1,2,2,1 −−=
Tx
r

 

(b) { }1,2,2,1 −=
Tx
r

 

(c) { }1,2,2,1 −−=
Tx
r

 

(d) { }1,2,2,1=
Tx
r

 

 

4. The determinant of [ ] 44×A can be computed as: 

(a) -5 

(b) 5 

(c) -50 

(d) 1.25 

 

5. Based on the given matrix ][A , and assuming the reordering algorithm will produce the 

following mapping IPERM (new equation #) = {old equation #}, such as 





















=





















2

4

1

3

4

3

2

1

IPERM . The 

non zero off-diagonal term A(old row 4, old column 1) = 0.5 will move to the following new 

location of the new matrix ][ *A  

 

(a) 
*A (new row 3, new column 1) 

(b) *A (new row 1, new column 3) 

(c) *A (new row 3, new column 2) 



 

 

(d) *A (new row 2, new column 2) 

 

6. Based on the given matrix ][A , and the given reordering mapping 





















=





















2

4

1

3

4

3

2

1

IPERM , the non-

zero diagonal term A(4,4) = 1will move to the following new location of the new matrix ][ *A  

(a) 1)1,1(*
=A  

(b) 1)2,2(*
=A  

(c) 1)3,3(*
=A  

(d) 1)4,4(*
=A  

 

 TLDL Algorithms 

For the given SLE: 
 

][]][[ bxA =  

 
where 
 



















−

−−

−−

−

=

1105.0

1210

0121

5.0012

][A  

and 
 



















−
=

5.0

1

1

2

][b  

 

7. The lower triangular matrix ][L  can be computed as 

 

(a) 



















−

−

−
=

1625.01667.025.0

016667.00

0015.0

0001

][L  



 

 

(b) 



















−

−
=

1625.01667.025.0

016667.00

0015.0

0001

][L  

 

(c) 



















−

−
=

1625.01667.025.0

016667.00

0015.0

0001

][L  

 

(d) 



















−

−
=

1625.01667.025.0

016667.00

0015.0

0001

][L  

 

8. The diagonal matrix ][D  can be computed as: 

 

(a) 

















−

=

3125.0000

03333.100

005.10

0002

][D  

 

(b) 



















−
=

3125.0000

03333.100

005.10

0002

][D  

 

(c) 



















−

=

3125.0000

03333.100

005.10

0002

][D  

 



 

 

(d) 



















=

3125.0000

03333.100

005.10

0002

][D  

 

9. The forward solution for the unknown vector ][z , in ][]][[ bzL =  can be computed as: 

(a) { } { }625.0,1,0,2−=
T

z  

(b) { } { }625.0,1,0,2=
T

z  

(c) { } { }625.0,1,0,2 −=
T

z  

(d) { } { }625.0,1,0,2 −=
T

z  

 

10. The diagonal scaling solution for the unknown vector ][ y in ][]][[ zyD = can be computed as: 

 

(a) { } { }2,75.0,0,1−=
T

y  

(b) { } { }2,75.0,0,1 −=
T

y  

(c) { } { }2,75.0,0,1 −=
T

y  

(d) { } { }2,75.0,0,1=
T

y  

 

11. The backward solution for the original unknown vector ][x , in ][][][ yxL
T

= , can be computed 

as: 
 

(a) { } { }2,2,1,1=
T

x  

(b) { } { }1,2,1,2=
T

x  

(c) { } { }1,2,1,1=
T

x  

(d) { } { }1,2,2,2=
T

x  

 



 

 

12. Given the following 6x6 matrix ][A , which is assumed to be SPD: 

 

[ ]



























×

×

×

×××

××

×××

=

0

00

0

000

000

A
 

 
where  ×  = a nonzero value (given) 
            0 = a zero value (given) 
 
Based on the numerically factorized formulas (shown in Equations 6-7), or even more helpful 
information as indicated in Figure 1, the symbolically factorized (upper-triangular) matrix can be 
obtained as: 
 

(a) [ ]



























∗

∗

∗

∗∗∗

∗∗

∗∗∗

=

F

U
00

0

000

000

 

where   
 * = a nonzero value (computed, at the same location as the original nonzero value of 
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