Chapter 04.09
Cholesky and b Decomposition

Introduction

Solving large (and sparse) system of simultaneous linear equations (SLE) has been (and
continues to be) a major challenging problem for many real-world engineering/science
applications [1-2]. In matrix notation, the SLE can be represented as:

[Allx]=[b] (1)
where [A] = known coefficient matrix, with dimension n X n

[b]= known right-hand-side (RHS) nx1 vector

[x]=unknown nXx1 vector.

Symmetrical Positive Definite (SPD) SLE

For many practical SLE, the coefficient matrix [A] (see Equation (1)) is Symmetric Positive
Definite (SPD). In this case, the efficient 3-step Cholesky algorithms [1-2] can be used.

A matrix [A]  can be considered as SPD if either of the following conditions is satisfied:

nxn

(a) If each and every determinant of sub-matrix A, (i =1,2,...,n)1s positive, or..

(b) If y" Ay >0, for any given vector [y] , #0

nxl

As a quick example, let us make a test a test to see if the given matrix

2 -1 0
[A]=|-1 2 —1]isSPD?
0 -1 1

Based on criteria (a):

The given 3X3 matrix [A]is symmetrical, because a;=a;. Furthermore, one has

detf[Al.|=]2/=2>0

2 -1
det‘[A]M‘ = )
=3>0
2 -1 0
def[Alys|=-1 2 -1
0 -1 1
=1>0

Hence [A]is SPD.



Based on criteria (b): For any given vector

B2l
y=|y, |#0, one computes

Y3

scalar = y" Ay

2 -1 0|y
:[y1 Y2 y3] -1 2 -1||y
0o -1 1 Vs

= (297 =2y, + 292 )+ 1y - 23,34}
—(y =y + 2+ 2+ 2 —2y,0,)
scalar = (yl _y2)2 + y12 +(y2 _y3)2 >0

Since the above scalar is always positive, hence matrix [A]is SPD.

Step 1: Matrix Factorization phase
In this step, the coefficient matrix [A] that is SPD can be decomposed (or factorized) into

[Al=[U]"[U] 2)

where [U] is a nXn upper triangular matrix.
The following simple 3x3 matrix example will illustrate how to find the matrix [U].

Various terms of the factorized matrix [U]can be computed/derived as follows (see Equation

(2)):

a dp 4 u, 0 0 Jlu, uy us
Ay Gy Ay |=|Up Uy 00wy uy, 3)
ay 4y ds Uy Uy Uz O 0 uy

Multiplying two matrices on the right-hand-side (RHS) of Equation (3), then equating each
upper-triangular RHS terms to the corresponding ones on the upper-triangular left-hand-side
(LHS), one gets the following 6 equations for the 6 unknowns in the factorized matrix[U].

a a
_ L _ G, 4
Uy =Ady U, = sUB = 4)
1 Uy
1
_ 2 Y., _ Gaz TUpls _( 2 2 )*
Uy = (azz —Up )2 sUyp = 3 Uy = \Ayy — Uy — Uy (5)

Uy



In general, for a nXxn matrix, the diagonal and off-diagonal terms of the factorized matrix
[U]can be computed from the following formulas:

(6)
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It is noted that if i = j, then the numerator of Equation (7) becomes identical to the terms under

the square root in Equation (6). In other words, to factorize a general term u ., one simply needs

[j’

to do the following steps:

Step 1.1: Compute the numerator of Equation (7), such as

i—1
Sum=a; — Zukiukj
k=1

Step 1.2 If u,1s an off-diagonal term (say,i < j) then u; = Su_m (See Equation (7)). Else, if u;is

u

a diagonal term (thatis, i = j ), then u, =/ Sum (See Equation (6))

As a quick example, one computes:

Aoy —UU G —UssUyy — Ul — UysU
U, = 57 15717 257727 35737 45747 (8)

Uss
Thus, for computing u(i=35,j=7), one only needs to use the (already factorized) data in

columns #i(=5), and # j(=7)of [U], respectively.

