

Chapter 04.09

Cholesky and T
LDL Decomposition

Introduction

Solving large (and sparse) system of simultaneous linear equations (SLE) has been (and
continues to be) a major challenging problem for many real-world engineering/science
applications [1-2]. In matrix notation, the SLE can be represented as:

][]][[bxA = (1)

where][A = known coefficient matrix, with dimension nn ×

][b = known right-hand-side (RHS) 1×n vector

][x = unknown 1×n vector.

Symmetrical Positive Definite (SPD) SLE

For many practical SLE, the coefficient matrix][A (see Equation (1)) is Symmetric Positive

Definite (SPD). In this case, the efficient 3-step Cholesky algorithms [1-2] can be used.

A matrix nnA
×

][can be considered as SPD if either of the following conditions is satisfied:

(a) If each and every determinant of sub-matrix),...,2,1(niAii = is positive, or..

(b) If ,0>AyyT for any given vector 0][1

r
≠

×ny

As a quick example, let us make a test a test to see if the given matrix

















−

−−

−

=

110

121

012

][A is SPD?

Based on criteria (a):

The given 33× matrix][A is symmetrical, because jiij aa = . Furthermore, one has

[] 022det 11 >==×A

[]

03

21

12
det 22

>=

−

−
=×A

[]

01

110

121

012

det 33

>=

−

−−

−

=×A

Hence][A is SPD.

Based on criteria (b): For any given vector

0

3

2

1
rr

≠

















=

y

y

y

y , one computes

[]

() { }

() { }32

2

3

2

2

2

1

2

21

32

2

3

2

221

2

1

3

2

1

321

2

2222

110

121

012

yyyyyyy

yyyyyyy

y

y

y

yyy

Ayyscalar
T

−+++−=

−++−=

































−

−−

−

=

=

() () 0
2

32

2

1

2

21 >−++−= yyyyyscalar

Since the above scalar is always positive, hence matrix][A is SPD.

Step 1: Matrix Factorization phase

In this step, the coefficient matrix][A that is SPD can be decomposed (or factorized) into

][][][UUA T
= (2)

where][U is a nn × upper triangular matrix.

The following simple 33× matrix example will illustrate how to find the matrix][U .

Various terms of the factorized matrix][U can be computed/derived as follows (see Equation

(2)):

































=

















33

2322

131211

332313

2212

11

333231

232221

131211

00

00

00

u

uu

uuu

uuu

uu

u

aaa

aaa

aaa

 (3)

Multiplying two matrices on the right-hand-side (RHS) of Equation (3), then equating each
upper-triangular RHS terms to the corresponding ones on the upper-triangular left-hand-side

(LHS), one gets the following 6 equations for the 6 unknowns in the factorized matrix][U .

1111 au = ;
11

12
12

u

a
u = ;

11

13
13

u

a
u = (4)

()2

1
2

122222 uau −= ;
22

131223
23

u

uua
u

−
= ; ()2

1
2

23

2

133333 uuau −−= (5)

In general, for a nn × matrix, the diagonal and off-diagonal terms of the factorized matrix

][U can be computed from the following formulas:

()
2

1
1

1

2








−= ∑

−

=

i

k

kiiiii uau (6)

ii

i

k

kjkiij

ij
u

uua

u
∑

−

=

−

=

1

1 (7)

It is noted that if ji = , then the numerator of Equation (7) becomes identical to the terms under

the square root in Equation (6). In other words, to factorize a general term iju , one simply needs

to do the following steps:

Step 1.1: Compute the numerator of Equation (7), such as

∑
−

=

−=
1

1

i

k

kjkiij uuaSum

Step 1.2 If iju is an off-diagonal term (say, ji <) then
ii

ij
u

Sum
u = (See Equation (7)). Else, if iju is

a diagonal term (that is, ji =), then Sumuii = (See Equation (6))

As a quick example, one computes:

55

474537352725171557
57

u

uuuuuuuua
u

−−−−
= (8)

Thus, for computing)7,5(== jiu , one only needs to use the (already factorized) data in

columns)5(# =i , and)7(# =j of][U , respectively.