Remarks
® In general, to find the (off-diagonal) factorized term u,;, one only needs to utilize the
“already factorized” columns #i, and #j information (see Figure 1). For example, if
i=5, and j=7, then Figure 1 will lead to the same formula as shown earlier in
Equation (7), or in Equation (8). Similarly, to find the (diagonal) factorized term u,, one

simply needs to utilize columns #i, and #i (again!) information (see Figure 1). In this
case, Figure 1 will lead to the same formula as shown earlier in Equation (6).



Col. #i=5 Col. #j=7

U U ]
k=1

U, Uy ;

2i J k=2

Uy, Us;

3i J k=3

Uy; Uy

4i 4j k=4
i=5

u. u

Figure 1 Cholesky Factorization for the term u,

e Since the square root operation involved during the Cholesky factorization phase (see
Equation (6)), one must make sure the term under the square root is non-negative. This

requirement satisfied by [A] being SPD.

Step 2: Forward Solution phase
Substituting Equation (2) into Equation (1), one gets:
[UT [U][x] =[b]

Let us define:
[U]lx]=[y]

Then, Equation (9) becomes:

[UT" [y]=[b]

©))

(10)

(11)

Since [U]" is a lower triangular matrix, Equation (11) can be efficiently solved for the

intermediate unknown vector [y], according to the order

solution”.

As a quick example, one has (see Equation (11)):
u, 0 0 |l»n b,
Uy Uy 0 Ky, r=1b,

Uz Uy Uz [N b,

N
V2

Yu

, hence the name “forward

(12)



From the 1* row of Equation (12), one gets

Uy, =b
b
= —
Uy
From the 2™ row of Equation (12), one gets

U,y +uyy, =b,

Upy
Y, =b, -
Uy
Similarly
by —u,y, —Uyy
y3 -3 1371 2372
Uss

(13)

(14)

(15)

In general, from the j” row of Equation (12), one has

!
by =2 1y,
— i=1

Y p

V]

Step 3: Backward Solution phase

(16)

Since [U]is an upper triangular matrix, Equation (10) can be efficiently solved for the original

unknown vector [x], according to the order

Uy Uy U |l X B4
0wy uy|x =y,

0 0 uy | x Y3

, hence the name “backward solution”.

(17)

From the last (or n” =3"") row of Equation (17), one has

Uz X3 = Y3+



hence

o (18)
T Uy

Similarly:
X, = Yy Uy X (19)

Uy,

and

X, = Vi TURX, T U (20)
Uy

In general, one has:

Y~ Uk
x == (21)

J
u Ji

Remarks

(a) Amongst the above 3-step Cholesky algorithms, factorization phase in step 1 consumes about
95% of the total SLE solution time.

(b) If the coefficient matrix [A]is symmetrical but not necessarily positive definite, then the

above Cholesky algorithms will not be valid. In this case, the following LDL' factorized
algorithms can be employed:

[A]l=[L][D][L] (22)

For example,

a, a, a,| [1 0 0fd, O OT1 &, I,
4y ay ayl|=|L, 1 0|0 d, 0[]0 1 I, (23)
ay, ap ay| |L, L, 1] 0 0 dsf0 0 1

Multiplying the three matrices on the RHS of Equation (23), then equating the resulting upper-
triangular RHS terms of Equation (23) to the corresponding ones on the LHS, one obtains the
following formulas for the “diagonal” [D], and “lower-triangular” [ L] matrices:

j—1

dy=a;- Zlfkdkk (24)

k=1

j-1 1
I =[ai,.— Lidyly |X| — (25)
k=1 d/]

Thus, the LDL" algorithms can be summarized by the following step-by-step procedures.