Remarks

• In general, to find the (off-diagonal) factorized term iju , one only needs to utilize the

“already factorized” columns i# , and j# information (see Figure 1). For example, if

5=i , and 7=j , then Figure 1 will lead to the same formula as shown earlier in

Equation (7), or in Equation (8). Similarly, to find the (diagonal) factorized term iiu , one

simply needs to utilize columns i# , and i# (again!) information (see Figure 1). In this
case, Figure 1 will lead to the same formula as shown earlier in Equation (6).

iiu
iju

ju4

ju3

ju2

ju1

iu4

iu3

iu2

iiu

Figure 1 Cholesky Factorization for the term iju

• Since the square root operation involved during the Cholesky factorization phase (see
Equation (6)), one must make sure the term under the square root is non-negative. This

requirement satisfied by][A being SPD.

Step 2: Forward Solution phase

Substituting Equation (2) into Equation (1), one gets:

][]][[][bxUU T
= (9)

Let us define:

][][][yxU ≡ (10)

Then, Equation (9) becomes:

][][][byU T
= (11)

Since TU][is a lower triangular matrix, Equation (11) can be efficiently solved for the

intermediate unknown vector][y , according to the order























ny

y

y

.

.

2

1

, hence the name “forward

solution”.

As a quick example, one has (see Equation (11)):

















=

































3

2

1

3

2

1

332313

2212

11

0

00

b

b

b

y

y

y

uuu

uu

u

 (12)

From the 1st row of Equation (12), one gets

1111 byu =

11

1
1

u

b
y = (13)

From the 2nd row of Equation (12), one gets

2222112 byuyu =+

22

112
22

u

yu
by −= (14)

Similarly

33

2231133
3

u

yuyub
y

−−
= (15)

In general, from the thj row of Equation (12), one has

jj

j

i

iijj

j
u

yub

y

∑
−

=

−

=

1

1 (16)

Step 3: Backward Solution phase

Since][U is an upper triangular matrix, Equation (10) can be efficiently solved for the original

unknown vector][x , according to the order























−

−

1

2

1

.

x

x

x

x

n

n

n

, hence the name “backward solution”.

As a quick example, one has (See Equation (10)):

















=

































3

2

1

3

2

1

33

2322

131211

00

0

y

y

y

x

x

x

u

uu

uuu

 (17)

From the last (or rdthn 3=) row of Equation (17), one has

3333 yxu = .

hence

33

3
3

u

y
x = (18)

Similarly:

22

3232
2

u

xuy
x

−
= (19)

and

11

3132121
1

u

xuxuy
x

−−
= (20)

In general, one has:

jj

n

ji

ijij

j
u

xuy

x

∑
+=

−

=
1

 (21)

Remarks

(a) Amongst the above 3-step Cholesky algorithms, factorization phase in step 1 consumes about
95% of the total SLE solution time.

(b) If the coefficient matrix][A is symmetrical but not necessarily positive definite, then the

above Cholesky algorithms will not be valid. In this case, the following TLDL factorized
algorithms can be employed:

TLDLA]][][[][= (22)

For example,

















































=

















100

10

1

00

00

00

1

01

001

32

3121

33

22

11

3231

21

333231

232221

131211

l

ll

d

d

d

ll

l

aaa

aaa

aaa

 (23)

Multiplying the three matrices on the RHS of Equation (23), then equating the resulting upper-
triangular RHS terms of Equation (23) to the corresponding ones on the LHS, one obtains the

following formulas for the “diagonal”][D , and “lower-triangular”][L matrices:

 ∑
−

=

−=
1

1

2
j

k

kkjkjjjj dlad (24)














×







−= ∑

−

= jj

j

k

jkkkikijij
d

ldlal
11

1

 (25)

Thus, the TLDL algorithms can be summarized by the following step-by-step procedures.