Stepl: Factorization phase
[A]=[L][D][L]

Step 2: Forward solution and diagonal scaling phase
Substituting Equation (22) into Equation (1), one gets:

[L][D][L] [x] =[b]
Let us define:

[L] [x]=1[y]

L L, L|x M
0 1 Ly|x|(=|»
0 0 1|x Vs

xi:yi—Zlkixk;fori:n,n—l, ...... A

k=i+1

Also, define:
[D]lyl=I[z]

d, 0 0| » 2
0 d,, 0 |y|=z
0 0 dy|y; 23

Z; .
=—L fori=12,3,..... N
V=t J

122

Then Equation (26) becomes:
[L1[z]=[P]

I 0 0fg b,
L, 1 0|z, |=|b
Ly L, 1]z b,

—_

z;,=b—) L.z, fori=123, ... N

i i
1

~

(22, repeated)

(26)

(27)

(28)

(29)

(30)

€19

(32)



Equation (31) can be efficiently solved for the vector [z], then Equation (29) can be conveniently
(and trivially) solved for the vector [y]

Step 3: Backward solution phase

In this step, Equation (27) can be efficiently solved for the original unknown vector [x] .

Numerical Example 1 (Cholesky algorithms)

Solve the following SLE system for the unknown vector [x] ?

[Allx]=[b]

where
[2 -1 0
[A]l=]-1 2 -1
|0 -1 1
1
[b]=|0
0
Solution:

The factorized, upper triangular matrix [U ]can be computed by either referring to Equations (6-
7), or looking at Figure 1, as following:

Uy :\/a_n
5

=1.414

rowlof [U]




()}

=2—(~0.7071)
=1.225

i—1=1
Ay — Zukiukj
k=1
U22
—1-u, Xu,,
1.225
—1-(-0.7071)(0)
1.225
=-0.8165

row 2 of [U]

1
= {a33 - ”‘123 - u223}§ row 3 of [U]

= J1-(0) —(~0.8165)
= 0.5774

Thus, the factorized matrix

1.414 —0.7071 0
[u]l=| o 1225 -0.8165
0 0 0.5774

The forward solution phase, shown in Equation (11), becomes:

T y]=[e]

1.414 0 0o Ty] [1
~0.7071  1.225 0 |y |=]0
0  -08165 05774 y,| |0

Thus, Equation (16) can be used to solve:



h=—""
Uy
__
1414
=0.7071
j-1=1
bz - Zuijyi
Y2 = =
uJJ
_ 0—(u,, =—0.7071)(y, = 0.7071)
- (i, =1.225)
=(.4082
j-1=2
b3 - Zuijyi
Y3 = =
u

J
_ 0—(uyy =0)(y, =0.7071) = (5, =—0.8165)(y, =0.4082)
(uy, =0.5774)

=0.5774
The backward solution phase, shown in Equation (10), becomes:
w]lx]=[y]

1.414 -0.7071 0 b 0.7071
0 1.225  —-0.8165 || x, |=|0.4082
0 0 0.5774 | x, 0.5774

Thus, Equation (21) can be used to solve:



N=3
YT U,

_ i=j+1=3
X2 =

u Jj

_ Yy T Uy

- Uy
_ 0.4082 - (-0.8165)(1)
1.225

=1

N=3
Y~ Zuﬁxi

i=j+1=2
X, = !

u I

Vi —UpXy — Uz

~0.7071 —1 l(— 0.7071)(1)—-(0)(1)
B 1.414

=1

Hence
1

[x]=|1
1
Numerical Example 2 (LDL" Algorithms)

Using the same data given in Numerical Example 1, find the unknown vector [x] by LDL'
algorithms?

Solution:

The factorized matrices [D]and [L]can be computed from Equation (24), and Equation (25),
respectively.



j-1=0
d,=a, - zl]zkdkk
k=1
=day
=2
l,, =1(always)

j-1=0

as — zlikdkkljk
b = k;
i
_ay
d,
!
T2
=-0.5
_ 43
L, d,
0
2
=0

j-l1=1

_ 2
dy =a, — lekdkk
k=1

= 2—1221d11
=2-(-0.5)*(2)
=1.5

l,, =1 (always!)

j-1=1

asz — 2131d11121
_ k=1

—
32 d22
_-1-(0)2)-05)
1.5
=—-0.6667

j1=2

_ 2
dy =ay,— zljkdkk
k=1

Column 1 of matrices of [D] and [L]

Column 2 of matrices [D]and [L]

=1-12d, -15d,, Column 3 of matrices [D]and [L]

=1-(0)°(2)- (- 0.6667)*(1.5)

=0.3333




Hence

2 0 0
[D]=]0 15 0
0 0 03333
and
1 0 0
[L]=]|-05 1 0
0 -06667 1

The forward solution shown in Equation (31), becomes:

[L][z]=[v]

1 0  0l[z] [1
05 1 0l|z|=0
0 -0.667 1|z [0

i-1
z=b - Zlikzk
k=1

Hence

7 =b =1

2, =b,—Lyz
=0-(-0.5)(1)
=0.5

23 =by =Ly 2~ Ly,
=0-(0)(1)-(-0.6667)0.5)
=0.3333

The diagonal scaling phase, shown in Equation (29), becomes

IDllyl=[z]

2 0 0 Y 1
0 15 0 v, |=| 05
0 0 03333y, 0.3333

(32, repeated)



=1

The backward solution phase can be found by referring to Equation (27)

L] x]=[y]

1 =05 0 X, 0.5
0 1 -0.667 || x, |=]0.333
0 O 1 X, 1
N
X =Y~ Zlkixk (28, repeated)

k=i+1



Hence

X3=D);
=1
Xy =y, —lyx,
=0.3333—-(-0.6667)x1
x, =1
X =y~ x, =1 x,

x, =0.5—(=0.5)(1)-(0)(1)

Hence
X, 1
[x]z x, =1
X5 1
Remarks

Through this numerical example, one clearly sees that the “square root operations” have NOT
been involved during the entire LDL" algorithms. Thus, the coefficient matrix [A], shown in
Equation (1), is NOT required to be SPD.

Re-ordering Algorithms For Minimizing Fill-in Terms [1,2].

During the factorization phase (of Cholesky, or LDL' algorithms), many “zero” terms in the
original/given matrix [A] will become “non-zero” terms in the factored matrix [U]. These new
non-zero terms are often called as “fill-in” terms (indicated by the symbol F). It is, therefore,
highly desirable to minimize these fill-in terms, so that both computational time/effort and
computer memory requirements can be substantially reduced. For example, the following matrix
[A] and vector [b]are given:

M2 7 0 0 0 2]

7 110 5 4 3 0

0 5 8 0 0 1 (33)
[A]=

0 4 0 66 0 0

0 3 0 0 44 0

2 0 1 0 0 11




(1217
129
94 (34)
70
47
14

The Cholesky factorization matrix [U], based on the original matrix [A] (see Equation 33) and
Equations (6-7), or Figure 1, can be symbolically computed as:

- G

S © X T X o

o o o X X ©
S X MMM X o
X ™ =™ X 4 X

S o © o o X
S O O O X X

In Equation (35), the symbols x, and F represents the “non-zero” and “fill-in” terms,
respectively.

In practical applications, however, it is always a necessary step to rearrange the original matrix
[A] through re-ordering algorithms (or subroutines) [Refs 1-2] and produce the following integer
mapping array

IPERM (new equation #) = {old equation #} (36)
such as, for this particular example:

1 6

2 5

3] |4 (37)
IPERM| |=

4 3

5 2

6 1

Using the above results (see Equation 37), one will be able to construct the following re-arranged
matrices:

11 0 0 1 0 2]
0 4 0 0 3 0
[A*]: 0 0 66 0 4 0 (38)
1 0 0 8 5 0
0 3 4 5 110 7
12 0 0 0 7 112]

and



1
47
70 (39)
94
129
121

(b'1=

Remarks:

e In the original matrix A (shown in Equation 33), the nonzero term A (old row 1, old

column 2) = 7 will move to new location of the new matrix A (new row 6, new column
5) =17, etc.

e The non zero term A (old row 3, old column 3) = 88 will move to A (new row 4, new
column 4) = 88, etc.

e The value of b (old row 4) = 70 will be moved to (or located at) b (new row 3) =70,
etc.