Step1: Factorization phase

TLDLA]][][[][= (22, repeated)

Step 2: Forward solution and diagonal scaling phase

Substituting Equation (22) into Equation (1), one gets:

][][]][][[bxLDL T
= (26)

Let us define:

][][][yxL T
=

















=

































3

2

1

3

2

1

32

3121

100

10

1

y

y

y

x

x

x

l

ll

 (27)

1......,,1,;
1

−=−= ∑
+=

nniforxlyx
n

ik

kkiii
 (28)

Also, define:

][]][[zyD =

















=

































3

2

1

3

2

1

33

22

11

00

00

00

z

z

z

y

y

y

d

d

d

 (29)

nifor
d

z
y

ii

i
i,,3,2,1, == (30)

Then Equation (26) becomes:

][]][[bzL =

















=

































3

2

1

3

2

1

3231

21

1

01

001

b

b

b

z

z

z

ll

l (31)

niforzLbz
i

k

kikii,,3,2,1
1

1

=−= ∑
−

=

 (32)

Equation (31) can be efficiently solved for the vector []z , then Equation (29) can be conveniently

(and trivially) solved for the vector []y .

Step 3: Backward solution phase

In this step, Equation (27) can be efficiently solved for the original unknown vector []x .

Numerical Example 1 (Cholesky algorithms)

Solve the following SLE system for the unknown vector []x ?

][]][[bxA =

where

[]
















−

−−

−

=

110

121

012

A

















=

0

0

1

][b

Solution:

The factorized, upper triangular matrix []U can be computed by either referring to Equations (6-

7), or looking at Figure 1, as following:

][1

0

414.1

0

7071.0

414.1

1

414.1

2

11

13
13

11

12
12

1111

Uofrow

u

a
u

u

a
u

au



























=

=

=

−=

−
=

=

=

=

=

()

(){ }

()

()()

][2

8165.0

225.1

07071.01

225.1

1

225.1

7071.02

2

1312

22

11

1

23

23

2

2

1
2

12

2

1
11

1

2

2222

Uofrow

uu

U

uua

u

u

uau

i

k

kjki

i

k

ki




























−=

−−−
=

×−−
=

−

=

=

−−=

−=









−=

∑

∑

=−

=

=−

=

()

{ }

() ()

][3

5774.0

8165.001
22

2

1
2

23

2

1333

2

1
21

1

2

3333

Uofrow
uua

uau
i

k

ki
















=

−−−=

−−=









−= ∑
=−

=

Thus, the factorized matrix

[]
















−

−

=

5774.000

8165.0225.10

07071.0414.1

U

The forward solution phase, shown in Equation (11), becomes:

[] [] []byU
T

=

















=

































−

−

0

0

1

5774.08165.00

0225.17071.0

00414.1

3

2

1

y

y

y

Thus, Equation (16) can be used to solve:

()()
()

()() ()()
()

5774.0

5774.0

4082.08165.07071.000

4082.0

225.1

7071.07071.00

7071.0

414.1

1

33

223113

21

1

3

3

22

112

11

1

2

2

11

1
1

=

=

=−=−==−
=

−

=

=

=

=−=−
=

−

=

=

=

=

∑

∑

=−

=

=−

=

u

yuyu

u

yub

y

u

yu

u

yub

y

u

b
y

jj

j

i

iij

jj

j

i

iij

The backward solution phase, shown in Equation (10), becomes:

[] [] []yxU =

















=

































−

−

5774.0

4082.0

7071.0

5774.000

8165.0225.10

07071.0414.1

3

2

1

x

x

x

Thus, Equation (21) can be used to solve:

()()

()() ()()

1

414.1

1017071.07071.0

1

225.1

18165.04082.0

1

5774.0

5774.0

11

3132121

3

21

1

22

3232

3

31

2

33

3

3

=

−−−
=

−−
=

−

=

=

−−
=

−
=

−

=

=

=

=

=

∑

∑

=

=+=

=

=+=

u

xuxuy

u

xuy

x

u

xuy

u

xuy

x

u

y

u

y
x

jj

N

ji

ijij

jj

N

ji

ijij

jj

j

Hence

















=

1

1

1

][x

Numerical Example 2 (TLDL Algorithms)

Using the same data given in Numerical Example 1, find the unknown vector][x by TLDL

algorithms?