Now, one would like to solve the following modified system of linear equations (SLE) for[x*] ,

*

[AT][x"]=[b] (40)

rather than to solve the original SLE (see Equationl). The original unknown vector {x}can be

easily recovered from [x*] and [IPERM ] , shown in Equation (37).

The factorized matrix [U"]can be “symbolically” computed from [A"]as (by referring to either
Figure 1, or Equations 6-7):

x 0 0 x 0 x
0 x 0 0 x 0
b= 00 x 0 x 0 (41)
00 0 x x F
00 0 0 x x
00 0 0 0 x|

You can clearly see the big benefits of solving the SLE shown in Equation (40), instead of
solving the original Equation (1), since the factorized matrix [U " ]has only 1 fill-in term (see the

symbol “F ” in Equation 41), as compared to six fill-in-terms occurred in the factorized matrix
[U] (shown in Equation 35)!



On-Line Chess-Like Game For Reordering/Factorized Phase [4].

Based on the discussions presented in the previous section 2 (about factorization phase), and
section 3 (about reordering phase), one can easily see the similar operations between the
symbolic, numerical factorization and reordering (to minimize the number of fill-in terms)
phases of sparse SLE.

In practical computer implementation for the solution of SLE, the reordering phase is usually
conducted first (to produce the mapping between “old<>new” equation numbers, as indicated in
the integer array IPERM(-), see Equations 36-37).

Then, the sparse “symbolic” factorization phase is followed by using either Cholesky Equations

6-7, or the LDL" Equations 24-25 (without requiring the actual/numerical values to be computed).
The reason is because during the “symbolic factorization” phase, one only wishes to find the
number (and the location) of non-zero “fill-in terms”. This “symbolic” factorization process is
necessary for allocating the “computer memory” requirement for the “numerical factorization”

phase which will actually compute the exact numerical values of [U “1, based on the same
Cholesky Equations (6-7) (or the LDL" Equations (24-25)).

In this work, a chess-like game (shown in Figure 2, Ref. [4]) has been designed with the
following objectives:

e e — o |
@@@@@@@ omeeprim2 [0 |

Current Fill in terms

Figure 2 A Chess-Like Game For Learning to Solve SLE.

(A)Teaching undergraduate/HS students the process how to use the reordering output
IPERM(-), see Equations (36-37) for converting the original/given matrix [A], see Equation
(33), into the new/modified matrix[A"], see Equation (38). This step is reflected in Figure 2,

n N

when the “Game Player” decides to swap node (or equation) (sayi = 2) with another node (or

equation)" j", and click the “CONFIRM” icon!

Since node "i =2" is currently connected to nodes j=4,6,7.8; hence swapping node i =2 with
the above nodes "j" will “NOT” change the number/pattern of “Fill-in” terms. However, if
node i =2 is swapped with node j =1, or 3, or 5, then the fill-in terms pattern may change (for
better or worse)!

(B) Helping undergraduate/HS students to understand the “symbolic” factorization” phase, by
symbolically utilizing the Cholesky factorized Equations (6-7). This step is illustrated in Figure
2, for which the “game player” will see (and also hear the computer animated sound, and human



voice), the non-zero terms (including fill-in terms) of the original matrix [A]to move to the new

locations in the new/modified matrix [A"].

(C) Helping undergraduate/HS students to understand the “numerical factorization” phase, by
numerically utilizing the same Cholesky factorized Equations (6-7).

(D) Teaching undergraduate engineering/science students and even high-school (HS) students to
“understand existing reordering concepts”, or even to “discover new reordering algorithms”

Further Explanation On The Developed Game

1. In the above Chess-Like Game, which is available on-line [4], powerful features of FLASH
computer environments [3], such as animated sound, human voice, motions, graphical colors
etc... have all been incorporated and programmed into the developed game-software for more
appealing to game players/learners.

2. In the developed “Chess-Like Game”, fictitious monetary (or any kind of ‘scoring system”) is
rewarded (and broadcasted by computer animated human voice) to game players, based on how
he/she swaps the node (or equation) numbers, and consequently based on how many fill-in " F"
terms occurred. In general, less fill-in terms introduced will result in more rewards!

3. Based on the original/given matrix [A], and existing re-ordering algorithms (such as the
Reverse Cuthill-Mckee, or RCM algorithms [1-2]) the number of fill-in ("F")terms can be

computed (using RCM algorithms). This internally generated information will be used to judge
how good the players/learners are, and/or broadcast “congratulations message” to a particular
player who discovers new “chess-like move” (or, swapping node) strategies which are even
better than RCM algorithms!

4. Initially, the player(s) will select the matrix size (8x8, or larger is recommended), and the
percentage (50%, or larger is suggested) of zero-terms (or sparsity of the matrix). Then, “START
Game” icon will be clicked by the player.

5. The player will then CLICK one of the selected node "i" (or equation) numbers appearing on

the computer screen. The player will see those nodes " j" which are connected to node "i"
(based on the given/generated matrix[A]). The player then has to decide to swap node "i" with
one of the possible node" j". After confirming the player’s decision, the outcomes/results will be

announced by the computer animated human voice, and the monetary-award will (or will NOT)
be given to the players/learners, accordingly. In this software, a maximum of $1,000,000 can be
earned by the player, and the “exact dollar amount” will be INVERSELY proportional to the
number of fill-in terms occurred (as a consequence of the player’s decision on how to swap node
"i" with another node" j").

6. The next player will continue to play, with his/her move (meaning to swap the i” node with
the j” node) based on the current best non-zero terms pattern of the matrix.



Multiple Choice Tests

Cholesky Algorithms
For a given SLE:
[A]l[x]=[D]
where
2 -1 0 05
-1 2 -1 0
[A]=
o -1 2 -1
05 0 -1 1
and
-0.5
5
pl=|
1.5

1. The Cholesky factorized matrix [U]can be computed as

[1.414 0.7071 0 0.3536

0 1.225 -0.8165 0.2041
@1y 0 1155 -0.7217
0 0 0 0.5590
[1.414 —0.7071 0 0.3536
®) 0 1.225 —0.8165 0.2041
0 0 1.155 -0.7217

0 0 0 0.5590
[1.414 0.7071 0 —-0.3536

0 1225 -0.8165 0.2041

© 0 0 1.155 —0.7217
0 0 0 0.5590




1.414 0.7071 0 0.3536
0 1.225 -0.8165 0.2041
0 0 -1.155 -0.7217
0 0 0 0.5590

(d)

2. The forward solution vector [ y] can be computed as
(a) ¥ ={0.5363,38.784, —15.877, 0.5590}
(b) " ={0.5363, -15.877, 38.784, 0.5590}

(c) y ={-3.536,-1.5877,3.878, 0.5590}
(d) ¥y ={-0.3536, 3.8784, —1.5877, —0.5590}

3. The backward solution vector [x]can be computed as
(@ " ={,2,-2,-1}

) ¥ ={,2,2,-1}

) x" ={-1,2,-2,1}

) 3" ={1,2,2,1}

4. The determinant of [A]4X4 can be computed as:
(a)-5

(b)5

(c)-50

(d) 1.25

5. Based on the given matrix [A], and assuming the reordering algorithm will produce the
1 3

1
following mapping IPERM (new equation #) = {old equation #}, such as IPERM 3 = nE The