Solution:

The factorized matrices][D and][L can be computed from Equation (24), and Equation (25),

respectively.

[] []LandDofmatricesofColumn

d

a
l

d

a

d

ldla

l

alwaysl

a

dlad

jj

j

k

jkkkik

j

k

kkjk

1

0

2

0

5.0

2

1

)!(1

2

11

31
31

11

21

01

1

21

21

11

11

01

1

2

1111


































=

=

=

−=

−
=

=

−

=

=

=

=

−=

∑

∑

=−

=

=−

=

() ()

()()()

[] []LandDmatricesofColumn

d

ldla

l

alwaysl

dl

dlad

j

k

j

k

kkjk

2

6667.0

5.1

5.0201

)!(1

5.1

25.02

2

22

11

1

21113132

32

22

2

11

2

21

11

1

2

2222

























−=

−−−
=

−

=

=

=

−−=

−=

−=

∑

∑

=−

=

=−

=

() () () ()

[] []LandDmatricesofColumndldl

dlad
j

k

kkjk

3

3333.0

5.16667.0201

1

22

22

2

3211

2

31

21

1

2

3333















=

−−−=

−−=

−= ∑
=−

=

Hence

[]
















=

3333.000

05.10

002

D

and

[]
















−

−=

16667.00

015.0

001

L

The forward solution shown in Equation (31), becomes:

[] [] []bzL =

















=

































−

−

0

0

1

1667.00

015.0

001

3

2

1

z

z

z

or,

∑
−

=

−=
1

1

i

k

kikii zlbz (32, repeated)

Hence

()()

()() ()()

3333.0

5.06667.0100

5.0

15.00

1

23213133

12122

11

=

−−−=

−−=

=

−−=

−=

==

zLzLbz

zLbz

bz

The diagonal scaling phase, shown in Equation (29), becomes

[][] []zyD =

















=

































3333.0

5.0

1

3333.000

05.10

002

3

2

1

y

y

y

or

ii

i
i

d

z
y =

Hence

1

3333.0

3333.0

3333.0

5.1

5.0

5.0

2

1

33

3
3

22

2
2

11

1
1

=

=

=

=

=

=

=

=

=

d

z
y

d

z
y

d

z
y

The backward solution phase can be found by referring to Equation (27)

[] [] []yxL
T

=

















=

































−

−

1

333.0

5.0

100

667.010

05.01

3

2

1

x

x

x

∑
+=

−=
N

ik

kkiii xlyx
1

 (28, repeated)

Hence

()

()() ()()

1

1015.05.0

1

16667.03333.0

1

1

33122111

2

33222

33

=

−−−=

−−=

=

×−−=

−=

=

=

x

xlxlyx

x

xlyx

yx

Hence

[]
















=

















=

1

1

1

3

2

1

x

x

x

x

Remarks
Through this numerical example, one clearly sees that the “square root operations” have NOT

been involved during the entire TLDL algorithms. Thus, the coefficient matrix][A , shown in

Equation (1), is NOT required to be SPD.

Re-ordering Algorithms For Minimizing Fill-in Terms [1,2].

During the factorization phase (of Cholesky, or TLDL algorithms), many “zero” terms in the

original/given matrix][A will become “non-zero” terms in the factored matrix][U . These new

non-zero terms are often called as “fill-in” terms (indicated by the symbol F). It is, therefore,
highly desirable to minimize these fill-in terms, so that both computational time/effort and
computer memory requirements can be substantially reduced. For example, the following matrix

][A and vector][b are given:

[]



























=

1100102

0440030

0066040

1008850

03451107

20007112

A
 (33)



























=

14

47

70

94

129

121

][b
 (34)

The Cholesky factorization matrix][U , based on the original matrix][A (see Equation 33) and

Equations (6-7), or Figure 1, can be symbolically computed as:

[]



























×

×

×

××

××××

×××

=

00000

0000

000

00

0

000

F

FF

FF

F

U
 (35)

In Equation (35), the symbols x , and F represents the “non-zero” and “fill-in” terms,
respectively.