4 2
non zero off-diagonal term A(old row 4, old column 1) = 0.5 will move to the following new
location of the new matrix [A"]

(a) A" (new row 3, new column 1)
(b) A" (new row 1, new column 3)

(c) A" (new row 3, new column 2)



(d) A" (new row 2, new column 2)

6. Based on the given matrix [A], and the given reordering mapping IPERM , the non-

1) (3
20 |1
3 |4

4 2
zero diagonal term A(4,4) = 1will move to the following new location of the new matrix [A]
(@ A"(1,h=1
(b) A"(2,2)=1
(c) A"(33)=1
(d) A 4,4 =1

LDL" Algorithms

For the given SLE:
[Al[x]=[b]
where
2 -1 0 05
-1 2 -1 O
[A]=
o -1 2 -1
05 0 -1 1
and
2
=]
11
0.5

7. The lower triangular matrix [L] can be computed as

1 0 0 0

@) [L]= -0.5 1 0 0
0 -0.6667 1 0

025 0.1667 -0.625 1



1 0 0 0]

) [L]= -0.5 1 0 0
0 0.6667 1 0

| 025 0.1667 -0.625 1]

(1 0 0 O]

© [Ll= -0.5 1 0 0
0 -06667 1 0

| 025 0.1667 0.625 1|

! 0 0 0

@ [L]= 0.5 1 0 0
0 —0.6667 1 0

1025 0.1667 —0.625 1

8. The diagonal matrix [D] can be computed as:

-2 0 0 0
@ [D]= 0 15 0 0
0 0 13333 0

10 0 0 03125
2 0 0 0
) [D]= 0 -15 0 0
0 0 13333 0

0 0 0  0.3125]

2 0 0 0 |
© D)= 015 0 0
0 0 1.3333 0

0 0 0 -03125]




2 0 0 0
@ (D] 015 0 0
1o 0 13333 0

0 0 0 0.3125

9. The forward solution for the unknown vector [z], in [L][z] =[b] can be computed as:
@ {z} ={-2,0,1,0.625}
® {z}" ={2,0,1,0.625}
© {z} ={2,0,-1,0.625}
@ {z}' ={2,0,1,-0.625}

10. The diagonal scaling solution for the unknown vector [y]in [D][y]=[z] can be computed as:

@ {y} ={-10,075,2}
®) {HY ={1,0,-0.75, 2}
© {f ={,0,075 -2}
@ {Y ={1,0,0.75,2}

11. The backward solution for the original unknown vector[x], in [L]"[x]=[y], can be computed
as:

@ {x}' ={.1.2.2}
) {x} ={2,1,2,1}
© {xf ={.1,2,1}

@ {x} ={2.2,2,1}



12. Given the following 6x6 matrix [A], which is assumed to be SPD:

x 0
X

X o X

[A]=

X O© X O

Sym

X © X o X
X © O X o O

where X = a nonzero value (given)
0 = a zero value (given)

Based on the numerically factorized formulas (shown in Equations 6-7), or even more helpful

information as indicated in Figure 1, the symbolically factorized (upper-triangular) matrix can be
obtained as:

@ -

* O ¥ O
* O % O
¥ M O ¥ O O

where

* = a nonzero value (computed, at the same location as the original nonzero value of
[A])

0 = a zero value

F = a nonzero Fill-in-Term (computed)

Note
UGB6)=F
A(5,6)=0
[« 0 «= 0 = 0
0O F 0 O
(b) [U]z ®* 0 &k
* 0 0
* F
®




x 0 = 0 *x 0
* 0 F 0 O
* 0 0
¥ F
ES
[« 0 %= 0 %= O]
* 0 F 0 0
(d) [U]= 0 F F
* 0 0
¥ F
ES
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