In practical applications, however, it is always a necessary step to rearrange the original matrix
[A] through re-ordering algorithms (or subroutines) [Refs 1-2] and produce the following integer
mapping array

IPERM (new equation #) = {old equation #} (36)

such as, for this particular example:



























=



























1

2

3

4

5

6

6

5

4

3

2

1

IPERM
 (37)

Using the above results (see Equation 37), one will be able to construct the following re-arranged
matrices:

[]



























=

11270002

71105430

0588001

0406600

0300440

2010011

*
A

 (38)

and



























=

121

129

94

70

47

14

][*
b

 (39)

Remarks:

• In the original matrix A (shown in Equation 33), the nonzero term A (old row 1, old

column 2) = 7 will move to new location of the new matrix
*

A (new row 6, new column
5) = 7, etc.

• The non zero term A (old row 3, old column 3) = 88 will move to
*

A (new row 4, new
column 4) = 88, etc.

• The value of b (old row 4) = 70 will be moved to (or located at)
*b (new row 3) = 70,

etc.

Now, one would like to solve the following modified system of linear equations (SLE) for][*
x ,

][]][[*** bxA = (40)

rather than to solve the original SLE (see Equation1). The original unknown vector }{x can be

easily recovered from][*
x and []IPERM , shown in Equation (37).

The factorized matrix][*U can be “symbolically” computed from][*A as (by referring to either

Figure 1, or Equations 6-7):

[]



























×

××

××

××

××

×××

=

00000

0000

000

0000

0000

000

*

F
U

 (41)

You can clearly see the big benefits of solving the SLE shown in Equation (40), instead of

solving the original Equation (1), since the factorized matrix][*U has only 1 fill-in term (see the

symbol “ F ” in Equation 41), as compared to six fill-in-terms occurred in the factorized matrix

][U (shown in Equation 35)!

On-Line Chess-Like Game For Reordering/Factorized Phase [4].

Based on the discussions presented in the previous section 2 (about factorization phase), and
section 3 (about reordering phase), one can easily see the similar operations between the
symbolic, numerical factorization and reordering (to minimize the number of fill-in terms)
phases of sparse SLE.

In practical computer implementation for the solution of SLE, the reordering phase is usually
conducted first (to produce the mapping between “old↔new” equation numbers, as indicated in
the integer array IPERM(-), see Equations 36-37).

Then, the sparse “symbolic” factorization phase is followed by using either Cholesky Equations

6-7, or the TLDL Equations 24-25 (without requiring the actual/numerical values to be computed).
The reason is because during the “symbolic factorization” phase, one only wishes to find the
number (and the location) of non-zero “fill-in terms”. This “symbolic” factorization process is
necessary for allocating the “computer memory” requirement for the “numerical factorization”

phase which will actually compute the exact numerical values of][*U , based on the same

Cholesky Equations (6-7) (or the TLDL Equations (24-25)).

In this work, a chess-like game (shown in Figure 2, Ref. [4]) has been designed with the
following objectives:

Figure 2 A Chess-Like Game For Learning to Solve SLE.

(A)Teaching undergraduate/HS students the process how to use the reordering output

 IPERM(-), see Equations (36-37) for converting the original/given matrix][A , see Equation

(33), into the new/modified matrix][*A , see Equation (38). This step is reflected in Figure 2,

when the “Game Player” decides to swap node (or equation) ""i (say 2=i) with another node (or

equation) "" j , and click the “CONFIRM” icon!

Since node "2" =i is currently connected to nodes ;8,7,6,4=j hence swapping node 2=i with

the above nodes "" j will “NOT” change the number/pattern of “Fill-in” terms. However, if

node 2=i is swapped with node ,5,3,1 ororj = then the fill-in terms pattern may change (for

better or worse)!

(B) Helping undergraduate/HS students to understand the “symbolic” factorization” phase, by
symbolically utilizing the Cholesky factorized Equations (6-7). This step is illustrated in Figure
2, for which the “game player” will see (and also hear the computer animated sound, and human

voice), the non-zero terms (including fill-in terms) of the original matrix][A to move to the new

locations in the new/modified matrix][*A .

(C) Helping undergraduate/HS students to understand the “numerical factorization” phase, by
numerically utilizing the same Cholesky factorized Equations (6-7).

(D) Teaching undergraduate engineering/science students and even high-school (HS) students to
“understand existing reordering concepts”, or even to “discover new reordering algorithms”

Further Explanation On The Developed Game

1. In the above Chess-Like Game, which is available on-line [4], powerful features of FLASH
computer environments [3], such as animated sound, human voice, motions, graphical colors
etc… have all been incorporated and programmed into the developed game-software for more
appealing to game players/learners.

2. In the developed “Chess-Like Game”, fictitious monetary (or any kind of ‘scoring system”) is
rewarded (and broadcasted by computer animated human voice) to game players, based on how
he/she swaps the node (or equation) numbers, and consequently based on how many fill-in ""F
terms occurred. In general, less fill-in terms introduced will result in more rewards!

3. Based on the original/given matrix][A , and existing re-ordering algorithms (such as the

Reverse Cuthill-Mckee, or RCM algorithms [1-2]) the number of fill-in)"("F terms can be

computed (using RCM algorithms). This internally generated information will be used to judge
how good the players/learners are, and/or broadcast “congratulations message” to a particular
player who discovers new “chess-like move” (or, swapping node) strategies which are even
better than RCM algorithms!

4. Initially, the player(s) will select the matrix size (88× , or larger is recommended), and the
percentage (50%, or larger is suggested) of zero-terms (or sparsity of the matrix). Then, “START
Game” icon will be clicked by the player.

5. The player will then CLICK one of the selected node ""i (or equation) numbers appearing on

the computer screen. The player will see those nodes "" j which are connected to node ""i

(based on the given/generated matrix][A). The player then has to decide to swap node ""i with

one of the possible node "" j . After confirming the player’s decision, the outcomes/results will be

announced by the computer animated human voice, and the monetary-award will (or will NOT)
be given to the players/learners, accordingly. In this software, a maximum of $1,000,000 can be
earned by the player, and the “exact dollar amount” will be INVERSELY proportional to the
number of fill-in terms occurred (as a consequence of the player’s decision on how to swap node

""i with another node "" j).

6. The next player will continue to play, with his/her move (meaning to swap the th
i node with

the thj node) based on the current best non-zero terms pattern of the matrix.

Multiple Choice Tests

Cholesky Algorithms

For a given SLE:

][]][[bxA =

where



















−

−−

−−

−

=

1105.0

1210

0121

5.0012

][A

and

[]



















−

−

=

5.1

5

5

5.0

b

1. The Cholesky factorized matrix][U can be computed as

(a)



















−

−

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

(b)



















−

−

−

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

(c)



















−

−

−

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

(d)



















−−

−

5590.0000

7217.0155.100

2041.08165.0225.10

3536.007071.0414.1

2. The forward solution vector][y can be computed as

(a) { }5590.0,877.15,784.38,5363.0 −=
Ty
r

(b) { }5590.0,784.38,877.15,5363.0 −=
Ty
r

(c) { }5590.0,878.3,5877.1,536.3 −−=
Ty
r

(d) { }5590.0,5877.1,8784.3,3536.0 −−−=
Ty
r

3. The backward solution vector][x can be computed as

(a) { }1,2,2,1 −−=
Tx
r

(b) { }1,2,2,1 −=
Tx
r

(c) { }1,2,2,1 −−=
Tx
r

(d) { }1,2,2,1=
Tx
r

4. The determinant of [] 44×A can be computed as:

(a) -5

(b) 5

(c) -50

(d) 1.25

5. Based on the given matrix][A , and assuming the reordering algorithm will produce the

following mapping IPERM (new equation #) = {old equation #}, such as





















=





















2

4

1

3

4

3

2

1

IPERM . The

non zero off-diagonal term A(old row 4, old column 1) = 0.5 will move to the following new

location of the new matrix][*A

(a)
*A (new row 3, new column 1)

(b) *A (new row 1, new column 3)

(c) *A (new row 3, new column 2)

(d) *A (new row 2, new column 2)

6. Based on the given matrix][A , and the given reordering mapping





















=





















2

4

1

3

4

3

2

1

IPERM , the non-

zero diagonal term A(4,4) = 1will move to the following new location of the new matrix][*A

(a) 1)1,1(*
=A

(b) 1)2,2(*
=A

(c) 1)3,3(*
=A

(d) 1)4,4(*
=A

 TLDL Algorithms

For the given SLE:

][]][[bxA =

where



















−

−−

−−

−

=

1105.0

1210

0121

5.0012

][A

and



















−
=

5.0

1

1

2

][b

7. The lower triangular matrix][L can be computed as

(a)



















−

−

−
=

1625.01667.025.0

016667.00

0015.0

0001

][L

(b)



















−

−
=

1625.01667.025.0

016667.00

0015.0

0001

][L

(c)



















−

−
=

1625.01667.025.0

016667.00

0015.0

0001

][L

(d)



















−

−
=

1625.01667.025.0

016667.00

0015.0

0001

][L

8. The diagonal matrix][D can be computed as:

(a)

















−

=

3125.0000

03333.100

005.10

0002

][D

(b)



















−
=

3125.0000

03333.100

005.10

0002

][D

(c)



















−

=

3125.0000

03333.100

005.10

0002

][D

(d)



















=

3125.0000

03333.100

005.10

0002

][D

9. The forward solution for the unknown vector][z , in][]][[bzL = can be computed as:

(a) { } { }625.0,1,0,2−=
T

z

(b) { } { }625.0,1,0,2=
T

z

(c) { } { }625.0,1,0,2 −=
T

z

(d) { } { }625.0,1,0,2 −=
T

z

10. The diagonal scaling solution for the unknown vector][y in][]][[zyD = can be computed as:

(a) { } { }2,75.0,0,1−=
T

y

(b) { } { }2,75.0,0,1 −=
T

y

(c) { } { }2,75.0,0,1 −=
T

y

(d) { } { }2,75.0,0,1=
T

y

11. The backward solution for the original unknown vector][x , in][][][yxL
T

= , can be computed

as:

(a) { } { }2,2,1,1=
T

x

(b) { } { }1,2,1,2=
T

x

(c) { } { }1,2,1,1=
T

x

(d) { } { }1,2,2,2=
T

x

12. Given the following 6x6 matrix][A , which is assumed to be SPD:

[]



























×

×

×

×××

××

×××

=

0

00

0

000

000

A

where × = a nonzero value (given)
 0 = a zero value (given)

Based on the numerically factorized formulas (shown in Equations 6-7), or even more helpful
information as indicated in Figure 1, the symbolically factorized (upper-triangular) matrix can be
obtained as:

(a) []



























∗

∗

∗

∗∗∗

∗∗

∗∗∗

=

F

U
00

0

000

000

where
 * = a nonzero value (computed, at the same location as the original nonzero value of

][A)

 0 = a zero value
 F = a nonzero Fill-in-Term (computed)

Note

0)6,5(

)6,5(

=

=

A

FU

(b) []



























∗

∗

∗

∗∗∗

∗

∗∗∗

=

F

F

U
00

0

000

000

Sym

(c) []



























∗

∗

∗

∗∗

∗

∗∗∗

=

F

F

F

U
00

0

000

000

(d) []



























∗

∗

∗

∗

∗

∗∗∗

=

F

FF

F

U
00

0

000

000

References

[1] Duc T. Nguyen, “Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions”,
Springer Publisher (2006).
[2] Duc T. Nguyen, “Parallel-vector Equation Solvers for Finite Element Engineering
Applications”, Kluwer Academic/Plenum Publishers (2002).
[3] www.brothersoft.com/downloads/flash-animation-software.html.
[4] http://www.lions.odu.edu/~amoha006/Fillinterms/FILLINTERMS.html

CHOLESKY AND TLDL DECOMPOSITION

Topic Cholesky and TLDL Decomposition
Summary Textbook notes on Cholesky and TLDL Decomposition
Major General Engineering
Authors
Date

Duc Nguyen
September 16, 2010

Web Site http://numericalmethods.eng.usf.edu

